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The AI-Au (Aluminum-Gold) System 
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Equilibrium Diagram 
Nearly all of the important features of the A1-Au phase 
diagram (Fig. 1) were known at the end of the last cen- 
tury, primarily because of the work of [00Hey], which for 
the most part  was accepted by [Hansen]. Further  infor- 
mation published in [Shunk] did not alter the phase dia- 
gram of [Hansen] significantly. The present assessment 
of the A1-Au system updates the phase diagram accord- 
ing to the most  recent  e x p e r i m e n t a l  and theore t i ca l  
work, primarily concerning the details of the thermody- 
namic evaluation of this system, but also involving infor- 
mation on the crystal s tructures of the various phases, 
metastable equilibria, and pressure effects. 

The equilibrium phases in Fig. 1 are: (1) the fcc terminal  
solid solution (A1), having max imum solid solubility of 
0.06 at.% Au at 650 ~ (2) the CaF2-type intermediate 
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phase AI2Au, with homogeneity of 32.92 to 33.92 at.% 
Au; (3) the monoclinic intermediate phase A1Au with no 
appreciable solubility range; (4) the MoSi2-type interme- 
diate phase 7A1Au2, with homogeneity of 65 to 66.8 at.% 
Au, and with two low-temperature allotropic forms of dis- 
torted MoSi2-type structures, flA1Au2 and aA1Au2; (5) the 
rhombohedral  phase  A12Aus; (6) the bcc in te rmedia te  
phase,/3; (7) the distorted flMn-type A1Au4, having the 
solubility range between 80 and 81.2 at.% Au; and (8) the 
fcc terminal solid solution (Au), with maximum solid sol- 
ubility of 16 at.% A1 at 545 ~ Special points of the equi- 
l ibrium d iagram (Fig. 1) are summar ized  in Table 1, 
where most of the listed invariant temperatures were de- 
termined by [00Hey]. Minor modifications in these tem- 
peratures may be necessary in the future  because the 
melting points of A1 and Au assumed by [00Hey] to be 
655 and 1062.2 ~ respectively,  are now accepted as 
660.452 and 1064.43 ~ [Melt]�9 

Liquidus. The experimental liquidus data are shown in 
Fig. 2. The present thermodynamic calculations success- 
fully represent the liquidus boundary (see "Thermody- 
namics"). 

Fig. 1 Assessed AI-Au Phase Diagram 
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AI Terminal Solid Solution, (AI). (A1) forms from the liq- 
uid by the eutectic reaction L ~ (A1) + A12Au. The eutec- 
tic point has been de te rmined  twice: as 0.7 at.% Au at 
642 ~ by [38Age] a n d  as 1.1 at .% Au  a t  648 ~ by 
[00Hey]. The la t ter  value is relat ive to the 655 ~ mea- 
sured for the mel t ing  point  of pure A1 by [00Hey]. 

In a directional solidification study, [76Pia] found eutec- 
tic microstructures in the range between 1.1 and 1.7 at.% 
Au. In a faceted-nonfaceted eutectic system, the composi- 
tion range in which eutectic microstructure is observed is 
skewed toward the faceted phase (A12Au). A s s u m i n g  a 
theoretical model for predict ing the coupled eutectic zone, 

Table 1 Special Points of the Assessed AI-Au Phase 

[76Pia] found tha t  the l iqu idus  slope and the  eutect ic  
composition given by [00Hey] were more consistent with 
their experimental  observations t h a n  the corresponding 
values given by [38Age]. 

