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1. Summary 

The distribution of a quadratic form in a normal sample plays a 
very important  role in multivariate statistical analysis. In many cases, 
statistics are functions of a quadratic form or special types of it. 

In the univariate case, the distribution of a quadratic form was 
treated by many authors and was derived by using the Laguerre poly- 
nomials expansion or the Dirichlet series expansion, etc. [6], [7], [8]. In 
this paper, the distribution of a quadratic form in the mbltivariate 
case will be given in terms of zonal polynomials which were developed 
for multivariate analysis by A. T. James [3], [4] and A. G. Constantine 
[2]. Recently, the author 's  at tent ion was called to C. G. Khatri  [9] 
which deals with the same problem also by using zonal polynomials. 
However, the present paper treats  the problem from another point of 
view. 

The distribution of a quadratic form enables us to derive the distri- 
bution of a linear combination of several Wishart  matrices. The distri- 
butions and probability functions of certain statistics of a quadratic form 
are given. 

2. Introduction and notations 

Let the p• N (p~_N) matrix variate X be a sample matr ix from a 
p-variate normal population with the density function 

(i) =pM/~j2_rl~/~ e t r -  Z - I X X  ' , 

where etr(S)=exp [TrS] and S is a square matrix.  Let A be a real 
symmetric matrix of order N with full rank. The problem we are going 
to consider is to derive the density function of the quadratic form 

* The first version of the paper, [0], was published in March, 1966. 
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( 2 ) Z = X A X ' .  

We shall also consider the density and the probability functions of some 
statistics related to it. 

Before describing the procedure, it is convenient to list the follow- 
ing results which are useful for our argument,  

( i ) Let S and T be real symmetric matrices of order N and C,(S) 
be a zonal polynomial corresponding to a partition z =  {kt, . . . ,  kp}, k ,>  
k,~_ . . .  ~b~>0  of b. Let d(H) be the invariant measure on the ortho- 
gonal group O(N), normalized so that  the measure of the whole group 
is unity. Then, 

c.(s) (3) et~(s)=~,~.~ ~ , 

�9 -0 �9 k~ c . ( & )  

These were given by A. T. James [4]. 
The following notations are used: 

( a ) . = T [  a -  - , 
(=1 k~ 

( a h = a ( a  + 1 )  . . . (a + k - 1 )  , 

C,( S )C.( T) 

Hence, 

( 5 ) / ',(a; ~ )=(a )p , (a ) .  

[See Constantine [21.1 

( i i)  Let A be a real positive definite symmetric matrix and B an 
arbitrary matrix. Then, 

( 6 )  I~>0,t,~-AS)lSl'-r C.(SB) dS=Fp(t; ,OIAI-'C.(A-'B) . 

where t ~ @ - 1 ) / 2  [Constantine [211. 
(iii) If  T is any positive definite symmetric matrix, then 

fA . . . . .  r , ( t ;  ~ ) r ~ ( ( v +  z)/2) (7) isl c.( rs) ds= IA[tC.(A T) 
I'~(t + (p + l )/2; ~) do 
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where the integral is over all S for which 0 < S < A  [Constantine [2]]. 
Constantine and James defined generalized hypergeomctric functions 

in terms of zonal polynomials as. 

(8) (a0,. . .  (a,), C.(S) 
~Fq(a,, . . . ,  a,; b,, . . . ,  bq; S) -- ~ffi,~ ~ (b,), (bq), k! ' 

( 9 )  (a,),...  (ap), C,(S)C,(T) 
~Fq(~')(a, . . . ,  ap; b,, . . . ,  bq; S, T ) -  ~=0~ ~ (b,), (b,), k! C,(IN) ' 

where /.v is the unit matrix of order _hr. 

