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1. Summary and introduction

This paper reviews properties of the negative multinomial distribution
and some related distributions. On the negative binomial distribution
(NBn) much has been written and the contributions were summarized
in two recent survey reports([3], [9]). In the course of researches on
the NBn its multivariate extension has been tried. The notion of the
negative multinomial distribution (NMn) was first introduced in the model
of the inverse sampling in multiple Bernoulli trials and accordingly the
parameter ‘‘k’’ was limited to integral values. Later, in the papers
discussing statistical theory of accident, absenteeism and contagion, the
NMn was introduced under the name °‘‘ multivariate negative binomial
distribution ”’ ([1], [2], [4], etc.). Among them Bates and Neyman’s
paper [4] was the first which treated the NMn systematically.

Surveying the properties of the NMn we remark the relations among
distributions, which make clear the probabilistic structure of the indi-
vidual distributions. We notice especially that the relation between the
binomial distribution (Bn) and the NBn is quite similar to that between
the multinomial distribution (Mn) and the NMn, so the name NMn is
preferable to the multivariate NBn.

On the way of discussions a2 multivariate extension of Fisher’s loga-
rithmic series, the negative hypergeometric distribution (NHg) and its
multivariate extension will be treated. Here, the name NHg is pro-
posed, though this distribution has been discussed in literatures under
different names.

2. Characteristics of the NMn

The NMn (r variate) is the probability distribution defined by
P X=x)=P(X =2, ---, X,=2,)

2.1) =(—k)"”0;’*‘”f]jl(ﬁfi Jz:!)

409
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= LU+ ety o,
r@]] !

where
£=0,1,2, --;  y=Xm;
E>0;  6,<0, i=1,2, -, 7, 00=1—§ 0,>1;
2.=1/6,>0, 0,;=—010,>0,1=1,2, ---, 7, > p=1,

and a® denotes the factorial product a(a—1)--- (a—b+1). Note that
the first expression is a typical term of the multinomial expansion of

@.2) O+3 0)*=1.

The expression (2.1) is formally obtained by a suitable replacement of
the parameter in the expression of the Mn,

2.3) P(X=x)=m®ap]1(o% 2. 1),

i
b}

T

y= w,gm; p,t>0, 'i=0, 1, e, 'r, ZP:‘:]--
1

The NBn

T'(k+x)
I'(k)x!

(2.4) P(X=x)= p"(1—p)
is the univariate case of the NMn.

The probability generating function, the characteristic function, the
moments, ete. are obtained from those of the Mn by changing the para-
meter as summarized in Table 1 [27]. See also Table 2 ([23], [24]). This
suggests that the NMn has the nice properties of the Mn as will be seen
below.

Let Ji, J,, « -, J; be mutually disjoint subsets of {1, 2, ---, »}. Then
the marginal distribution of the partial sums is again the NMn,

(2'5) P(zllx't=ylv cT %y EJ,Xi:yt)
_Te+Zw) IS e
r (k)]ifxy. ! (po+v2t=‘.l PHER 1) E

The conditional distribution of the above partial sums given X; =x,, is
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the NMn,

(2.6) P(Z, Xi=y, -+ EJ,Xt=yz | X7,=%1,)
=P, Xi=Y, -+, EJ,,X!:% [ 30 Xi=30 0,2 =Y0)

Fh+33) @t Sa) ™ 1] (50,00

t 4 t
F(k‘l‘yu)];l; 9! (po+§) E,;ypi k+Zy,
Note that the expectation E(33, X)), v=1, -+, r is linear in =’s, 1€ J,

(cf. Table 1).
Given é 37, Xi=vy, the conditional distribution of the partial sums
v=]
is the Mn (not the NMn),

@.7) P Xe=th, -+ Do K= 3 50 Xo=1)

=2 (@i Sy
Mv!

If X, ---, X, are independent NMn variates with common (p,, - - -, 9.),
then ;2 X,=x has the NMn with parameter (12 ki oy, v, D))
=1 =1

Conversely, for any positive integer » and k,>0, I=1, .--, n, such

that lé k,=k, the NMn variate X with (k; p,, ---, p.) can be expressed
=1

as the sum of independent X,’s with (k; p,, ---, p.), I=1, -+, n. Thus,

in particular, the NMn is infinitely divisible.

The family of NMn’s does not include the joint distribution of
independent NBn’s. Cor (X, X,)>0 when (i) p; andfor p,—>0 (in this
case, the limit distribution degenerates on the set x,=0 and/or z,=0),
or when (ii) k—oco (in this case, as we shall see later, the limit distribu-
tion is the joint distribution of independent Poisson’s). Cor (X;, X;)—>1
when (i) p—0 (in this case, E(X;) and V(X,)>, I=1,2, -.., 1), or
when (ii) k-0 (in this case, the limit distribution degenerates on the
origin).

