
I. Introduction

Convective flows in finite systems with a gas-liquid interface
(e.g. liquid bridge) are intensively studied mainly due to their
relevance to crystal growth processes under microgravity con-
ditions. Creating a temperature gradient along the interface cre-
ates thermocapillarity which in turn sets up a shear flow and
thus leads to a toroidal-like convective motion. When the tem-
perature gradient along the interface exceeds some critical value
(ΔTcr), the initially twodimensional (2D) toroidal flow under-

goes a transition to a three-dimensional (3D) one. 
Influence of heat exchange between liquid and gas on the

thermocapillary flow in liquid bridge has got attention a couple
of decades ago, e.g. [1]. Its role in stabilizing the flow stays
unclear. Results of some experiments and calculations showed
that increasing the heat loss through the interface slightly stabi-
lizes the flow (see [2],[3],[4], [5]). Our previous numerical stud-
ies performed for Pr = 108 [6] have also confirmed that increas-
ing Biot number results in increasing ΔTcr. Hereafter the classi-

cal definition of the Biot number is used, Bi = hR/λl, where h is

the heat transfer coefficient to the ambient air, λl is the thermal

conductivity of the liquid and R is radius of the liquid bridge. 
However, the recent results of numerical study of the ther-

mocapillary convection in a Pr = 28 liquid bridge [7] showed an
opposite effect of the heat loss. It was discovered that the criti-
cal temperature difference almost linearly decreases when
increasing the Biot number, and thus at Bi = 1 the onset of insta-
bility takes place at a value of ΔTcr which is approximately 73%

smaller than that at Bi = 0. The present study aims at clarifying
the role of cooling the liquid-gas interface in the stability of the
thermocapillary flow in a liquid bridge under normal gravity
conditions. 

© Z-Tec Publishing, Bremen Microgravity sci. technol. XVIII-3/4 (2006)128

Melnikov D. E. and Shevtsova V. M.: Thermocapillary Convection in a  Liquid Bridge Subjected to Interfacial Cooling

Melnikov D. E. and Shevtsova V. M.

Influence of heat loss through interface on a supercritical three-
dimensional thermoconvective flow in a long liquid bridge is
numerically investigated under terrestrial conditions. A flow in
a high Prandtl number liquid surrounded by an ambient gas of
constant temperature is simulated for the large aspect ratio, Γ
= 1.8. It is shown that the heat loss plays a significant role in the
flow dynamics. It modifies both the flow and the liquid temper-
ature field. Moreover, for the relatively large aspect ratio and a
high Prandtl number liquid the heat loss from interface leads to
destabilization of the flow.
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II. Formulation of the Problem

A cylindrical liquid bridge shown in Fig. 1 is a fluid volume
held between two differentially heated horizontal flat disks of
radius R, separated by a distance d. The temperatures Thot and

Tcold (Thot > Tcold) are prescribed at the upper and lower walls

respectively, ΔT = Thot - Tcold. Density ρ, surface tension σ, and

kinematic viscosity υ of the liquid are taken as linear functions
of the temperature: 

where T0 = Tcold. The governing dimensionless equations are

solved: 

where V = (Vr, Vϕ, Vz) is velocity, Θ = (T -T0)/ΔT - z = Θ0 - z is

temperature and t is time. The strain rate tensor S = {Sij} =

(1/2)(∂Vi/∂xk + ∂Vk/∂xi). 

The dimensionless parameters in eqs.(1)-(3) are Prandtl,
Grashof, ”thermocapillary” Reynolds numbers and viscosity
contrast: 

where k, β‚ and g are thermal diffusivity, thermal expansion
coefficient and acceleration due to gravity. 

At the rigid walls: V→(r, ϕ, z = 0, t) = V→(r, ϕ, z = 1, t)= 0 and
Θ (r, ϕ, z = 0, t) = Θ (r, ϕ, z = 1, t) = 0. On the free surface (r =
1): 

where Θconst = (Tcold - Tamb)/ΔT, Bi = hd/λl, λl is the thermal dif-

fusivity of the liquid. Herein the calculations are performed for
Tamb = Tcold, thus Θconst = 0. The three-dimensional governing

equations are solved on a [Nr, Nϕ, Nz] = [24 × 16 × 30] mesh

non-uniform both in the radial and axial directions with mini-
mum intervals near the interface (0.025) and at the cold wall
(0.02). This grid was proved to be sufficient in case of a liquid
with Pr = 18 at Bi = 0 (see [8]). Both description of numerical
method and code validation could be found in the same paper. 

III. Results

A liquid bridge of R = 2.5 mm radius and d = 4.5 mm height

Microgravity sci. technol. XVIII-3/4 (2006)

Melnikov D. E. and Shevtsova V. M.: Thermocapillary Convection in a  Liquid Bridge Subjected to Interfacial Cooling

129

Fig. 1: Liquid bridge

Fig. 2: Critical Reynolds number at different values of Biot number.
Symbols and the line are the calculated values and a linear fit.
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(Γ=H/R = 1.8) is formed by 1cSt silicone oil of Pr = 14. The
study is mainly performed for a supercritical value of the tem-
perature difference ΔT = 4K which gives: 

Re = 1540, Gr = 4792, Rν = -0.024. 

