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1. Summary and introduction 

This paper reviews properties of the negative multinomial distribution 
and some related distributions. On the negative binomial distribution 
(NBn) much has been wri t ten and the contributions were summarized 
in two recent survey reports ([3], [9]). In the course of researches on 
the NBn its multivariate extension has been tried. The notion of the 
negative multinomial distribution (NMn) was first introduced in the model 
of the inverse sampling in multiple Bernoulli trials and accordingly the 
parameter  " k "  was limited to integral values. Later,  in the papers 
discussing statistical theory of accident, absenteeism and contagion, the 
NMn was introduced under the name " multivariate negative binomial 
d i s t r ibu t ion"  ([1], [2], [4], etc.). Among them Bates and Neyman's  
paper [4] was the first which t reated the NMn systematically. 

Surveying the properties of the NMn we remark the relations among 
distributions, which make clear the probabilistic s t ructure of the indi- 
vidual distributions. We notice especially tha t  the relation between the 
binomial distribution (Bn) and the NBn is quite similar to tha t  between 
the multinomial distribution (Mn) and the NMn, so the name NMn is 
preferable to the multivariate NBn. 

On the way of discussions a multivariate extension of Fisher 's loga- 
rithmic series, the negative hypergeometric distribution (NHg) and its 
multivariate extension will be treated. Here, the name NHg is pro- 
posed, though this distribution has been discussed in literatures under 
different names. 

2. Characteristics of the NMn 

The NMn (r variate) is the probability distribution defined by 

P ( X = x ) = P ( X I = x l ,  " ' ,  Xr=xr)  
r 

(2.1) = ( -k ) ( ' )0~- ' ]7 (~ , /x ,  !) 

409 
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T F(k+y) p~]-[p~, 

r ( k ) f [  ~, ! '~' 

where 

r 

x~=O, 1, 2, . . . ;  Y = Z  x~ ; 

r 

k>O; 0~<0, i= l ,  2, . . . ,  r, Oo=l--Z 0~>1 ; 
t = l  

p,=l lO,>O,  p,:= -o,/oo>o, i=1 ,  2, . . . ,  ~., ~, p , = l ,  

and a ~ denotes the factorial product a ( a - 1 )  . . .  ( a - b + l ) .  Note tha t  
the first expression is a typical term of the multinomial expansion of 

(2.2) (8o-l-52, 0,)-~=1. 
4 = 1  

The expression (2.1) is formally obtained by a suitable replacement of 
the parameter in the expression of the Mn, 

(2.a) 

The NBn 

P ( X = x )  =m(')p~-"]-[(p:, Ix, !) , 

r 

y=3-1, x~Nm; p~>O, i=O, 1 , . . . ,  r, ~0~=1.  
i = l  t=O 

(2.4) P(X--x)= F(k+x) p~(1--py 
F(k)~! 

is the univariate case of the NMn. 
The probability generating function, the characteristic function, the 

moments, etc. are obtained from those of the Mn by changing the para- 
meter as summarized in Table 1 [27]. See also Table 2 ([23], [24]). This 
suggests that the NMn has the nice properties of the Mn as will be seen 
below. 

Let Jo, J~, " ' ,  J, be mutually disjoint subsets of {1, 2, . - - ,  r}. Then 
the marginal distribution of the partial sums is again the NMn, 

(2.5) P(Z,~X,=y, ,  . . . ,  Zj,X~=y,) 
$ t $ 

r ( k  + Z y,) p~, ]-[ ( Z  Z , ,p , )y ,  
$ g g 

r(k)T[ y. ! (p,+ Z Z J.p,Y§ r ,. 

The conditional distribution of the above partial sums given XJo--Xj o is 
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the NMn, 

(2.6) P(Z+,X~=y~, . . . ,  ~ :  X~=yt I XJ0=x+0) 

=P(Z+,X,=y, . . . ,  Z.,,X,=y~ I Z+oX,=Z+o:~,=y,) 

F(k + ~, y,) (Vo + E+~ ~+~0 ~ (~ ~.v,) ~. 
t t t 

F( k + yo)]-[ y..T (p, + ~. ~ + . ~ , ~  - '~ +.:0 ~ ' ,  

Note tha t  the expectation E(~jX~), u = l ,  . . . ,  r is linear in x/s ,  i e J0 
(cf. Table 1). 

t 

Given ~ ~+X~=y, the conditional distribution of the partial sums 

is the Mn (not the NMn), 

(2.7) 
t 

y l  t t 

~ (z.,.v3 /(~ z+2,) ' .  
V[ y.! 