3. Models inducing the NMn

a. Inverse sampling (waiting time) in multiple Bernoulli trials: We
consider a sequence of independent trials, in each of which the event
A, occurs with probability p; (:=0,1,2, ---, r; i} »,=1). Let X, be the

v=0

frequency of A, before the kth appearence of A,. Then the distribu-
tion of (Xi, ---, X,) is the NMn.
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b. Compounding of independent Poisson variates by a gamma dis-
tribution: Let X, ---, X, be independent Poisson variates,

P(X'1=x1, Y Xr=xr)=;[!l—16"“‘i(M2i)’i/m¢ I.
If the prior distribution of m is a gamma distribution,
=__1.(ﬂQ“¥mm k>0
Sf(m) T \a e™,  a,k>0,
then

rrmam S b M)

c¢. Compounding the Mn by the NBn: Let the parameter of the
Mn (2.3) be (n; P, Dy, -+, P.), and let n be distributed as the NBn (2.4)
with parameter (k, p). Then the compound distribution is the NMn with
parameter

(k; 1 _Q=op . __(A—p)p )
1-p(1—-p)  1—p(1—p) 1—-p(1—p)
0<p<1.

d. Generalization of the Poisson distribution by the ‘‘ multivariate
logarithmic series distribution’’: A multivariate extension of Fisher’s
logarithmic series is defined by

(8.1) H&=%~HX#%bdw4NﬂuWM)
xi=0) 1’ 2, oty y=r xt=1’ 2; ey
i=1
Doy D1y =+ pr>0’ ‘g‘.; pt=1;

a=-—1/log p,>0.

As will be seen later, this is a limit distribution of the origin-truncated
NMn, and its probability generating function is

(3.2) ~amga—gmmy

The generalization of the Poisson distribution with mean m by (3.1)
has the probability generating function

(3.3) exp {m(—alog (1-3] ) —1}
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=e¢ ™1 "t_g tp)~ ™

=p;(1 —gx tipi) "
k=a-m, pf=e™,
which is the probability generating function of the NMn.
e. Generalization of the NBn by the multi-point distribution: The

generalization of the NBn with parameter (k, p) by the generalizer, (r+
1)-point distribution,

(3.4) PX,=2, -, Xr=2)=p & ] i

z;=0, 5‘_. z;=0,1;

i=1
Doy Py °* pr>0v i=20 pt=1 y

is the NMn. This process is equivalent to the compounding stated in ‘e’.
f. Multiple inverse sampling without replacement: A Ilot consists
of m,n, ---, n, items belonging to the Oth, the 1st, ---, the rth clas-
ses respectively. The items are drawn one by one without replacement
until &k items of the Oth class are observed. The joint distribution of
the observed frequencies Xj, ---, X, of the 1st, ---, the rth classes is

35)  PX=m, -, X,=2,)
=(am)0(5) ) (s ) =S

=(k+y—D!Un+n—k—y)Hn!'<nq
(m+n)!(k—1)! (m—k)! i=1\ &t

r r
Y=>1%; N=>21N;.
i=1 i=1

If m and m»—oo in such a way that m/(m+n)—>p, n/(m+n)—>p, 1=
1,2, .-+, r, then the distribution (3.5) approaches to the NMn, as the
problem reduces to the case of model ‘a’.

g. An urn model: An urn contains f;, ---, f; (i}f,=g) balls of r
i=1

different colours as well as f, white balls. We sample a ball and if it
is coloured it is replaced with additional ¢;, ---, ¢, balls of » colours,

and if it is white it is replaced with additional d=¢é ¢; white balls,
=1
where ¢;/f,=d/g=1/k=const., i=1, ---, r. Let X, X}, ---, X, (& Xi=m)
i=0

be the frequencies of the white and the coloured balls in a sequence of
7 such trials. Then
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P(Xlle, R Xr=xr)

__n! T +ha 1L a+id) T (floy
]:[,xf ! E(ﬂ+g+ld)

—_m! (fld+n—y—=1)"" 1 ﬁ(ji—)'i
(n—y)! (g+f)d+n—-1)" el S0

i=1
y=iE1 T, Xety=mn.

