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Concluding Remarks 
In several materials, phases occur that are not crystallo- 
graphic in the usual sense. These incommensurate phases 
may be understood as the consequence of the presence of 
more than one ordering mechanism that favor different 
periodicities. A simple model that takes into account inter- 

Regions of Incommensurability; 
Multicritical Points 

action with first, second, and third neighbors shows the 
main features of many materials with incommensurate 
phases. Moreover, the essential role played by the non- 
linearity causes a wealth of unexpected and interesting 
phenomena, which include intermediate incommensurate 
phases, discommensurations, and chaotic states. Also, the 
physical properties of these materials are uncommon. For 
the interested reader, we refer to Ref 13 and 14. 
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Phase Diagram Features Associated with 
Multicritical Points in Alloy Systems* 

By Samuel M. Allen 
Department of Materials Science and Engineering 
Massachusetts Institute of Technology 
Cambridge, Massachusetts 02139 

and 

John W. Cahn 
Center for Materials Science 
National Bureau of Standards 
Washington, DC 20234 

Many features in the vicinity of  critical points in phase diagrams can be illustrated us ing  a 
Landau-type free energy expansion as a power series in one or more order parameters and 
composition.  This simple approach can be used with any solution model. It also predicts limits 
to metastabil ity and is useful for understanding mechanisms of  phase change. The theory is 
applied to all the critical points that can occur in binary systems according to a Landau theory: 
critical consolute points, order-disorder transitions, tricritical points, critical end points, as well  
as systems in which two transitions such as chemical  and magnetic ordering occur. 

Higher-order phase transitions are common features of 
alloy phase diagrams. At first-order phase transitions, 
quite different phases with differing structures, order 
parameters, compositions, enthalpies, entropies, and/or 
densities coexist at equilibrium. In contrast, at a higher- 
order phase transition several phases, and domains within 

some of the phases, become identical in every respect. 
As a result there are no discontinuities in composition, 
entropy, and molar volume and, therefore, the free energy 

*Text of a talk presented at the Materials Research Society 1982 Annual 
Meeting, Nov 1-4, 1982 in Boston, MA. 
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and its first derivatives are continuous at the transition. 
Nonetheless, these transitions are characterized by sin- 
gularities in the thermodynamic functions that  in phase 
diagrams occur at critical points or along critical lines 
or surfaces. 

A major goal of the study of critical phenomena is to derive 
a detailed description for the thermodynamic behavior, 
especially the singularities, and to account for the large 
variety of possible critical points, many of which are found 
in alloy systems. The celebrated renormalization group 
approach has made dramatic breakthroughs possible. 1'2 
However, an older simpler approach due to Landau 3 is 
both realistic for solid systems and consistent with the 
kinds of models commonly used in alloy phase diagram 
calculations. 

In the absence of long-range interactions, fluctuations 
dominate critical behavior and result in singularities that  
are characterized by irrational exponents in the tempera- 
ture  and composit ion dependence of the rmodynamic  
properties in the critical region. In solids, atomic size dif- 
ferences give rise to long-range elastic interactions that  
can reduce the fluctuations to a point where classical ra- 
tional exponents are expected. 4'5 Most solution models 
implicitly do not allow for fluctuations and give rise to 
analytic free energy expressions except at critical points 
and curves, and even then the exponents are rational. 

In the critical region the various phases and domains dif- 
fer little from one another, and all approach the common 
critical phase in every respect as the critical point is ap- 
proached. Because of this, a single theoretical model may 
be used to describe both the critical phase and the various 
phases and domains near  the critical point. Landau's ap- 
proach was to use a single free energy function that  is a 
power series in variables that  express distance from the 
critical point. I t  is compatible with all solution models that  
give rise to an analytic free energy expression, because 
these can always be expressed as a Taylor's expansion. In 
this sense, Landau's approach is model independent. It 
leads to a remarkably simple understanding of how the 
singularities arise and gives detailed descriptions about 
thermodynamic behavior. It  necessarily gives classical ra- 
tional exponents and, because of this, is limited to those 
solid systems in which fluctuations do not become so 
dominant that  irrational exponents are expected. 

Using the Landau theory, the phase diagram features of 
all of the critical points in binary alloy systems are devel- 
oped. Where a miscibility gap between phases of identical 
structure narrows to a point, a consolute point is seen, e.g., 
in Au-Ni. 6 In ~ Cu-Zn, 7 the long-range order parameter  
disappears along a locus of points of higher-order transi- 
tions where the disordered phase and two ordered domains 
become identical. A tricritical point occurs where a line of 
higher-order transitions merges with a two-phase field of 
the same two phases, s Two order parameters are involved 
in bicritical and tetracritical points, s At a bicritical point, 
three phases meet, separated by two lines of higher-order 
transitions and a two-phase field. At a tetracritical point, 
four phases meet, separated by four lines of higher-order 
transitions. Higher critical points than tetracritical can- 
not occur in a binary system with pressure fixed. 