If X1, .- -, Xn are independent NMn variates with common (Pl, -" ", Pr), 

then ~, X~=x has the NMn with parameter  ( ~  k~; p~, . . . ,  pr). 
l ~ 1  ~=1 

Conversely, for any positive integer n and k~>0, /=1 ,  . . . ,  n, such 

tha t  ~. kt=k, the NMn variate X with (k; pl, . . . ,  p~) can be expressed 

as the sum of independent X / s  with (kt; p,, �9 �9 p~), /=1 ,  - - . ,  n. Thus, 
in particular, the NMn is infinitely divisible. 

The family of NMn's does not  include the joint distribution of r 
independent NBn's. Cor (X~, Xj)->0 when ( i )  p~ and/or p~-->0 (in this 
case, the limit distribution degenerates on the set x~=0 and/or xj=0) ,  
or when (ii) k-->oo (in this case, as we shall see later, the limit distribu- 
tion is the joint distribution of independent Poisson's). Cor (X,  Xj)-~I 
when ( i )  p0-~0 (in this case, E(X~) and V(X,)->oo, l=l,  2, . . . ,  r), or 
when ( i i )  k-+0 (in this case, the limit distribution degenerates on the 
origin). 

3. Models inducing the NMn 

a. Inverse sampling (waiting time) in multiple Bernoulli trials : We 
consider a sequence of independent trials, in each of which the event  

A~ occurs with probability p~ (i=O, 1, 2, . - . ,  r;  ~, p.=l). Let  Xi be the 

frequency of A~ before the kth appearence of A0. Then the distribu- 
tion of (X1, . . - ,  X,) is the NMn. 
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b. Compounding of independent Poisson variates by a gamma dis- 
tr ibution: Let  X~, . . . ,  Xr be independent Poisson variates, 

-re,l( ~ zT: �9 . P(X~=:r,,  . . . ,  Xr=x,.)=l-[  e ( ~ , )  /x,  ' 
( = I  

If the prior distribution of m is a gamma distribution, 

1 / m \~-x (T) 
then 

P(X=x)- F(~ z~Wk) 1 /'(D]-[~,I ( )']7( a~, )', 
l + a Z  2~ l + a ~ .  2i " 

c. Compounding the Mn by the NBn:  Let the parameter  of the 
Mn (2.3) be (n; P0, P ,  " " ,  P,), and let n be distributed as the NBn (2.4) 
with parameter (k, p). Then the compound distribution is the NMn with 
parameter 

1 (1--p)p, (1--p)p, .) 
k; 1--p,(1--p) ' 1 -po( l - -p )  ' " " '  l--po(1--p) 

O < p < l .  

d. Generalization of the Poisson distribution by the " mult ivariate 
logarithmic series distribution ": A multivariate extension of Fisher 's  
logarithmic series is defined by 

(3.1) P(x1=x,, ..., x,= x,) = ~(y-1) t ~ (~,/x,t) 

z~=0,  1, 2, - . . ;  

Po, t),, " " ,  p r>O,  

a = -- 1/log p , >  0 .  

r 

y = ~ .  x~=l,  2, . . . ;  
i = l  

p~=l;  

As will be seen later, this is a limit distribution of the origin-truncated 
NMn, and its probability generat ing function is 

(3.2) - -a  log (1--Z t~p~). 

The generalization of the Poisson distribution with mean m by (3.1) 
has the probability generating function 

(3.3) exp { m ( - - a  log (1--S] t~p~))--l} 
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r 

~-p~ ( 1 - - E  t,p,)-* 

k ~ a . m ,  p~ =e  -~ , 

which is the probability genera t ing  function of the NMn. 
e. Generalization of the NBn by the multi-point distr ibution:  The 

generalization of the NBn with pa ramete r  (k, p) by the generalizer,  ( r +  
1)-point distribution, 

(3.4) P ( X I = x l ,  �9 �9 ", Xr  -~'- .~,~-~- ~,o'-,=~ '~ ~' P~' 
"/=1 

~ = 0 ,  ~ x ,=0 ,  1 ; 

P0, Pl, " " ,  p~>0, ~ p~----1 , 
t = 0  

is the NMn. This process is equivalent  to the compounding stated in ' c '. 
f. Multiple inverse sampling wi thout  replacement:  A lot consists 

of m, n, . - - ,  n~ items belonging to the 0th, the 1st, . - . ,  the r t h  clas- 
ses respectively. The items are  d rawn one by one without  replacement  
until k i tems of the 0th class are  observed. The joint distribution of 
the observed frequencies X ,  . . . ,  X~ of the 1st, . . - ,  the r t h  classes is 

( 3 . 5 )  P(x~=~,, . . . ,  x~=x,)  

x~ m T n - - ( k T y - - 1 )  

_ ( k + y - 1 ) ,  ( r e + n - k - y )  ' m ,  ]-I 
( r e + n )  ! ( k - l )  ! ( m - k )  ! ,=~ x, 

r r 

t : 1  t ~ l  

If  m and n->oo in such a way  tha t  m/(m-Pn)-~po ,  n d ( m + n ) - ~ p ,  i x  
1, 2, . . . ,  r ,  then the distribution (3.5) approaches to the NMn, as the 
problem reduces to the case of model ' a  '. 