If » and f,/d—>o in such a way that n/(f,/d+n) tends to a constant,
then

n! (fild+n—y=10"2  ny(fi/d)"
(m—! (g+f)d+n—-1)" (fild+ny+o

hence
— 1Y T
P(Xl=x1, "ty szxr) ~ ‘(lci,y_m“pg-[_—[; pf‘ s
TT T; ! =
i=1
where
=_fjd — mhle i L,
po fo/d-l-'n, pl f,,/d+'n H ’ ’

4. Limit distributions and a compound of the NMn

a. The NMn— the independent Poisson (k->0): Another expres-
sion of the NMn (2.1) is

(4.1) P(X=x)= I"(y+{c)k" i ljfi'
[’(k)(k_l_zlﬂi)uy i=1 ;!

where
w=E(X)=kp/p,, i=1, .-, 7.

If k—>co, keeping g, -+, . constant, we have

4.2) P(X=x) ~ ;[rTle"‘f el
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b. The origin-truncated NMn tends to the multivariate logarithmic
series distribution (k—0): The origin-truncated NMn is defined by

(4.3) PX=x)=(1—pt) " LWE) peirpm
F(k)_ﬂl z!
If k-0,

T(y+k)(k[(k)—>(y—1)!
kp; [ (1—p5)—>1/log (1/py) ,

and therefore

~@-1! T

P(X=x)—

r

log p, [[ 2!

=1

which was introduced in the last section.

¢. Compounding of the NMn by the multivariate beta distribution :
The parameter (p, P, -+, P,) in (2.1) is supposed to be distributed ac-
cording to the multivariate beta distribution (or the Dirichlet distribution

(26D,

4.4 L T phimr &8 T ot
B(‘Bor ,31, Tty ﬁr) i=0 ﬁ[’(ﬁl) i=0

Dos Py * 7y pr>0’ épl.:l;
,BOI fal! Tty ,Br>0 .

The compound is (cf. [16]),

I'y+k) F(i% lst)r(k‘l'ﬂo)];l_l I'(x+8)

4.5) PX=x)= - et
r@fe!  Tly+3 AT

_ TU+BI(S 8)  (+k—DTT (Bebm—1)
k+ZBICE)  @+h+3 A1) 2!

The right hand side of (4.5) can be a probability distribution for weaker
conditions on the parameters, and the distributions may be called ‘¢ multi-
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variate generalized hypergeometric’’ (see [14], [20]), which include the
usual multivariate hypergeometric and the multivariate negative hyper-
geometric distributions as special cases.

The relations discussed in sections 2 -4 and later sections are sum-
marized in Figs. la and 1b. Note that the parallelism between uni-
variate and multivariate cases breaks down at a point relating to the NHg.
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5. Inference

When the parameter k is a known constant, the distribution (2.1)
is a Koopman-type distribution or one of multivariate power series
distributions. For a sample of size n, X,, ---, X,, the sum of observed
vectors
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T=(T11 ] T'r)=ué1 Xy

is a complete sufficient statistic, and is again the NMn variate. Un-
biased estimators based on T have the uniformly minimum variances
(cf., for example, [18]).

a. Unbiased estimation (k¥ known): For a sample of size n from

(2.1) the unbiased estimator of ﬁ Pii(s;=0,1,2, «--) based on T is
i=1

(5.1) oT)= IT T#OHT+nk—1)®,  Tezs: i=l, ---,m,
0, otherwise,

where s=>.s,.

The unbiased estimator of any parametric function which can be ex-
panded in a power series of p,/’s is obtained by replacing each factor
Tl 2i+ in the series by its estimator (5.1).

i=1
For example, the unbiased estimator of the original probability (2.1)
is

(y+k—1)T—y+(n—1k-1)"" '(T; -
o(T)= (T4+nk—1)" :Ux x; ) y Tz,
0, otherwise.

b. Maximum likelihood estimation (¥ known): It is easy to sec
that the ML estimator of p=(x, - -+, g,)=E(X) is

A A A 1 r
= r * %% r=—‘“—‘ M
£=(n £r) nZ:X

=1
and

A Y= pille+ 1) Aooa Y Hity
(5.2) Var (@) _——nk“""" Cov (g, ;) _'nk .

ML estimators of other parametric function and their asymptotic var-
iances are derived from (5.2).

e. Maximum likelihood estimation (k unknown): Let Y, be the sum
of components of each observation,

Y,=i2' X, wv=l,--,m.
=1

It has the NBn with (k, »). The log-likelihood function is written as
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log L=const + f} log I'(y,+k)—n log I'(k)
PESY
+nk log p+ 3 21 7, log v,

v=1i=

which leads to the likelihood equations

i‘i=iir i=1’ 21 e, T,
and
dlog L _ .10 (1 j/_) \( 1 1 _L>
ok wlos {1+ A T Ty T
=—nlog(1+?>+§ AA"‘ =0,
k =0 k+m

where A, denotes the number of observed y, which is larger than m(=
0,1,2, ---). The last equation is the same as the ML equation of &k of
the NBn (k, p,) based on Y, ---, Y,. Sequential approximation by
Newton’s method starting from the moment estimate of k approaches
to the solution rapidly and at the same time gives an estimate of the
variance of the estimate [7].