3. Distribution function of a quadratic form 

THEOREM 1. I f  A is a positive definite symmetric matrix and X 
is distributed with density function (1), then the density fl~nction of 

Z=XAX' 

is given by 

(10) 1 ,ZICN_,_I,,, Fo(~)(A_,, _ I  Z_,Z ) " 
r,( NI~)I~ZI~ ~'IAI ~' 

PROOF. The density function of Z can be expressed in the form 
of multiple integral:  

1 

_ 1 

Since A is a symmetric matrix, the integral is invariant under the 
transformation A-' ~ HA-~H ', H r O(N) and the integration with respect 
to H over the orthogonal group O(N). Hence, by use of ( i ) ,  

(12) 

= k, c . c , . )  

Thus, from the Wishart integral, the density function of Z is given by 

(13) 1 izicx_,_l,,, ~ c,(A-~)c,C-�89 
r,(N/2)I2ZI~,,IAI, n ,=~ Z k! C,(&) ' 
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which completes the proof. 
If we set A=L,, the density function of Z = X X '  becomes 

(14) 1 ]ZU_,_,u,e$r[ Ix_,Z] 
_r, (NI2)I2Zl./,  

which is just the density function of a central Wishart matrix of N 
degrees of freedom. 

Note. C. G. Khatri [9] obtained the density function of Z and ex- 
pressed it as the product of a Wishart density function and a generalized 
hypergeometric function. However, his form is not always convenient 
for studying other properties of Z. 

Remark. In the derivation of the distribution we have assumed 
that  A is a positive definite symmetric matrix. By this, we do not lose 
any generality: in fact, if A is positive semi-definite and of rank n 

( ~ N ) ,  there exists an orthogonal matrix P such that  

where A is a diagonal matrix of order n and of full rank. Thus the 
quadratic form of X becomes 

(16) XAX' = Y~A ~' 

and Y~ is a submatrix of Y= [ Y,Y~] where Y~ and Y, are ~ x  n and 
9 x ( N - n )  matrices, respectively. Thus we have only to replace A by 
A and N by ~t which is the rank of A. 

An interesting result on Wishart matrices can be derived from the 
density function (10). 

Since A is a (positive definite) symmetric matrix, A can be decom- 
posed into the following form. 

(i7) 

where 

A =mP,+a,P,+ ... +a,P,, 

1 a,, as, "", a, are all the eigenvalues of A, 

2 P, (~=I, ..., s) is a projection matrix, that is, 

P;=P, and P,=PI, 

3 P,P~=P~P,=O if i ~ ] ,  

4 IN=P,+Ps+... +P,. 
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This decomposition is called a spectral decomposition of a symmetric 
matrix and the decomposition is unique. 

Thus, the quadratic form is decomposed into 

(18) XAX'=aIXP~X' +a2XP~X' + . . .  +a, XP, X '  , 

and each XP~X' ( i=1,  2 , . . . ,  s) is of degrees of freedom equal to rank 
P~. If  rank P, is not smaller than p - - t h e  dimension of the normal 
distribution under consideration--XP~X' is a Wishart m a t r i x ; i f  it is 
not the case, XP~X' is a so-called pseudo Wishart matrix. Since P~ and 
Pj are orthogonal, XP~X' and XPjX '  are mutually independent. Thus 
(18) means that  any quadratic form can be decomposed to a linear 
combination of independent Wishart or pseudo Wishart matrices with 
coefficients equal to the eigenvalues of A. 

Conversely, if A is a diagonal matrix such that  

(19) 

A = [ alL1 azIn, 

where all a l , " ' ,  a~ are not equal to zero, the quadratic form is also a 
linear combination of Wishart or pseudo Wishart matrices. From this, the 
density function of a linear combination of Wishart or pseudo Wishart 
matrices can be calculated. 

THEOREM 2. I f  Z = X A X '  is distributed with density function (10), 
then 

(20) Pr[XAX '<D}  

_ r~((p+I)le) lal ~'~' f N  
r , ( (N+~+ l)le) leZl~,'lAl ,~ ' F # ~ " ) \ ~  - 

N + p + l .  

PROOF�9 From (I0), 

(21) Pr[XAX'~_9] - C.(A-')(-�89 ~ 

I',(N/2)I2ZI~/,IAW ,=o C,(I~) 

x I~ lZlC~-,'-',,,C,(Z-,Z) dZ . 