For these parameters the flow is oscillatory. 
Five different Biot numbers are considered: Bi = 0 (thermal-

ly insulated interface), 0.5, 1.0, 1.8 and 9.0. Compared to Bi = 0
case, the critical Reynolds number is a decreasing function of
the Biot number when the latter varies between 0.0 and 1.8 (see
Fig. 2) and it can be linearly approximated by 

Re 0
cr = Re 0

cr -181 · Bi,

where Re 0
cr = 990 corresponds to the thermally insulated system

Bi = 0. Having in hands more points the fitting law can be more
precise. For Bi = 1.8 the critical value of Recr is 33% smaller, but

it is almost the same (5% greater) when Bi = 9 (Fig. 2).
Somewhere between Bi = 1.8 and 9.0 the slope of the Recr (Bi)
curve changes sign and the cooling the interface begins destabi-
lizing the flow. This effect demands a further investigation
which is a subject of a future study. In the considered cases, the
oscillatory flow appears in a form of m = 1 waves.

In Fig. 3 (left parts), azimuthally averaged temperature fields
Θ0

_
are shown as lines of constant values: 

Obviously, the heat loss through the interface decreases the
mean temperature on the free surface [6]. One can see that
increasing the Biot number leads to relatively steep temperature
gradients near the hot wall (Fig. 3). Also, the region of uniform
temperature in the central part of the liquid bridge located near
the interface becomes vaster. When Bi = 0, it is bounded by Θ0

_

= 0.6 and 0.7 isolines, at Bi = 9 it spreads deeper into the bulk
approaching the symmetry axis with values of the temperature
between Θ0

_
= 0.3 and 0.4 (compare Figs. 3(a) and (c)).

Moreover, one can see that in the case of Bi = 9.0 in the thin

Fig. 3: Isolines of azimuthally averaged temperature fields Θ0

_
(left)

and of mean azimuthal flow V̄mean (right). (a) - Bi = 0; (b) - Bi = 1.8;
(c) - Bi = 9.0.

Bi 0.0 1.8 9.0

Φ -0.095 -0.311 0.166

AT 0.034 0.085 0.053

f0 8.61 7.62 7.62

Table 1: Values of Φ, amplitude AT and main frequency f0 of temper-
ature oscillations for three different Biot numbers at Re = 1540.
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nearinterfacial layer the isolines Θ0

_
= 0.3 and 0.4 tend to

approach the mid-height of the liquid bridge z = 0.9 and thus
increasing the temperature gradient near the mid-plane. To
describe intensity of the flow, we apply concepts of mean V̄mean

and net Φ azimuthal flows: 

Lines of constant values of V̄mean are plotted in Fig. 3 (right

parts). For Bi = 0 the minimum value of the mean flow is
attained at the free surface, but when the Biot number is increas-
ing the region of the minimum intensity of V̄mean migrates into

the domain and is located at r ≈ 0.5, z ≈ 1.1 (compare Figs. 3(a)
and (b)). Although the same initial guess (a solution at a small-
er Re and Bi = 0) was taken for both Bi = 1.8 and 9.0 calcula-
tions, further increasing Bi reverses the sign of V̄mean. Contrary

to Bi = 1.8, V̄mean is positive in the upper part of the domain and

negative below (Fig. 3(c)). The net azimuthal flow Φ is also
strongly influenced by the heat loss (Table I). The fact that Φ is
negative for Bi = 0, 1.8 and positive for 9.0 indicates on the
changing the azimuthal direction of propagation of the waves.
To clarify this influence, the temperature timeseries were
recorded at four azimuthally equidistant points at r = 0.9, z = 0.9
(Fig.4). For Bi = 0 and 1.8, the temperature oscillations in the
two neighboring points are π/2 phase shifted that means a m =
1 traveling wave established in the system. One can notice that
increasing the Biot number slightly decreases main frequency
of the Θ0 oscillations, while their amplitude is growing (Table

I). When Bi = 9, the amplitude gets noticeably decreased and
the oscillations look completely different (Fig.4(c)). Clearly,
there are at least two frequencies in the oscillations spectrum.
The second frequency, which was not observed at Bi = 1.8, is at
least of one order of magnitude larger than the main one f0.

Moreover, the oscillations in the two azimuthally opposite
points (i.e. at ϕ = 0 and π) almost coincide, that means m = 2. 

IV. Conclusions

As a result of direct numerical simulations, it is shown that heat
loss through the gas-liquid interface of the liquid bridge can
change both spatial structure of the oscillatory flow and its tem-
poral characteristics. Increasing the Biot number up to 1.8 does
not change the stable spatial organization of the flow described
as m = 1 azimuthal wave number but decreases by 33% the crit-
ical Reynolds number. On the other hand, it makes amplitude of
the temperature oscillations to grow while slightly decreasing
their frequency. Further increasing the Biot number destabilizes
the flow and leads to doubling the wave number and diminish-
es the amplitude of the temperature oscillations. Along with the
azimuthal wave number m doubling the traveling thermocapil-
lary waves change the direction of propagation on the opposite
one. 
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Fig. 4: Local oscillations of temperature Θ0 = Θ+z recorded at four
equidistant points at r = 0.9, z = 0.9. (a) - Bi = 0; (b) - Bi = 1.8; (c)
- Bi = 9.0.
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