The p resen t  t h e r m o d y n a m i c  ca lcu la t ions  also suppor t  
this view. According to these calculat ions,  the (Al) liq- 
uidus slope is that  predicted by the van ' t  Hoff re la t ion for 
the dilute limit,  and the l iquidus is a s t raight  l ine over 
the re levant  temperature  range.  The slope of the [00Hey] 
liquidus data agrees with the thermodynamic prediction, 
but the [38Age] value would require a significant devia- 
tion from the van ' t  Hoff l imit.  The evaluators  therefore 

Diagram 

Reaction 

- -  C o m p o s i t i o n s  o f  t h e  I 

r e s p e c t i v e  p h a s e s ,  Temperature, Reaction 
a t . %  A u  ~  t y p e  

L ~ (A1) + Al2Au . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1.1 0.06 32.92 
L + A1Au2 ~ AIAu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  56.5 33.92 50 
L ~ A1Au + yA1Au2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  60 50 65 
TA1Au2 m A1Au + flA1Au2 . . . . . . . . . . . . . . . . . . . . . . . . . .  65 50 65.1 
yA1Au2 ~ aA1Au~ + flA1Au2 . . . . . . . . . . . . . . . . . . . . . . . .  66.2 66.3 66.1 
TA1Au2 m flA1Au2 + A1Au~ . . . . . . . . . . . . . . . . . . . . . . . . .  66.8 66.7 71.43 
L + TA1Au2 ~ A12Au~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  72.0 66.7 71.43 
L ~ A12Au5 + fl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  78.5 71.43 80 
A12Au5 + fl ~ A1Au~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  71.43 80.2 80 
fl ~ A1Au4 + (Au) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  81.1 80 86.2 
L + (Au) ~ fl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  80 84 81.2 
L m TA1Au2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  66 
yA1Au2 ~ aA1Au2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  66.5 
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Fig. 2 Experimental Data on the Liquidus and the (Au) Solidus and Solvus 
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Fig. 3 AI-Rich Part of the Diagram 
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Fig. 4 AIAu2 Region of the Diagram 
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place the eutectic point at 650 -+ 3 ~ and 1.1 -+ 0.4 at.% 
Au. 

The accepted solid solubility of Au in the (A1) terminal 
solid solution was obtained from the electrical  resis- 
tivity measurements of [74Fuj]. The following solubility 
values were reported before [74Fuji and may not repre- 
sent the true equilibrium conditions: 0.03 to 0.06 at.% Au 
at 600 ~ based on microhardness measurements [65Hei, 
67Hei1]; 0.08 to 0.1 at.% Au at 610 to 640 ~ estimated 
from the decrease in the lattice parameters  [64Str2]; or 
less than 0.15 at.% Au at 642 ~ at which composition 
inclusions of the second phase were observed [38Age]. 
Solubility data are shown in Fig. 3. 

AI2Au. The existence of the purple-colored phase AI2Au 
was firmly established by many investigators [1892Rob, 
00Hey, 34Wes, 37Zin, 38Cof, 40Ull, 64Strl] by thermal, 
microscopic, and X-ray methods. According to the lattice 
parameter  measurements of [64Strl], the homogeneity of 
A12Au could be bracketed between 32.92 and 33.92 at.% 
Au for alloys furnace cooled from temperatures between 
400 and 300 ~ 

AIAu. Although a completely single-phase alloy was not 
obtained, [00Hey] correctly predicted the existence of 
A1Au based on thermal and microscopic work. X-ray pat- 
terns indicated that  the stability of A1Au is limited to a 
very narrow composition range [38Cof]. 

AIAu2. [00Hey] reported the occurrence of A1Au2, stable 
below 624 ~ and [38Cof] and [40Ull] confirmed its exis- 
tence. From the shifting of the X-ray diffraction lines, 

[38Cof] est imated the homogeneity to be between 64.0 
and 66.4 at.% Au at 500 ~ and between 65.4 and 66.4 
at.% Au at 400 ~ [68Fra] found two different types of 
distorted MoSi2-type structures, one in a thin-film sam- 
ple and the other in a bulk specimen. Figure 1 is based 
on the X-ray diffraction work of [74Pus], who reported a 
high-temperature phase, 7A1Au2, and two low-tempera- 
ture allotropic phases, flAlAu2 and ~A1Au2. aA1Au2 may 
be identical to the phase identified by [68Fra]. The homo- 
geneities are estimated to be between 65 and 66.8 at.% 
Au for 7A1Au~, 65.1 to 66.1 at.% Au for flA1Au2, and 66.3 
to 66.7 at.% Au for ~A1Au2 [74Pus]. A detail of the region 
is shown in Fig. 4. 