6. Contingency table

In this section we consider the contingency table obtained by an
inverse sampling [22]. Suppose that in an axb table the (¢, j) cell has
the probability p;; (i=1, .., a; j=1, .-+, b), and that observations are
continued until the count of the (1, 1) cell becomes k. As a result of
such a sampling, the frequency X;; of the (3, 7) cell ((¢, j)#(@1, 1)) is
observed. The joint distribution of X;,’s is the NMn,

(6.1) P(X,;jzxu; 'I:=1, ce, Q, j=1} Tty b! (i’ j)¢(1’ 1))
= kl:(_x___,,) ﬁ ﬁp,-,’u ,

d t=1 j=1
M z,!

i=] j=1

where

b

Z Lis and xu:k .
1 f=1

T..=

Ma

H

[

Let the row-wise and the column-wise sums be X,. and X., respec-

b
tively. Then the maximum likelihood estimators of p;;, p.. =,2 p; and p.;=
=1

a
}"_,1 pi; are
=
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(6.2) ﬁij=Xij/X"1 ﬁ,;.=Xi./X-., i’.]zX.j/X.. .

Note that although each of (X,.—k, X,., ---, X,.) and (X.,—k, X.,, -,
X.;) is an NMn variate, the joint distribution of them is not the NMn
but a more complicated one, on which we shall not discuss here. Wishart
[27] treated the distribution under the name ¢ bivariate multimonial
(Pascal case)”” and Wiid [25] treated its conditional distribution.

Now the problem is to test the hypothesis of independence H,: p,;=
p..p.; for all (4, ) against p;;#p.p.; for some (¢, 7). The test procedures
are obtained by the similar argument as that of Neyman’s in the case
of usual sampling [17]. First, the likelihood ratio principle leads to the
critical region

Mo

(6.3) l:z(é

1

a b
Xi;log Xj;—> X log X;,.— 3 X ;log X, + X.. log X..)>¢
J i=1 Jj=1
which is formally the same as the test of independence in usual contin-
gency tables. The test statistic 1 is distributed asymptotically as the
¥ with d.f. (a—1)(b—1).
Since the statistic

(6.4) Q= (Xy—kpi/pu)* _ (X..—k/pn)
(5 D% 1 kpi;/pu kipy

is distributed asymptotically as x* with d.f. ab-1, another critical region
is defined by

U= (X—kX X /X X, ) (X.—kXYX,.X,)

Cesan kXX XX, kXX, X,
-_Zf_X_( & XX} > )
- kX.. zz-—-'lszjl Xi.X., X.. >c¢.

The asymptotic distributions of @ and 2 as well as the test statistics
in the usual sampling case are the same.

Appendix

1. Negative hypergeometric distribution

The negative hypergeometric distribution (NHg) is defined by

an - xea=() (2 (4

enla=sllarey
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= I'a+bm! (a+z—=1)2b+n—z—1)"
r®(a+b+n) z !

2=0,1,2, ---, n; mn: positive integer; a, 6>0.

This is a special case of the generalized hypergeometric distribution
([14], [19], [20]) and has some nice properties contrasted with the hyper-
geometric, as is stated below. So it deserves the name NHg, which
was used only by Hopkins [10].

The moments of (A.1) are easily obtained by changing the para-
meters from those of the hypergeometric distribution (Hg)

wo  raan(H)(2,)] (5
z=max (0, n—N), ---, min(n, M),
M, N, n : positive integers, n<M+N.

Hg NBg
MTInm) (@+7—1)"nr)
(r) —_— AU ST MU LN
E(X®) (M+N)" (@+btr—1)®
R Mn an
kb M+N atb
, Mn(Mn—n+N) an(an+n+b)
£ (M+N)(M+N—T1) (a+0) @ +b+1)
MNn(M+N—n) abn(a+b+n)
# (M+N) (M+N—1) (@18)(a+b+1)

If M, N—oo, keeping M/(M+N)=p constant in (A.2), and if a, b—
oo, keeping a/(a+b)=p constant in (A.l), then the both distributions
approach to the binomial

(A.3) (& )ra

which has the variance ¢}=p(1—p)/n. Note that g, <o} for the Hg,
while p,>0} for the NHg; these distributions approach to the binomial
from ‘¢ the opposite directions.”