The Fe-Si phase diagram contains a tricritical point at 
13 at.% Si and a tetracritical point where a line of Curie 
points crosses a line of order-disorder transitions. 9 There 
are multicritical points in both the coherent and incoher- 

ent Fe-A1 phase diagrams 1~ at the point where a line of 
higher-order transitions ends at miscibility gap. We be- 
lieve that  in the incoherent diagram, there is a bicritical 
point where a line of Curie points intersects the line of 
order-disorder transitions. The miscibility gap must begin 
at a lower temperature in the coherent diagram, and this 
point is thus a tricritical point. 

Preliminaries 
Thermodynamic Variables 
For the sake of simplicity, only binary alloys at constant 
pressure will be considered. Values of the usual state vari- 
ables, temperature, T, and average composition, c, for such 
a system fix the free energy. For systems with critical 
points, it is often necessary to consider as well the exis- 
tence of other variables, generally called order parameters ,  
which at equilibrium assume values that  depend on T and 
c. For example,' in ordered fi brass, an order parameter  
could be defined as the difference between average com- 
positions on the Cu and Zn sublattices. In contrast to com- 
position variables, order parameters  are not conserved 
quantities. They are "hidden" variables in the sense that  
they are neither consciously controlled nor associated with 
an extra thermodynamic degree of freedom in the system. 
They do, however, adopt equilibrium values associated 
with extrema of free energy. Order parameters play a key 
role in the thermodynamics of phase transitions near crit- 
ical points. 

The free energy, F, for a binary system at constant pressure 
with critical points is, therefore, expressed most generally 
as a function ofT, c, and one or more order parameters. For 
binaries, no more than two order parameters,  denoted by 

and v, need to be considered and thus: 

F = F(T,c,~?,v) (Eq 1) 

The function F is assumed to be a "coarse grained" free 
energy; that  is, the free energy of a system in which local 
averages of composition and order parameters are con- 
strained to be constant. 12 

Equilibrium Conditions 
Equilibrium values of order parameters  ~? and v are deter- 
mined from the conditions: 

OF/O~? = 0 and OF~Or = 0 (Eq 2) 

The necessary condition for stability of the equilibrium 
state with respect to variations of order parameter  is that  
the matrix of second derivatives of F with respect to the 
order parameters  be positive definite. Stable equilibrium 
values of the order parameters  define loci ~?e(T,c) and 
re(T, c). The free energy, Fe, of a system with equilibrium 
values of the "hidden" variables ~? and v can then be 
expressed as: 

Fe = F[T, c, ~e(T, c), re(T, c)] = F~(T, c) (Eq 3) 

In Eq 3, ~?e and w take on the role of intermediate vari- 
ables between the dependent variable, Fe, and independent 
variables, T and c. 

For stability of the system with respect to variations of 
composition, it is necessary that  the second derivative of Fe 
with respect to composition be positive. When multiphase 
equilibrium states are stable, coexisting compositions c, 
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and c, between phase a and fl are found from the "common 
tangent" conditions: 

0Fo 
Oc c~ = Oc e, (Eq4) 

and 

F,(co)  - F~(ca) _ OF, co 
co - c~ 0c (Eq 5) 

where F,  and F~ are the equilibrium (F~) free energy func- 
tions for phases a and f~, respectively. 

The Landau Expansion and 
Phase Transitions 
The free energy function used in the Landau model of 
phase transitions has the form of an expansion o f f  into a 
power series about the critical point. For such an expan- 
sion to be valid, F must have continuous derivatives of all 
orders. Therefore, the strict validity of the Landau model 
hinges on whether or not F is analytic at the critical point. 

Phase transitions are located at singularities in free en- 
ergy. One may well ask how singularit ies arise from 
an assumed analytic F to give phase transitions in this 
model. The apparent contradiction is eliminated when 
the hidden variables, the order parameters, and the possi- 
bility of separation into phases differing in composition 
are properly accounted for, It  is the function F~, ra ther  than 
F, that  characterizes equilibrium, and which must  be 
examined to locate and classify phase transitions. 

Consolute Points 
The locus of temperatures,  T~(c), where Fcc = 0, called the 
spinodal, is the boundary of a region in which a homoge- 
neous solution is unstable. The slope of the spinodal is 
given by d T ~ / d c  = -Fccr  where the subscripts denote 
partial differentiation. Extreme values of T~ give rise to a 
type of critical point known as a consolute point, where two 
coexisting phases become identical and the miscibility gap 
vanishes. The condition for such a point is given by two 
equations: Fe: = 0, and either d T ~ / d c  = 0 or F~cc = 0. 