AI2Au5 (or AI3Aus). The existence of AI2Au~ was proposed 
by [00Hey] and [14Heyl, 14Hey2], with some suggestion 
that  this phase may actually have the A13Aus atomic ra- 
tio. X-ray measurements  of [38Cof] indicated a phase 
within a composition range between 72.3 and 73.0 at.% 
Au, closer to A13Aus. [Hansen] decided, based on the ther- 
mal analysis data of [00Hey], that  the A12Au~ formula is 
more likely. X-ray studies of [68Fra] showed that  the epi- 
taxially formed rhombohedral A12Au5 contained an inter- 
grown m e t a s t a b l e  second phase  wi th  a s imple cubic 
structure. Thus there is still some ambiguity regarding 
the exact composition and crystal  structure of the pro- 
posed A1Au5 phase. 

fl and AIAu4. In Fig. 1, a disordered bcc phase fl is shown 
forming on cooling through the peritectic reaction L + 
(Au) ~ /3 at  545 ~ and subsequently decomposing by 
the eutectoid reaction fl ~ A1Au4 + (Au), at approxi- 
mately 500 ~ 

Fig. 5 Au-Rich Part of the Diagram, Showing Metastable Equilibria Involving fl 
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The fl phase was s tudied by [14Heyl]  us ing t h e r m a l  
analysis and metallography, by [51Kuz] using X-ray dif- 
f ract ion,  and by [68Fra]  u s ing  e lect ron microscopy.  
[14Heyl] found that  the/3 phase could be undercooled to 
424 ~ at which temperature the eutectoid reaction/3 ~--- 
(Au) + AlzAu5 occurred with recalescence. An unknown 
phase "Y", which the cu r r en t  eva lua to r s  ident i fy  as 
AIAu4, was formed by a reac t ion  t ha t  consumed the  
A12Aus. ]n forced recalescence experiments A12Au5 was 
found to be metastable up to about 520 ~ 

[51Kuz] and [68Fra] found tha t  the disordered fl phase 
t ransformed on cooling at  about  400 ~ to A1Au4, and 
tha t  the t ransformat ion on hea t ing  occurred a t  about  
500 ~ The [Hansen] diagram,  showing/3 ~ A1Au4 at  
about 400 ~ was constructed on the basis of the work of 
[51Kuz]. However, the evaluators  note that  the exper- 
imental observations of [51Kuz] and [68Fra] do not con- 
flict with those of [14Heyl], and that, based on [14Heyl], 
the transition near 400 ~ during cooling is a metastable 
one. 

Figure 5 shows a detail of the Au-rich part  of the dia- 
gram in which me tas t ab le  extensions  of the /3 phase  
boundaries are included. It is consistent with the results 
of [14Heyl, 51Kuz, 68Fra]. The boundaries of the/3 phase 
can be extrapolated to the metastable eutectic reaction at 
424 ~ The compound A1Au4, once formed, is stable to 

-510 ~ at which temperature the equilibrium reaction 
A1Au4 ~ A12Au5 + fl occurs. 

Au Terminal Solid Solution (Au).  The experimental 
boundaries of the (Au) phase with L + (Au), ~AIAu4 + 
(Au), and flA1Au4 + (Au) by [38Cof], [40Ull], [45Owe], 
[67Cha], and [72Pre] are shown in Fig. 2. All the data 
except those from [67Cha] along the [L + (Au)]/(Au) 
boundary are reasonably represented by the present ther- 
modynamic analysis. 

Other Phases.  [50Hum] reported the existence of a 7 to 4 
electron compound phase A13Au~. No other experimental 
evidence exists to confirm this [00Hey, 38Cof, 40Ull, 
66Coo]. 