r 

g. An urn model: An urn  contains f~, . . . , f i  ( ~ . f i = g )  balls of r 
~ 1  

different colours as well as f0 white  balls. We sample a ball and if it 
is coloured it is replaced with additional c ,  . . . ,  c~ balls of r colours, 

r 

and if i t  is white it  is replaced with additional d = Z  c~ white balls, 
~ 1  

where  c d f ~ - d / g - 1 / k = c o n s t . ,  i = l ,  . . . ,  r .  Let  Xo, X ,  . . . ,  X~ (~,  X ~ = n )  

be the frequencies of the white and the coloured balls in a sequence of 
n such trials. Then 
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P(X,= x,, . . . ,  X ,=~ , )  
XO--1 y--1 f i  

n ! ] [  ( f o + h d )  ]-[ ( g + S d )  (f,/g)~, 
v' n - - 1  

[-[ :~, ! .T[ ( f o + g + l d )  
( = 0  / = 1  

n ! ( f o l d + n - y - I )  ('~-~) 1 
(n - -y )  ! ( (g--F~)/d+n--1)  ~ f [  x, ! 

~ I  

f f f  f, l "  

r 
y = ~  x,, x o + y = n .  

If n and ~/d-->oo in such a way  tha t  n / ( ~ / d + n )  tends to a constant ,  
then 

n ! ( f J d - - F n - y - - 1 )  (n-~) ny( fo /d )  gld 
( n - y ) !  ( (g+ ~ ) / d + n - 1 )  ('~ ( ~ / d + n )  ~+~'d ' 

hence 

P ( X I = x , ,  . . . ,  X , = x , )  ,'- 
r ( k + y - -  1) (~') .:p~ -[[ pf, , 

i = !  

where 

Po-- fo/d P,--  n f i / g  i = l ,  . . .  r - -  ) , , . 

fold + n fo/d + n 

4. Limit distributions and a compound of the NMn 

a. The NMn-~ the independent Poisson ( k - ~ ) :  Another  
sion of the NMn (2.1) is 

(4.1) P(X=x)= r 
/ " ( k ) (k+  N ~,)"+" '=' ~'"  

where 

~,=E(X,)=kpdp,, i=1, . . . ,  r .  

If k-~r keeping ~ ,  . . . ,  p, constant ,  we have 

r 
(4.2) P(X=x) ~ ] 1  e-,, f , / x ,  I .  

expres-  
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b. The or igin- t runcated NMn tends to the mult ivar iate  logar i thmic 
series distr ibution ( k ~ 0 ) :  The or igin- t runcated NMn is defined by 

(4.3) P(X=x)=(1-p~)- '  
r 

r ( y + k )  po~ ]-[ ~ , .  r 

F(k)]-[  x, ! ,=1 
i = 1  

If  k-)0 ,  

F(y + k)/(kF(k))->(y- 1) ! 

kp~ / (1 - p~ )->i/log (i/p0), 

and therefore  

P ( X  = x)  - )  
- - (y - - l )  ! ~ p:'~ 

i = l  

log P0 ]-~[ x~ ! 

which was introduced in the  last  section. 
c. Compounding of the NMn by the mult ivar ia te  beta  dis t r ibut ion : 

The paramete r  (P0, Pl, " " ,  pr) in (2.1) is supposed to be d is t r ibuted  ac- 
cording to the mult ivar ia te  beta  dis tr ibut ion (or the Dirichlet dis t r ibut ion 
[26]), 

(4.4) 
r i ~ p~_, _ 

B(3o, 3- " " ,  3r) TM 

r 

F ( E  3,) 
,=o TT P~,'-~ 

r 

1-It(3,) ~=o 
I1=0 

r 

Po, Pl, "" ,  p,>O, 5-2, p ~ = l  ; 
L=O 

3~ 31, . . - ,  ~ r > 0 .  

The compound is (cf. [16]), 

(4.5) P(X=x)= 
F(y+k) F(.~,,=o 3,)F(k+30 ,=, F(x,+3~) 

r ( k  ~, ~ r ( k + y + ~ ,  3,)]-[r(~,) 

r T 

r (k  + 3,)r(~, P,) (y + k--  1 y,)]-[ (3, + ~ -  1)c~,) 
t ~ O  t = l  

k *" r r 

( + E  3,)tO,) ( y + k + E  3,-1)c' ) ]I  ~,, ! 