A Landau-type expansion ofF(T, c) about the critical point 
(To, co) may be used to obtain quantitative relationships 
for phase equilibria near  consolute points. ~3 Retaining a 
minimum number of terms necessary to make the model 
realistic in the limit of approach to the critical point, F 
is expressed: 

Fr - c~) + 1Fcccc (c  - Cc) 4 -}- F r ( T  -- Tr F F o + 

1 
+ ~FrT(T - T~) 2 + F c r ( T  - Tc) (c  - cc) 

1 
+ - ~ F c c r ( T  - T~)(c - Cc) 2 (Eq 6) 

where the subscripts on F denote partial differentiation. 
The derivatives are to be evaluated at the critical point. 
Second and third powers of (c - c~) are absent from Eq 6 
because the coefficients Fcc and F~c~ are zero. 

Coexistence C u r v e s .  Coexisting compositions are found 
by substituting the expression for F into Eq 4 and 5. The 
only terms that  contribute to the calculations are those 

with coefficients F .... and Fr162 Because these terms are 
symmetric  about c = co, the equilibrium compositions 
c ,  and c~ will be equidistant from Cc, and the volume 
fractions of the phases will be equal. Cook and Hilliard 
define: 

A C e  = C# - -  Cc : Cc - -  Ca  

When Fc~r(T  - To) is negative, the equilibrium condition 
becomes: 

Fcccc(hce) 2 + 6F~T(T-  T~) = 0 

with the result: 

+ 6FccT(T~-  
(Eq 7) 

To demonstrate that  there is a transition at the consolute 
point, expressions for F and its derivatives are required 
along the equilibrium path of approach to the critical 
point. For the single-phase equilibrium state with c = Cc, 
Fe is given from Eq 6 as: 

1 
Fe = F ~ + F T ( T  - To) + ~ F T r ( T  - To) 2 (Eq 8) 

For the two-phase equilibrium state, an expression for the 
free energy, Fe, of a mixture of phases with average com- 
position c = c~ and with phase compositions following the 
coexistence curves is obtained by combining Eq 6 and 7 
giving an expression having the functional form: 

Fe = F [ T ,  Ace(T)]  (Eq 9) 

The equation for the free energy of the equilibrium two- 
phase state is: 

1 I 3(FceT)2] (T Fe �88 F ~ + F r ( T -  To) + ~ FTT  ~ j - T o )  2 

(Eq 10) 

Because of the particularly simple functional form of Eq 6 
and 7, the intermediate variable Ace has been eliminated 
in Eq 10. Differentiation of Eq 8 and 10 can therefore be 
carried out directly and demonstrates that  the second 
derivatives of F change discontinuously at the consolute 
point. The transition is second order. 

Spinoflals. The s p i n o d a l s ,  wh ich  are  the  loci of  
02F/Oc 2 = 0, can be computed by differentiating Eq 6. The 
spinodals are also symmetric about c = Cc in this model. 
Defining c, to be the composition of the spinodal, and: 

A C s  = Cs - -  Cc 

it is easily shown that: 

+ 2 F c c r ( T o -  
(Eq 11) 

Equations 7 and 11 show that,  sufficiently close to the 
consolute point, both the spinodals and the coexistence 
curves are parabolic. We note also that  the ratio ACe~ACe is 
equal to V3, as shown originally by Cook and Hilliard. ~s 
When fluctuations dominate and result in irrational ex- 
ponents, the spinodal is much closer to the phase bound- 
ary. Instead of X/-3, Gaunt and Baker 14 estimate 1.18. 
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Order-Disorder Transitions 
at Fixed Composition 
In this section, the Landau model is used to describe the 
free energy of phases that  undergo order-disorder transi- 
tions which are associated, for instance, with the ordering 
of magnetic spins or of atoms on a lattice. Landau recog- 
nized that  such transitions could be either first-order or 
higher-order, and developed, based on the symmetries of 
the phases, a set of necessary (but not sufficient) condi- 
tions for a transition to be higher-order. 8 Both types can be 
modeled from a free energy expansion in powers of a 
single-order parameter. 

The order parameter  ~? is defined to be a measure of the 
deviation from an equilibrium (stable, metastable, or un- 
stable) state that  is called disordered and for which we set 
7/= 0. In the Landau model, F is written as a power series 
in ~?: 

1 2 1 3 1 4 
F = F ~ + ~F, ,~?  + ~F,~,~? + -~ F ~ ,~ ,n  (Eq 12) 

where F ~ and the derivatives o fF  are functions of T and c, 
and the derivatives are evaluated at ~? = 0. To avoid 
minima at large values of ~1, it is necessary that  F , , , ,  
be positive. 