A flMn-type compound A1Au3 was proposed by [29Wes] 
and [35Fag] near 75 at.% Au. This compound is probably 
the A1Au4 phase. 

Thin Films. Studies done on A1-Au thin films have pro- 
vided a useful means of finding the equilibrium phases 
and crystal  s t ruc tures ,  especial ly  wi th  regard  to the 
phases A1Au and A12Aus, which form very sluggishly by 
peritectic reactions. According to many  investigations us- 
ing var ious  me thods  [31Eis, 62Wea,  65Ter ,  70Aru,  
70Wea, 71Abr, 72Kol, 74Cam, 75Cam, 79Maj, 80Gal, 
81Maj, 81Mar, 81Van], almost all of the stable interme- 

Fig.  6 M a p  of  P h a s e  O b s e r v e d  in T h i n  F i l m s  a s  a F u n c t i o n  of  O v e r a l l  C o m p o s i t i o n  a n d  A n n e a l i n g  
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dia te  p h a s e s  a lso  fo rm in  t h i n  f i lms i f  a p p r o p r i a t e  condi-  
t ions  a re  fulf i l led.  The  p r i m a r y  con t ro l l i ng  fac to r s  a re  (a) 
the  overa l l  c o m p o s i t i o n  of  t h e  fi lm, (b) t h e  t h i c k n e s s ,  (c) 
t he  p r e p a r a t i o n  m e t h o d ,  (d) t h e  a n n e a l i n g  t e m p e r a t u r e ,  
a n d  (e) t h e  s t r a i n  e n e r g y  c o n t r i b u t i o n  w h e n  t h e  p roduc t  

p h a s e  fo rms  f rom t h e  c o m p o n e n t  e l e m e n t s .  N e v e r t h e l e s s ,  
t h e  p h a s e  t h a t  f o r m s  f i r s t  s e e m s  to  be  e i t h e r  Al~Au,  
A12Aus, o r  A1Au2. T h i s  is  u n d e r s t a n d a b l e  b e c a u s e  t h e  
Gibbs e n e r g i e s  of f o r m a t i o n  of  t h e s e  t h r e e  c o m p o u n d s  a r e  
s imi l a r  (see " T h e r m o d y n a m i c s " ) .  S e c o n d a r y  p r o d u c t s  a l so  

Table 2 AI-Au Crystal Structure Data 
H o m o g e n e i t y ,  P e a r s o n  S p a c e  S t r u k t u r b e r i c h t  

P h a s e  at.% Au s y m b o l  g r o u p  d e s i g n a t i o n  P r o t o t y p e  

(A1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  0 to 0.06 
AI2Au . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  32.92 to 33.92 
A1Au . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  50 
7A1Au2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  65 to 66.8 
flA1Au2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  65.1 to 66.1 
aA1Au2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  66.3 to 66.7 
A12Au5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  71.43 
fl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  80 to 81.2 
A1Au4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  80 
(Au) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  84 to 100 

cF4 F m 3 m  A 1 Cu 
cF12 F m 3 m  C1 CaF2 
mP8  P 2 1 / m  B31 MnP 
tI6 I 4 / m m m  Cllb  MoSi2 

oP30 P n m n  . . . .  MoSi2 
oP12 P n m a  . . . .  MoSi2 

(a) . . . . . . . . .  

cI2 I m 3 m  A 2  W 
. . . . . . . . . .  flMn 

cF4 F m 3 m  A 1 Cu 

(a) Rhombohedral. 