By the use of (iii) and (5), (21) becomes 
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z'p((p+l)/2)  I~l -/' (N/2),  
F,((N+p+l)12)  12II'V/'lAl "/' ~ ,  El, f iN+p+l ) /2 ) ,  

which is (20). 
If we set A=I, this is the same as (62) of Constantine [2]. 

c,(a-,)v,(- �89 
k., v,(t,,) 

4. Certain statistics of a quadratic form 

THEOREM 3. Let Z=XAX '  be distributed as. (10). The ]oint density 
function of latent roots 1~> . . -  > lp>O of the determinantal e4uation 

(22) I X a X ' - ~ l = o  

is given by 

(23) 
~ / "  I p \ Ov-p-,)Is 

x ~ , E  C.(Z-gC,(A-')C.(-�89 
~-o �9 kZ C,(5,) C,(I,) 

where A=diag [~,, ~z, "" ", ~p}. 

RROOF. Since Z=XAX'  is a positive definite symmetric matrix, 
there exists an orthogonal matrix H of the first column having positive 
elements such that  Z=XAX'=HAH' .  By replacing Z by HA// '  in (10) 
and using the formula 

1 c ~I, C,(I-')C.(-�89 
(24) z'a-x~"% oc,) C.(2-'H(-- �89 = f ,(p/2) "C.(Ip) ' 

we have (23) as the joint density function of latent roots, since dZ= 

2P~'/' d(H). ]-[ (2,-I:)]Tdl~d*(H). I t  should be noted tha t  d*(H)= F~(p/2) 

Remark. If  we set X=I~, (23) is equal to the density function of 
latent roots of determinantal equation ]XAX'--II[=O, i.e., 

(25) 
~12  \ C,V-p-~)/" 

If, in addition, we set A=I#, we have a well known density function 
[Anderson [1], p. 320]. 

THEOREM 4. Let X be distributed with density function (1). Then, 
the density function of 

(26) z=  TrXAX'  
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(27) 
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1 z:~,/,_, j,~Np)(_.,}z ; 2,_z | A_~) 
_r(NplZ) I$Z, I,,/,IAI,/, 

(31) 

Hence, 

(32) 
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P r  [ T r X A X '  ~_ u} - -  
c . ( - � 8 9  | A-') 

F(N~,/2)I2ZI"nlAI 0,' ,-o C.(/~,) 

x i j  z,'p/,-, c.(z) dz 

where X - l |  A -z is a Krone~ker's product of  Z -z and A -z . 

PROOF. We can write z as 

p 2r  

(28) z= TrXAX'=~3 ~3 a.~z~.x~p 
i=l m,p=l 

and E(z,.x:,)=6.~a,,. 
Now we denote the row vectors of X by xc*),x c'), ...,x cp', i.e., 

x"=(z,,, z,,, . . . ,  x,~,), x~"=(x,:, a:~, . . . ,  x=) ,  . . - ,  x '~'=(z,z, a:~,, . - . ,  z,,), 
and set 

x = ( ~ ' ,  x% . . . ,  x~P~). 

The x is distributed as Np-dimensional normal distribution with mean 0 
and covariance matrix Z | Ia and z is rewri t ten as 

(29) z =  x(Ip @ A ) s  . 

Since (Ip ~ A)-ln(X @ I~)-'(Ip ~ A) -z/" is symmetric, we obtain (27) in 
the same way as theorem 1 was proved. 

THEOREM 5. Let z =  T r X A X '  be distributed as ($7). Then 

(30) P r  [ T r X A X '  ~_ u} = 1 u~p/, 
F(NpI~+ 1)I~2'I"/'IAI ~/~ 

N p  +1"  1 (~ A -l) xzF'(~ ' ) ( - -~  - ; T  , - ~ u ,  ~:-' . 

PROOF. If  we replace t and p in formula (iii) by Np/2 and 1, re- 
spectively, then we have 

F(Np/2  + I; ,)  



198 TAKESI HAYAKAWA 

v.(-�89 | A-') _ 1 .  

F(Np/2)I2ZI~/'IAI,/' ,.o~ ~ k! C.(h.) 

x r(Npl2; ,) u "/'c,(u) , 
I'(Npl2 + l; z) 

which can be reduced to the form of (29) by simple calculation. 