First-Order Transition. E q u a t i o n  12 is p lo t ted  sche- 
mat ica l l y  for different relative values of F~ ,  F , , , ,  and 
F, , , , ,  in Fig. 1. The curves reflect the variation o f F  with 
t empera tu re  for a f irst-order t ransi t ion between the 
ordered and disordered states. Equilibrium values of the 
order parameter  are obtained by substituting Eq 12 into 
Eq 2, giving: 

+ / = 0 
n 

Thus, 7/= 0 is an extremum o fF  as well as 7/= ~?,, where 
~?e is a root to the equation: 

1 1 2 
F , ,  + -~F,,,~/~ + -~FmTm~(~e) = 0 (Eq 13) 

The order-disorder transition occurs at a temperature,  To, 
where the free energy of the disordered state V = 0 and the 
ordered state with equilibrium order parameter  ~Te(To) are 
equal, as depicted in Fig.  1(c). That is: 

1 2 1 a 1 
F ~ = F ~ + -~F,,(~?,) + g F , , , ( W )  + _ _ F " " ( W )  4 (Eq 14) 

Equations 13 and 14 are both satisfied for the conditions: 

F , ,  = (F, , , )2/3F,, , ,~ (T = To) (Eq 15) 

and 

W(To) = - 2 F , , , / F , , , ,  (Eq 16) 

Two other free energy curves in Fig. 1 are of special inter- 
est. Curves (b) and (d) depict the free energy curves at the 
limits to metas tabi l i ty  of the ordered and disordered 
phases, respectively. The limit to metastability of the or- 
dered phase occurs at a temperature denoted by T,=o, at 
which the discriminant in Eq 13 is zero, i.e.: 

F , ,  = 3 F ~ , , / 8 F , , , ,  (T  = 7'=0) (Eq 17) 

and at the value of ~?e given by: 

Fig. 1 First-Order Transitions 
F ,  

(a) 

( c ) ~ ," \x 

(d)  ~ ~e( % 

,,,1 , (e)~, 

77 e(Tmd)'l 

I 

T=Tmo 

,T=To 

T=Tmd 

I ii 

When F is asymmetric about T/ = 0, higher-order transitions 
cannot occur. Metastability characteristic of first-order transitions 
terminates at T,,o and T,,~,. Extrema of F are at ~ = 0 and along 
the dashed parabola. 

~?e(T,,o) = - 3 F , , , / 2 F , , , ,  (Eq 18) 

The limit to metastability of the disordered phase occurs at 
the temperature Trod, where the smaller root to Eq 13 is 
zero. Tm~ is, thus, the temperature at which: 

F , ,  = 0 (T = Trod) (Eq 19) 

The order-disorder transformation at the equilibrium tem- 
perature, To, is easily shown to be first order for all values 
o fF , , ,  except zero, by using Eq 12 and 16 to calculate the 
value of d F e / d T  in the limit T -+ To. 

Second-Order Transition. Accord ing to Landau,  3 when 
symmetry principles dictate that  crystal properties are 
expressible as even functions of the order parameter,  
the coefficient F , , ,  in Eq 12 is identically zero, and 
second-order transitions can occur. The free energy expan- 
sion becomes: 

1 2 1 4 
F = F ~ + ~F , , 71  + -~F, ,~ ,~I  (Eq 20) 

Again, F , , , ,  is assumed positive. The equilibrium order 
parameter, ~?e, is found from Eq 2 to be a root to the 
equation: 

1 2 
~?e[F~ + ~ F ~ ( 7 / e ) ] = 0  (Eq 21) 

For F , ,  is positive, r/e = 0 is the only root to Eq 21, and the 
disordered phase is the minimum free energy state. When 
F , ,  is negative, 77 = 0 is a local maximum of F, and two 
additional real roots to Eq 21 exist that  give absolute 
minima of F. These are: 

~qe = + - ( - 6 F , , / F , , , , )  lj2 (Eq 22) 
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The equilibrium ordered state thus consists of coexisting 
"domains" with order parameters that  are equal in mag- 
nitude, but opposite in sign. These domains exist in alloys 
and are separated by interfaces called antiphase bound- 
aries or magnetic domain walls. 

The transition from ordered to disordered equilibrium 
states in the free energy model for second-order transition 
thus occurs when F , ,  changes sign. The locus of order- 
disorder transitions in a phase diagram is, therefore, 
given by: 

F~(T ,c )  = 0 (Eq 23) 

From the properties of derivatives, we can express the 
slope of the order-disorder transition in a temperature- 
composition diagram as: 

- d T / d c  = F, ,~ /F~r  (Eq 24) 

The order of the transition is most straightforwardly as- 
sessed by direct substitution of Eq 22 into Eq 20 to give the 
following expressions for F,: 

{F~ (F~ positive) 
Fe = (F,,  negative) (Eq 25) 

where 

r ~- F ~ - 3(F~)2/2F,,~, (Eq 26) 

Because the functional form of Fe is different for the two 
phases, it will be convenient to use the symbols F ~ and r 
for the specific phases and Fe in general for either or 
both phases. 