Table 3 AI-Au Lattice Parameter Data 
C o m p o s i t i o n ,  I Lattice Parameters (a), n m - - ]  

P h a s e  at.% A u  a b c C o m m e n t s  R e f e r e n c e  

(A1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  0 
A12Au . . . . . . . . . . . . . . . . . . . . . . . . . . . .  32.92 

33.33 
33.92 
33.3 

33 

33.33 

A1Au . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  50 

TA1Au2 . . . . . . . . . . . . . . . . . . . . . . . . . . .  65 to 66.8 
~A1Au2 . . . . . . . . . . . . . . . . . . . . . . . . . . .  65.1 to 66.1 
aA1Au2 . . . . . . . . . . . . . . . . . . . . . . . . . . .  66.7 

66.3 to 66.7 
A12Au5 . . . . . . . . . . . . . . . . . . . . . . . . . . .  71.43 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  80 to 80.2 
A1Au4 . . . . . . . . . . . . . . . . . . . . . . . . . . . .  80 

8O 
(Au) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  86.9 

89.9 
93.1 
96.4 
85.98 
88.44 
90.89 
93.22 
95.43 
98.26 

100 
100 

Note: The assessed values are in boldface type. 
(a) Measured at room temperature unless otherwise specified. 

0 . 4 2 9 0 6  . . -  
0 . 5 9 9 7 9 7  - - -  

0 . 5 9 9 7 3 0  - . .  
0 . 5 9 9 6 9 5  . . .  
0.6000 . . .  
0.5988 . . .  
0.598 --- 
0.6 . . .  
0 . 5 9 9 7 3  . . .  
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form as a result  of interdiffusion between the p r imary  
products and the pure elements .  The secondary phase 
may further interdiffuse with the pure elements as long 
as the supply of constituent components lasts, and until 
s table or metas tab le  equi l ib r ium is reached. The end 
products are largely dependent on the overall composi- 
tion. However, if the temperature  is too low, or the thick- 
ness of the products becomes excessive, the intermediate 
products will tend to remain as metastable phases. A dia- 
gram was given by [81Van] (Fig. 6), which shows the in- 
terdependence between the overall composition and the 
observed phases in relat ion to the anneal ing tempera-  
ture. The samples were heated slowly from 35 to 350 ~ 
at a rate of 0.38 ~ where the thickness of one com- 
ponent was kept constant (A1 -- 200 nm for <33 at.% Au, 
Au = 200 nm for >33 at.% Au alloys). The overall results 
of work with thin films suggest tha t  in most instances 
the equilibrium condition established in thin films may 
be equally valid for bulk specimens (see the section on 
A1Au2 for a possible exception). 

Metastable Phases 
Using rapid solidification, the maximum solubility of Au 
in (A1) can be increased from the equilibrium value of 
0.06 to 0.35 at.% Au [69Tod]. 

A large age-hardening effect is found in Al-rich alloys 
[65Hei, 67Hei2, 76Heil, 76Hei2, 76Sanl, 76San2, 79Kon]. 
[67Hei2, 76Hei l ,  76Hei2] reported tha t  a metas tab le  
t e t ragona l  phase ~ ' ,  distinct in s tructure from A12Au, 
precipitates in the form of coherent platelets during the 
ear ly  stages of aging. [76Sanl ,  76San2], on the other 
hand, reported that  the precipitates consist of the equi- 
l ibr ium phase, which is distorted by the constraint  of 
coherency with the matrix. [76Sanl, 76San2] proposed a 
mechanism for the loss of coherency of the precipitates. 
[79Kon] verified the mechan ism of continuous lattice 
accommodation and suggested that  additional diffraction 
lines previously a t t r ibuted  to ~'  may be explained by 
double diffraction. 

Crystal Structures 
Crystal structure data for the stable phases in the A1-Au 
system are listed in Table 2. The experimentally deter- 
mined lattice parameters  are given in Table 3. 

AI2Au. The CaF2-type structure was first established by 
[34Wes]. 