THEOREM 6. Let Z = X A X '  be, distributed as (10) and let W be a 
Wishart matrix  with m degrees of freedom and independent of Z. Then 
the d~gsity funct~m of 

(33) 

is given by 

R =  (XAX')  'n ( X A X '  + W) -I (XAX')  '/' 

(34) I",((N+m)/=) , I R I C ~ _ ~ _ , ) / , I I _ R I _ C ~ + ~ , §  
r,(Nl~)r,(ml~)l.41 , / '  

• iF~O( N + m  $ ; - R ( I - R )  -1, A-~/ , 

and the density function of latent roots 21> 2z> . . .  > 2p of the determi- 
nantal equation 

(35) IR-~II  = o  

is given by 

~r~12 f ' " N \ - ( ~  + p+ nl~ 

Fp(N/2)F~(m/2)Fp(p/2)IAI ~/* 

• / ; --A(I--A) "l, A- i /  . 

PROOF. Since R is invariant under the simultaneous transformation 
X A X '  --. �89 -1/' and W--.  �89 -z/*, we may assume the joint 
density function of X A X '  and W is 

l IzF -~-')/' ~'/~)(A-', -z). 1 I Wl ( ' - ' - ' ' / 'err [ -  W]..riNi2)lAi,/, (37) r,(,n/2) 

the density If we take the transformation G = Z + W ,  R=G-'nZG "u', 
function of G and R is 

(38) l IRiC._p_,~1~ii_RlC,._..m/, 
I ' ,( NI2)I',(m/2)IAI'/* 

C,( A-') ~tr[_G( I _  R) ]IGIC,, +~_,_,/, C,(_ RG) . x ~, ~, k! c.([.) /~=0 �9 
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Integrating out G (>0) from (38) with the help of (ii), we have 

(39) r , ( ( N + m ) 1 2 )  iRP,_,_,~+,l.r_Rl+,+,+,~+, 
r, CNl2)r,,cm/2)IAl "/~ 

,.o �9 2 k[ c,(I,,) " 

Hence the first part of the theorem is obtained. 
If we denote the matrix of latent roots : l=diag  [21, . . . ,  ~p}, then 

from the invariance of C.(S) under the orthogonal group, 

(40) C . ( - R f f - R ) - ' ) = V . ( - - A f t - - & - ' ) .  

(39) times dR is, therefore, writ ten as the product of a function of II 
and d*(H)d:l and hence the integration of it over the orthogonal group 
shows that  the joint density function of 2's is given by (35). 

If  we set A = I  in (36) and use the formula 

(41) IF0(a; z) = [ I -Z[  -~ , (Constantine) 

(36) becomes 

~r~/,Fp((N+m)],2) / J, \c#-p-~)/3: p \<,,,-~,-,)/, ( ( ,,,Tr 

which is the density function in the central case [Constantine [2]]. 

THEOREM 7. Let X A X '  and W be independently distributed as (37). 
The density function of 

(42) U= (XAX')  -'n W(XAX' )  -~/~" , 

the ratio of the quadratic form to the Wishar$ ma t~x ,  is given by 

Fv((N+m)/~) I Ul-C'v+'+'>/' ( N + m  (43) F,(N/~)I. (m/~)[AI,n ,F: ' ) \  $ ; U-', A- ' /  . 

PROOF. We can rewrite R as 

(44) R = ( XA  X')~/'( X A X '  + W )-~( XAX ' )  ~/s 

= (IF (XAX')  -'n W(XAX' )  -u') -' 

= ( I +  U) -1 . 

Hence, if we put R = ( I +  U) -1 in (34) it is easy to check that  (34) is 
the same as (42), since Jacobian J(R--+ U)=IRICP+~)=II+ U] -<p+') . 

THEOREM 8. Let U be distributed as (l~). The probability of U is 
given by 
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(45) Pr{(XAX')-'/'W(XAX')-UZ> B } 

= IBI 
r , ( ( N + p +  IAI"' 

N. N+,+Z -~' 2 ; B-' ,  A-I /  . 

PROOF. In the inequality of Loewner's sense in matrix, 

(46) U > B  is equivalent to B-I>  U - t > 0 .  

Hence, the integral is rewritten as 

(47) I C,( U-') dU--- I -'j VpV-"-')/'C.( V) d V . 

According to the formula (iii), this definite integral is 

F~(N/2; x ) F , ( ( p +  1)/2) IBI_,,/, C, (B - ' )  . 
(48) F,(N/2+(p+ 1)/2; ,) 

Thus, we obtain (45) by 
term. 

integrating (43) with respect to L/" term by 
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