In the limit as F , ,  --~ 0, a~P/Oc = OF~ but: 

~p~c = a2FO/ac 2 - 3(F,,c)2/F,, , ,  

(Eq 27) 

Thus, OF~/ac is continuous, but O2Fe/aC 2 has a discon- 
tinuity. The transition is second order and the curvature 
of Fe is discontinuously lowered in the ordered phase at 
the transition. 

When F , , ,  is not required to be identically zero by sym- 
metry, a second-order transition can nonetheless occur 3 at 
the point of intersection if any of the curves F , ,  = 0 and 
F , , ,  = 0. This critical point is topologically analogous to a 
eutectic, except that  all three phases have become identi- 
cal. Three two-phase coexistence fields radiate from this 
point. Each is similar to the two-phase field of Fig. 2. One 
of the phases is disordered, the other two differ in the sign 
of ~, which in this instance gives phases no longer identi- 
cal by symmetry. Under some conditions more than three 
phases can meet at such a point. To the best of our knowl- 
edge, no such critical point has ever been reported. An 
early theory of order-disorder in face-centered cubic crys- 
tals gave such a point with four coexisting phases. ~5 

Tricritical Points. In the previous section, order-disorder 
transitions at constant composition were examined. Sta- 
bility with respect to variations in composition requires 
that  O2F~/Oc 2 be positive. Near an order-disorder transi- 
tion, this condition will fail for the ordered phase before it 
will fail for the disordered phase. In this section, the point 
along an order-disorder transition, where the ordered 
phase is about to become unstable with respect to com- 
position variations, will be examined. Such a point is a 

Fig. 2 Relationships Between Schematic Free 
Energy Curves and a Phase Diagram Containing 
a Tricritical Point 

F'e = ~ ,  ~ Disordered 

C ~  ~ - ~ e  Ordered JT=T,J 

o~ ~ ~ ~ . . . j  Disordered 
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T t F ~  (~' Composition 

,, o' 

E 
T2 I ~ / / / ( Z  + C t ' ~  cc=O 

(b) 
Composition 

(a) To the right of cA, Fe diverges from F ~ with a discontinu- 
ously lower curvature. Below Tt, Fe has a region of negative 
curvature. (b) The tricritical point occurs at the intersection of 
F.~ = 0 and ~cc = 0, if ( ~ o ~ / F , , . ~  is negative. One coexistence 
curve is tangent to the locus F~. = 0, the other is not. 

candidate for being a tricritical point and is given by the 
two conditions: 

F,~ = 0 (Eq 28a) 

and 

~Pcc = 0 (Eq 28b) 

Figure 2 illustrates the relationships between schematic 
free energy curves and a temperature-composition dia- 
gram for temperatures greater than, equal to, and less 
than the tricritical temperature,  Tt. A second-order transi- 
tion between phases a and a '  and its metastable extension 
into the miscibility gap are illustrated. At each tem- 
perature, the composition of the transition is denoted by c,. 
r is the curvature of the free energy for the ordered 
phase. For T greater than T ,  ~P~c is positive at cA. For 
T = T,  r = 0 at c~. And for T less than T,  ~c~ is negative 
over a range of compositions from c~ to c8. The dotted curve 
on the phase diagram represents the locus dPcc = 0. It  is a 
spinodal curve that  defines the limit to metastability of 
the ordered phase with equilibrium order parameter. The 
other boundary to the region, in which r is negative, is 
the metastable extension of the line order-disorder transi- 
tions. The regions for which r is negative has been called 
a conditional spinodal because the instability can only be 
realized if the system is ordered. TM 
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Coexistence Curves. For deriving the functional form of 
the coexistence curves in the vicinity of the tricritical 
point, the algebra is greatly simplified if the expansion is 
done about the composition c~. Details will not be given 
here. The general method involves using separate free 
energy expansions for ordered and disordered phases, then 
using Eq 4 and 5 to solve for the equilibrium compositions. 
Quadratic terms in (c - cA) are required for the free en- 
ergy expansion for the disordered phase, and both qua- 
dratic and cubic terms are required for the ordered phase. 
Representing the coexisting compositions by c,. and c~ for 
the ordered and disordered phases, respectively, the func- 
tional relationships obtained are: 

c,. - c, = -(3Occr/2q)~) (T - Tt) (Eq 29) 

and 

c, - c, = -[3(q)cCr)2/Sq)c~Fr (T - T,) 2 (Eq 30) 

The phase diagram in Fig. 2 is drawn to reflect these func- 
tional dependencies. 

Cri t ical  End  Po in ts  

Both conditions in Eq 28 are satisfied at the point P in 
another type of phase diagram, Fig. 3, in which the spino- 
dal associated with a consolute point intersects the critical 
ordering transition curve deep within the miscibility gap. 
The point of intersection of the critical curve with the 
solvus is called a critical end point. For a tricritical point 
rather than a critical end point to appear, an additional 
condition is necessary: 

Oc~/F,,~ < 0 (Eq 28c) 

F ig .  3 P h a s e  D i a g r a m  S h o w i n g  a C r i t i c a l  
End Point  

F~7=O 

Disordered / Ordered 

Fe :F~ / Fe=~ 
] Consolute 
/ ~ ~Two phose 

] ~ r d e r e d  + Ordered 
Criticol endr .: - % "~% 

point Jr ..'- .4. _ ,-~ -;'. 
.,'~-" ~CC = L,' ".. 