Now consider another limit process. If m, N—>oo, keeping n/N=p
constant in (A.2), the distribution approaches to

(A.4) (¥)zge,

while if n, b—>co, keeping nfb=-—60>0 constant in (A.l), the distribu-
tion approaches to the NBn
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(A.5) ( e )0’(1-—0)4* .

This difference is explained by the fact that (A.2) is invariant under
the exchange of the parameters (n, N)«>(M, M+ N—mn), while (A.1) has
not such symmetry.

If X, and X, be independent Bn (resp. NBn) variates with X, hav-
ing - parameter (M,, »,) in (A.4) ((a,, 6,) in (A.5)), then the uniformly
most powerful unbiased tests for the problems H,: p,<p, (6,<0,) against
2> (0,>60,) and H,: p=p, (6,=0;) against p,#p, (6,%6,) are obtained
in terms of X, given X;+X,=¢ ([3] section 8, [15], 140-143). The con-
ditional distribution for p,=p, (6,=6,) is

(A.6) P(X1=wIX,+X,=t)=<ng>( t{ﬂx) / (Mw;M) ,

G e )e=a) [ (7))

2. Models inducing the NHg [19]

a. Inverse sampling without replacement: A lot consists of m ac-
ceptable items and n defective ones. Suppose that items are drawn at
random one by one and X defectives are observed before the ath ac-
ceptable one. Then we have

(A.8) P(X=x)=<a+z—1><m+::::—x) / <m7~nl—n>

(the waiting-time distribution, hypergeometric case, [26]).

sampling with replacement inverse sampling with replacement
: binomial : negative binomial

sampling without replacement inverse sampling without replacement
: hypergeometric : negative hypergeometric

b. Compound binomial: The compound of the binomial distribution

(2o

by the compounder

1

2—1,.b~1
Ba, by’

is the NHg (A.1). ([12], [21], ete.).
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¢. Exceedance: Let (X, ---, X,)and (Y, ---, Y,) be two random
samples from the same population with a continuous distribution func-
tion, and S be the number of Y’s which are larger than X, the dth
order statistic of (X,, ---, X,). Then,

(A.9) P(S=s)=(m—g+s)<n+g:§—l >/ (m?—:n> ]

(See [5], [8], [19]).

d. An occupancy problem: If » indistinguishable balls are placed
at random into m cells, then the probability that a group of d pre-
scribed cells contains a total of exactly s balls is

P(S=S)=<d+:—1)(m—d7—:-lms—s—1> / (m+”?:,—1) .

The exceedances in ‘¢’ is regarded as the balls which are placed into
m—d+1 prescribed cells when n indistinguishable balls are placed at
random into m--1 cells.

e. An urn model: An urn contains b-c coloured balls and a-¢ white
ones. A ball is drawn at random and if it is coloured (white) it is replaced
by additional ¢ coloured (white) ones. Then, in n trials X coloured
balls will be observed with probability (A.1). (A.l) is called the Pélya
distribution in relation to this model.

3. Multivariate negative hypergeometric distribution

The r-variate NHg is defined as an extension of (A.1),

w me=( 5 () /()

i=1

T M@ +2)0(S a) @+ n—y)

_ n!
(n—y);ll x,! H) F(a;)l“(i}:_‘; a;+n)
where
a.>0, 1=0,1, --., r; m: positive integer,

2=0,1,2, -3 Na=y=0,1, -, n.

i=1

The factorial moments are given by
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. n(‘)ﬁ (@ +s,— 1) ,
(A.11) E(IT X,¢9)= —==t , s-——-z1 s
i=1 i=

r

(go ;+8s— 1)(5)

If a, a,, -+, a,—>c0, fixing the ratios ai/Z a;=p, constant, the limit

distribution of (A.10) is the Mn (2.3), and 1f ao, n—>oo, fixing a,/(a,+n)=
p, then the limit is the joint distribution of independent NBn.

(A.12) ﬂ%((“a;‘;—“)p .

Let X, X,, -+, X, be independent variates with X; having

F (a'i+xi) (3
Tayz1 D0

Then the conditional distribution of (X, ---, X,) given ié X;=n is (A.10).
=0

A multivariate extension of inverse sampling without replacement
induces the distribution treated in ‘f’ of section 3 and not (A.10). The
compound of the Mn (2.3) by the multivariate beta distribution

1 _ T
T[pt Y, 0=p, E)I)L':

B(ao’ Ay oy ar)

is (A.10). (See Ishii and Hayakawa [12]).
Multivariate extension of the model of exceedance, the occupancy
problem and the Pdlya’s urn model are straightforward.
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in terms of p's
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