AIAu. X-ray and electron diffraction patterns of vapor-de- 
posited thin films and powder specimens were indexed by 
[68Fra] as corresponding to a monoclinic structure. The 
structure derived by [70Fra] (see Table 2) from an X-ray 
diffract ion pa t t e rn  is very  s imi lar  to tha t  of [68Fra]. 
[68Fra] reported that  determination of the A1Au struc- 
ture from an electron diffraction pattern alone can lead 
to erroneous orthorhombic structure with two of the unit 
cell dimensions being nearly equal. The ZnS-type struc- 
ture attributed to A1Au by [31Eis] and CsCl-type struc- 
ture identified by [71Abr] from an electron diffraction 
pat tern  in thin films may be because of the same diffi- 
culty as that  encountered by [68Fra]. 

AIAu2. The high-temperature allotropic form TAIAu2 has 
the MoSi2-type tetragonal structure [74Pus]. aAlAu2 has 
a d i s to r t ed  o r tho rhombic  s t r u c t u r e  [68Fra,  74Pus]. 
~A1Au2 is also orthorhombic, but with a larger unit cell 
[74Pus] (see Table 2). 

AI=Aus. The rhombohedral  s t ructure of AI2Au5 was de- 
duced from the X-ray and electron diffraction studies of 
[68Fra]. The complex electron diffraction pattern found 
in an epitaxially grown thin film is due to the coexistence 
of A12Au~ and an intergrown second phase with an un- 
known simple s t ructure  (a = 0.64 nm). The report by 
[38Cof] tha t  A12Au~ has a complex structure similar to 
Tbrass, but with a hexagonal distortion, is considered in- 
correct. 

fl Phase .  The W-type bcc structure of fl established by 
[51Kuz] was confirmed by [68Fra]. 

aAIAu4. The structure of aAlAu4 was considered to be 
flMn type [29Wes, 31Karl,  31Kat2, 35Fag, 38Cof]. How- 
ever, [40Ull] and [51Kuz] found that  the structure is not 
exactly flMn type, but is slightly distorted. 

Thermodynamics 
Exper imenta l  Data. Experimental  data for this system 
are available for the enthalpies of formation of the solid 
phases [66Fer, 72Pre], the enthalpy of mixing for the liq- 
uid [71Ita], and partial Gibbs energies in the liquid phase 
[67Cha, 69Lee, 70Pre, 70Yaz, 79Erd]. Experimental data 
for the enthalpies of formation and mixing are given in 
Table 4. 

Measurements from which activities of partial Gibbs en- 
ergies for the liquid phase can be derived were made by 
the following experimental techniques: 

Thermodynamic 
quantity Technique Reference 

GAI . . . . . . . . . . . . . . . . . . . . .  emf, 660 to 1100 ~ 
emf, 660 to 1150 ~ 
emf, 700 to 980 ~ 

GAu. . . . . . . . . . . . . . . . . . . . .  distribution method 
(A1-Au-Pb) 

G~, ex GAu. . . . . . . . . . . . . . . .  Knudsen cell, mass 
spectrometry, 
1267 to 1387 ~ 

[67Cha] 
[70Pre] 
[69Lee, 70Yaz] 

[79Erd] 

Par t ia l  Gibbs energies  GAu were derived by [67Cha], 
[69Lee], [70Pre], and [70Yaz] using Gibbs-Duhem inte- 
gration. There are major discrepancies among these re- 
sults, as illustrated by Fig. 3, taken from [79Erd]. 

Similar conflicts exist in the derived excess entropies for 
the liquid phase, S~X(L). [67Cha] obtained a nearly ideal 
entropy of mixing, [70Pre] a positive entropy of mixing 
(with maximum - 8  J/tool. K) and [69Lee, 70Yaz, 79Erd] 
a negative entropy of mixing (minimum approximately 
- 1 0  J /mo l .  K [79Erd]; a p p r o x i m a t e l y  - 7  J /mo l .  K, 
[69Lee, 70Yaz]). 