/..!  o:o - \ 
. , : ~ "  ' cc - '..' \ 

Composition 

A critical end point occurs if the inequality (Eq 28c) fails. Note that 
near P, d~=/dc is negative (a metastable region to the left of an 
unstable region). Note also that the solvi at the critical end point 
extrapolate into single-phase regions. 

If Eq 28(c) fails, the point P appears within a two-phase 
region. 

The changes of slopes of the solubility curves of the two 
phases above and below the critical end point are obtained 
from an examination of the factors in the Gibbs-Konovalov 
equation./7 Because 02F/ac 2 changes discontinuously, the 
left hand curve in Fig. 3 has a discontinuous change of 
slope with the slope of the disordered solvus steeper than 
for the ordered solvus. No change in the sign of the slope 
is permitted. It should be noted that the phase diagram 
lines at a critical end point can extrapolate into single- 
phase regions. The right-hand solvus is smoothly curved 
through the critical end point temperature. 

Bicrit ical  a n d  Tetracr i t ical  Po in ts  

The intersection of two lines of higher-order transitions 
gives rise to the possibility of a point of four-phase co- 
existence: disordered phase I (~/= 0, v = 0); two singly 
ordered phases, II (7/= 0, v r 0) and III (~7 r 0, v -- 0); 
and a phase IV, in which both order parameters take on 
nonzero values. Figure 4 illustrates these transitions on a 
temperature-composition diagram. Instead of Eq 20, a 
free energy expansion in even powers of both ~/ and v is 
given as: 

1 2 1 1 2 
F = F ~ + ~F,,TI + 2 - _ F v ~  + - ~ F , , ~  F ~ 

1 4 1 4 
+ ~-~F,,,,'q + ~ f  .... , (Eq 31) 

The intersection occurs at F, ,  = 0, F.v -- 0. Let us follow 
the critical curve between phases I and III. For this 
we have F , ,  = 0, F~v positive. Beyond this transition 
for phase III we have 71~ = - 6 F , , / F , , . ,  and Eq 26 can 
be written for q). However, the v-terms should be kept 
and written: 

= IF  o 3(F,,)  2 ~(~e) 
L 

1 4 
+ ~ F  .... v (Eq 32) 

where the notation #P(Ve) indicates that the Ve value has 
been substituted. This is a Landau expansion in ~, valid 
whenever ~?~ differs from zero. As long as q)(Ve).~ is posi- 
tive, v~ = 0 and we have Eq 26. However, when: 

(P(~e)~ = Fvv 3F,,F,,~v _ 0 (Eq 33) 

we have a phase transition from III to IV. Similarly, the 
II-IV transition is located along the locus: 

3F~vF,,~v _ 0 (Eq 34) q)(ve),, = F, ,  Fv,,v 

Note that Eq 33 and 34 differ from the conditions F, ,  = 0 
and Fw = 0, which is where transitions to a singly ordered 
state occur: i.e., the I - I I I  and I - I I  transitions, respectively. 
The loci of the I I - IV and I I I - IV transitions are deflected 
inward or outward from the I - I I  and I - I I I  transitions at 
the intersection point, as illustrated in Fig. 4. The sense of 
the deflection depends on the sign of F , , ~ ,  as shown by 
Eq 33 and 34 and depicted in Fig. 4. 
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Fig. 4 Tetracritical Points 

Fuv=O 

'<o' 

Fuu =O 

F ? vv > 0 

Two versions of tetracritical points can occur, depending on the sign of F,,~,~. 

Stability of the phases requires that  02Fe/Oc 2 be positive. 
These second derivat ives are different in each of the 
four phases: 

F~c = F~ 

(~IcI c = FO - 3 ( F ~ ) 2 / F  . . . .  

0 I I I=  F~ - -  3(F, ,~ )2 /F , , , ,  

@c v = FO _ 3[(F,,e)2F . . . .  + ( F ~ ) 2 F , , , ,  - 6 F , , c F ~ F , , ~ ]  

F , , , , F  .... - 9(F,,~J 2 

(Eq 35) 

The type of critical point at the crossing o f t h e F , ,  = 0 and 
I I I  F,. = 0 lines can now be discussed. If  either (I)~ or q)cc are 

negative at the point of intersection, a tricritical point 
would have occurred elsewhere in the phase diagram. 
Therefore, the instance where both are positive was exam- 
ined. If (p~v is positive, phase IV is stable with respect to 
variations in composition, and the point of intersection is 
a tetracri t icalpoint ,  at which the four phases: I, II, III, and 
IV, become identical. Thus, the solid lines in Fig. 4 give 
the equilibrium phase diagram in the vicinity of a tetra- 
critical point. 

When both (I)~ and q)Ic~' are positive, but q)iv is negative, a 
miscibility gap originates at the intersection of the lines of 
critical points, giving rise to a region of two-phase co- 
existence between phases II and III, as i l lustrated in 
Fig. 5. The loci (I)(ve),, = 0 and dP(~?e)~ = 0 are limits to 
metastability with respect to 7/and v ordering of phases II 
and III, respectively. In addition they delimit a condi t ional  
spinodal  region in which the doubly ordered state IV is 
unstable with respect to variations of composition. 

Bragg-Williams Model for CsCI Ordering 
The equations for the free energy of a homogeneous 
phase with the CsC1 structure in the Bragg-Williams 
approximation TM are reviewed in this section to illustrate 
for a specific thermodynamic model, the analytic form for 
F and the predictions that  may be derived from it. 

Fig. 5 Bicritical Point 

: I F , ,  :~ 
B i c r i l i c d \  

~ "--.XZ" �9 
. , ~ _ _ ~ %  ~ - - ~ - ~ -  Coexistence 

, f l ~ / / ' / ' T w o  _ D h : s e % ~ ' ~  urve 

(Ye) 'q =0  (77e)uy =0 

At a bicritical point, a miscibility gap between two ordered phases, 
II and III, terminates. The two ordering transitions involve different 
order parameters. I is the disordered phase. 

The CsC1 s t ruc ture  has two sublat t ices,  denoted by 
subscripts 1 and 2, with different occupancies by atom 
species A and B. The order parameter  71 is defined such 
that  the sublattice concentrations c~ and c2 are given by: 

cl : e - ~  ~ 

and 

C 2 = C  - 71 

where c is the average composition. In the pairwise inter- 
action model, interchange energies per atom for i ' th 
neighbor atoms are defined in terms of bond energies, E~ y, 
between a pair of atoms, x and y: 

V~ = I (E~A + E~  s) - E ~  s 

so that  Vi positive favors i'th neighbor bonds between un- 
like atoms. Considering only interactions between atoms 
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at first and second neighbor distances, the internal energy, 
E, and entropy, S, are expressed by: TM 

E = -N{4[c(1 - c) + ~2]V~ + 3[c(1 - c) - ~72]V2} 
(Eq 36) 

a n d  

= - 1 N k [ ( c  + ~q) In (c + 7) S 

+ ( l - c -  ~ ? ) l n ( 1 - c -  7) 

+ ( c -  ~ ? ) l n ( c -  71) + ( l - c +  ~ ? ) l n ( 1 - c +  7)] 
(Eq 37) 

where N is the number of atoms and k is Boltzman's con- 
stant. Both E and S are even functions of 77. Second-order 
transitions are possible. 

All of the derivatives o fF  ~ E - T S  with respect to c and 
required for the Landau model are readily obtained and 

evaluated at ~/= 0 to give: 

02F/Oc  2 = 2N(4V~ + 3112) + N k T / [ c ( 1  - c)] (Eq 38) 

O~F/0712 = -2N(4V1 - 3V2) + N k T / [ c ( 1  - c)] (Eq 39) 

03F/07120c = - N k T ( 1  ~ -  2 c ) / c ( 1  - c)] 2 (Eq 40) 

0 4 F / O ~  4 = 2 N k T ( 1  - 3c  + 3c2) /[c(1  - c)] ~ (Eq 41) 

In the equations that  follow, only the circumstances for 
which V1 is positive and 112 is negative are considered. For 
these interactions, the ground state consists of a pure com- 
ponent plus a stoichiometric CsC1 ordered phase. 2~ 

To locate the locus of order-disorder transitions, Eq 39 is 
used to solve Eq 28(a) for the curve cA(T): 

k T  = 2(4V~ - 3V2)c~(1 - cA) (Eq 42) 

A tricritical point can exist only if there is a point along 
the locus cA(T) where r = 0. Using Eq 27, 38, 40, and 41 
to express Eq 28(b) gives the equation for the locus cs(T) of 
the conditional spinodal valid near F , ,  = 0: 

k T  = 4(4V1 + 3V2)c~(1 - cs) 

�9 [ 1  - 3c~ + 3(c~)2]/[1 - 6c~ + 6(c~) 2] (Eq 43) 

Combining Eq 42 and 43 gives the expression for the com- 
position ct at the intersection of the order-disorder transi- 
tion with the conditional spinodal: 

(4V~ - 3 V 2 ) / ( 4 V ~  + 3V2) 

= 211 - 3ct + 3(ct)2]/[1 - 6ct + 6(ct) 2] (Eq 44) 

The temperature of the intersection is given by substi- 
tution of ct for cA in Eq 42. 