The present optimization calculations verify the negative 
S~X(L) but do not support the behavior of G~X(L) as pro- 
posed by [79Erd]. However, because many  discrepancies 
or inaccuracies of the phase diagram are not yet resolved, 
the present calculations are far from conclusive. Further 
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Table 4 AI-Au Experimental Thermodynamic Data 
Enthalpy of formation, Enthalpy  of mixing, 

Composition, Temperature,  Af H(s), Amk H(L), 
Phase at.% Au ~ J / mo l  J / m o l  Reference 

A12Au . . . . . . . . . . . . . . . . . . . . . . . . . . . .  33.5 -+ 0.5 
33.3 

A1Au . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  50 
49.7 -+ 0.3 

A1Au2 . . . . . . . . . . . . . . . . . . . . . . . . . . . .  66.7 +- 0.3 
66.7 

(Au) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  83.0 -+ 1.5 
95 
9O 
88 

L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10 
2O 
3O 
4O 
5O 
6O 
7O 
8O 
9O 

127 -41422 [66Fer] 
500 -39162 [70Pre] 
500 -32 551 [70Pre] 
127 -36 400 [66Fer] 
127 - 35 355 [66Fer] 
500 -27 614 [70Pre] 
127 -22 594 [66Fer] 
500 - 4 393 [70Pre] 
500 -8033 
500 - 9 623 

1100 - 5  854 [71Ita] 
- 10 952 
-15013 
- 17 794 
- 19186 
- 20 209 
-18676 
- 14 796 

- 8 473 

experimental work on the phase d iagram and fur ther  cal- 
culations are needed. 

Calculation of the Phase Diagrams. The present opti- 
mization calculations make use of the assessed phase dia- 
gram data, AfH of the solid phases, hmixH of the l iquid 
[71Ita], and part ial  Gibbs energies of the l iquid [79Erd]. 

The in termetal l ic  phases were represented as l ine com- 
pounds, for which the Gibbs energy of phase i is: 

G~ = H~ - TS~ 

Because of the lack of defini t ive phase d iagram data  in  
the fl region, no d is t inc t ion  is made be tween the disor- 
dered bcc phase fl and the in termetal l ic  compound A1Au4. 
They are modeled as a single line compound A1Au4. Simi- 
larly, the three forms--~/A1Au2, flA1Au2, and  ~A1Au2--  
are not dist inguished for the purpose of the calculations. 

The excess Gibbs energies of the fcc and l iquid solution 
phases are represented as: 

GeX(i) = Y, jBj( i ,T)  x(1-x) Pj (1 -2x)  

where i is the phase; x, the atom fraction Au; Bj,  the coef- 
ficient of the jth Legendre polynomial  in the expansion;  
and T, the tempera ture  in  K. 

A temperature-dependent  subregular  solution model has 
been chosen for G ex. This choice is based on a series of 
calculations using different numbers  of terms in the ex- 
pansion. For higher t han  subregular  solutions, the scat- 
ter in the A12Au l iqu idus  da ta  [00Hey] is (ar t i f icial ly)  
reproduced by the calculations. 

Thermodynamic  p a r a m e t e r s  from the p re sen t  calcula-  
tions are listed in Table 5 and the calculated d iagram is 
shown in Fig. 7. The A12Au and (Au) l iquidus  branches  
are reproduced by the present  calculation wi th in  the ex- 
perimental  uncer ta in ty .  The calculated A12Au5 l iquidus  
lies somewhat above the exper imenta l  data,  cons is tent  
with the observation of undercooling in this system. The 
calculated (Au) solidus is consistent with the rough esti- 
mate of [00Hey] and not with the emf data  of [67Cha]. As 

Table 5 AI-Au Thermodynamic Parameters 

P r o p e r t i e s  o f  t h e  P u r e  C o m p o n e n t s  
G~ L) = 0 
G~ L) = 0 
G ~ fcc) = - 10 780 + 11.548 T 
G~ fcc) = - 12 552 + 9.393 T 

E x c e s s  F u n c t i o n s  
Bo(L) = -105 252 + 41.299 T 
BI(L) = 34184 
Bo(fcc) = -53 513 + 3.546 T 
Bl(fcc) = -272 + 30.995 T 
B2(fcc) = 17305 

C o m p o u n d s  

G~ = -33 750 + 13.566 T 
G~ = -42 564 + 22.388 T 
G~ = -37 638 + 17.069 T 
G~ = -35 078 + 15.772 T 
G~ = -23328 + 6.332 T 

Values in J/mol, J/mol. K. 

ment ioned  above, qua l i t a t i ve  a g r e e m e n t  was ob ta ined  
with enthalpies of mix ing  for the l iquid [71Ita], bu t  not 
with the most recent  and  comprehens ive  ac t iv i ty  da ta  
[79Erd]. 

Pressure 

The mel t ing  point  of A12Au decreases with pressure  at  
the rate of 5 ~ at  least up to 5 GPa [66Sto]. Accord- 
ing to [66Sto], the nega t ive  der iva t ive  d T / d p  suggests  
the existence of an  allotropic phase t r ans i t ion  at  a sti l l  
higher pressure. 

Addendum 

The A1-Au system, as contr ibuted in  a short version by 
R.P. Elliott  and F.A. Shunk,  was published in provisional  
form in the Bul le t in  [81Ell]. The present  eva lua t ion  re- 
views al l  b ib l iog raphy  a nd  d a t a  on the  A1-Au sys t em 
available in  the l i terature  through 1983 and includes in -  
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Fig. 7 Calculated AI-Au Phase Diagram 
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fo rma t ion  p e r t a i n i n g  to c r y s t a l  s t ruc tu re s ,  m e t a s t a b l e  
phases,  thermodynamics ,  and  pressure .  The p re sen t  au- 
thors  have  also performed a t he rmodynamic  a s ses smen t  
of cer ta in  phase boundar ies .  The p resen t  eva lua t ion  su- 
persedes the  ear l ie r  work. 
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* Indicates key paper. 
# Indicates presence of a phase diagram. 
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The H-Ti (Hydrogen-Titanium) System 
1.00794 47.88 

By A. San-Martin and F.D. Manchester 
University of Toronto 

Equilibrium Diagram 
The assessed Ti-H phase diagram is shown in Fig. 1 and 
2, which are sections of a P-T-X surface in the T-X plane 
and the P-X plane, respectively,  where P is pressure in 
Pa, T is temperature in K and ~ and X is the hydrogen 
concentration, expressed as X = H/Ti (the atomic ratio). 
Two presentations are necessary for a hydrogen-meta l  
system,  because the equi l ibrium pressure of the hydrogen 
surrounding the meta l  is a lways  a significant thermody-  
namic variable, in contrast  to most  situations involving 
metal l ic  alloys. The participation of hydrogen in the vari- 
ous phases of alloy sys tems  is the best available example  
of hydrogen acting as a meta l  [71Gill. The crystal struc- 
tures and lattice parameters  of the Ti-H phases are given 

in Tables 1 and 2, respectively.  Figure 3 i l lustrates the 
exist ing phase relationships at high pressure (50 MPa) 
reported by [83Sha]. 

Recent work [84Num, 85Woo] evaluat ing  evidence on the 
existence of a metastable  hydride phase in the Ti-H sys- 
tem led both [84Num] and [85Woo] to propose relabeling 
the phases in the Ti-H sys tem to correspond with the des- 
ignations for the isostructural Zr-H system.  

The composite phase diagram (Fig. 1) is of the eutectoid 
type, and consists  of the following phases: (1) cph a; (2) 
bcc fl; 3) two interst it ial  solid solutions of hydrogen based 
on the allotropic c~ and fl forms of  pure Ti; (4) ~, a fcc hy- 
dride; (5) ~, a tetragonally  distorted fcc or fct hydride 
with axial  ratio c/a < 1; and (6) % a metastable  fct hy- 

Fig. 1 Assessed Ti-H Phase Diagram 
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Projected on the T-X plane from a P-X-T surface. A. San-Martin and F.D. Manchester, 1987. 
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