Inspection of Eq 44 shows that  the loci cA(T) and cs(T) 
intersect only when: 

V 2 / V ~  < - 4 / 9  (Eq 45) 

By using the Bragg-Williams free energy model to write 
out Eq 28(c), it can be shown that  the composition ct in 
Eq 44 is indeed a tricritical point, and thus that  tricritical 
points result in this model whenever the interaction ener- 
gies, V~ and V2, obey Eq 45. 

The predictions of the Landau model derived above can be 
compared directly with phase diagrams computed in the 
Bragg-Williams approximation by Inden. 2~ Figures 6(b) to 
6(d) of Ref 20 show phase diagrams computed for ratios of 

V 2 / V ~  equal to -1 ,  - 8 / 3  and - %  respectively. The values 
of ct computed by Inden are in agreement with those given 
by Eq 44. 

Coherent Phase Diagrams 
Coherent equilibria differ from the ordinary incoherent 
phase equilibria in an elastic term that  is composition, 
order, and volume fraction dependent. Coherent critical 
consolute points differ from incoherent ones by tens to 
hundreds K, consistent with theory. The temperature dif- 
ference between coherent and incoherent tricritical points 
has been calculated to have similar magnitudes. 11 Phase 
diagram calculations 22 for the Fe-A1 system show a bi- 
critical point at the intersection of the line of Curie points 
with an order-disorder transition. This is most likely a 
multicrit ical point of the incoherent equilibrium dia- 
gram. 23 Coherency strains depress the temperature of co- 
herent phase separation by about 40 K. 1~ Thus, in the 
coherent diagram, there are two multicritical points: a 
tetracritical point at the crossing of the lines of order- 
disorder transitions and Curie points, and a tricritical 
point at about 40 K lower. In a previous calculation that  
ignored the magnetic transition and assumed both coher- 
ent and incoherent diagrams to have tricritical points, this 
separation was overestimated at 300 K. H The separation 
due to coherency effects between a bicritical and tricritical 
point should be much less. 

Discussion 
In binary alloys, with pressure fixed, there are not enough 
degrees of freedom for lines of ordering transitions, each 
involving one of three different ordering parameters, to 
intersect at a point. Therefore, the list of critical points 
given here, which included effects of composition and two 
order parameters,  is all that  can be expected according to 
a Landau theory. All have been seen in alloy systems. The 
principles in the Landau theory by which the various fea- 
tures arise involve simple calculus. As was demonstrated 
with an example, the theory is compatible with any model 
that  gives analytic expressions for the free energy. 

The Landau theory and most of the theoretical models for 
alloys give singularities with rational classical exponents. 
Most of the transitions in solid alloys are expected to give 
rational exponents. Liquid alloy consolute points and some 
ordering transitions in solids should have irrational ex- 
ponents. In such transitions, the second derivative of F 
diverges to an integrable infinity instead of having a dis- 
continuity. Phase diagram details that  depend on the sec- 
ond derivatives ofF  will be different from those derived in 
the Landau model. 

On symmet ry  arguments ,  Landau  argued tha t  inter- 
sections of higher-order transitions must always give rise 
to a first-order transition and, hence, always to a bicritical 
point. The Landau expansions, on the other hand, permit 
tetracritical points. They have been found experimentally 
and predicted from simple models. 
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Utilization of Phase Diagrams 
Phase diagrams are justifiably regarded as an important component of our technological 
society; the Bulletin will publish examples that illustrate their value in the development of 
new science, trouble shooting, manufacturing control, and the development of new materials. 
Readers are invited to share their experiences by submitting items to the Editor, in any area 
of application. 

Historical Note on Use of Phase Diagrams 

About one-half century ago, the a luminum industry 
developed an interest in going into the business of making 
aluminum screw machine products. None of the aluminum- 
base alloys then on the market were sufficiently free- 
machining to be handled by an automatic lathe. However, 
it was noted that the addition of lead to copper alloys 
improved their machining characteristics. On this basis, 

the phase diagram of the copper-lead system was com- 
pared with the phase diagrams of aluminum-base systems. 
Two were found to be similar to the copper-lead diagram 
(Fig. 1): namely, aluminum-lead and aluminum-bismuth 
(Fig. 2). Acting on this knowledge, a series of free- 
machining aluminum-base alloys was developed using 
small additions of both lead and bismuth. 

Contributed by Prof. F.N. Rhines, Department of Materials Science and 
Engineering, University of Florida, Gainesville, FL 32601. 

Fig. 1 
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Cu-Pb Phase Diagram 
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From Buff. Alloy Phase Diagrams, 1(1 ), 81-82 (1980). 

Fig. 2 AI-Bi Phase Diagram 
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From Buff. Alloy Phase Diagrams, 1(1 ), 54-56 (1980). 
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