The r igh t  hand side of (4.5) can be a probabili ty distr ibution for weaker  
conditions on the parameters ,  and the  distr ibutions may  be called " multi-  
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variate generalized hypergeometric" (see  [14], [20]), which include t h e  

usual multivariate hypergeometric and the multivariate negative hyper- 
geometric distributions as special cases. 

The relations discussed in sections 2 -  4 and later sections are sum- 
marized in Figs. la  and lb.  Note that the parallelism between uni- 
variate and multivariate cases breaks down at a point relating to the NHg. 

multivariate multivariate 
[ logarithmic series ] generalized 

I (multiv.'~ / / 

] / /  I ~ conditional 
" ~ joint of independent t-. X~+...+Xn given 

negative multinomial negative b nom al ~,,~\ , ,, 
I I I l " ~  "",J mu,[ivanate 

- - .  compoo  " 4  
. [ ! compound (gamma) "~- ... (negative binomial) I Y~A'g" " 
K-~oo] ]generalization ""'-..~, [ I c~mpou nd 

[ I  (multiv.iog. ser.) " " ' .  II 
I I  " .  I I  

joint of independent 
Peisson ~ l  ~ n . ~  I multinomial 

(a) 

IoEarithmic series ] i~eneralized hypergeornetricl 

Ol compound I '~'~ 
k~ (betO / / /  

. . . / t  1condition31 
r X,+X. given 

negative binomi ,; ,, ,.j"= " J negative hypergeeme',ri: ] 

I 
t "" ~. .~pounJ , I 
Icom~ound (gamma)'~ (negative binomhl) I I comp~.~n~ 
II~eneraliz,tion " .  I 
dog3rilhmic series) ~ ' ~ ' " ~ . }  I I 

'] . . . . .  I binomial I Poisson ,.,J- n-,~ I I 

- I~miting form 
. . . .  compounding or ~;eneralizatlon 
~ - ~  conditional distribution 

( b )  

Fig. 1 

5 .  I n f e r e n c e  

When the parameter k is a known constant, the distribution (2.1) 
is a Koopman-type distribution or one of multivariate power series 
distributions. For a sample of size n, X1, - . . ,  X,,  the sum of observed 
vectors 
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n 

T=(T, . . . ,  T~)=Z X, 
v = l  

is a complete sufficient statistic, and is again the NMn variate. Un- 
biased estimators based on T have the uniformly minimum variances 
(cf., for example, [18]). 

a. Unbiased estimation (k known):  For a sample of size n from 

(2.1) the unbiased estimator of ]c[ P~ (s,=0, 1, 2, . . . )  based on T is 

T}',)/(T+nk-1) (~), T~_s~ i = 1 ,  .., r, (5.1) v(T)--- ~=]~ 
o 

0,  otherwise, 
T 

where s = ~, s~. 

The unbiased estimator of any parametric function which can be ex- 
panded in a power series of p / s  is obtained by replacing each factor 

]-[ p~, in the series by its estimator (5.1). 

For example, the unbiased estimator of the original probability (2.1) 
is 

{ (Y+k--1)(~)(T--y+(n--1)k-1)cr-')~=,( x, ) '  
~ ( T ) =  (T+nk--1) (r) ~-[ T, T,>=x~ 

0, otherwise. 

b. Maximum likelihood estimation (k known): I t  is easy to see 
that  the ML estimator of ~=(/~1, " " , / ~ ) = E ( X )  is 

n 

~ = ( h .  -- ' ,  h , )= i z x .  
rTb ~ = 1  

and 

(5.2) Var (#J- -  ,u,(k+~) Cov (~,~, : ~ -  ~:~J 
n k  ' ~ ' - ~  " 

ML estimators of other parametric function and their asymptotic var- 
iances are derived from (5.2). 

c. Maximum likelihood est imation (k unknown) : Let  Y, be the sum 
of components of each observation, 

I- 

Y , = ~  X,~ 9=1,  . . . ,  n .  

I t  has the NBn with (k, P0). The log-likelihood function is wri t ten as 
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log L = const + ~ log F(y, + k ) - n  log F(k) 

n 

+nk  log P o + ~  ~, x,~ log p~, 
:*=I ; :=I 

which leads to the likelihood equations 

]~=~ , i=  l,  2, . . . ,  r ,  

and 

Olog L n log  14- q - ~ (  ~ ~ - - . .+  

=__n log( l+____~/+~  ' A .  = 0 ,  
k / ~f f i o  k + m  

where A ,  denotes the number of observed y, which is larger than m ( =  
0, 1, 2, .--) .  The last equation is the same as the ML equation of k of 
the NBn (k, P0) based on Y1,'" ", Y,,. Sequential approximation by 
Newton's method starting from the moment estimate of k approaches 
to the solution rapidly and at the same time gives an estimate of the 
variance of the estimate [7]. 

6. Contingency table 

In this section we consider the contingency table obtained by an 
inverse sampling [22]. Suppose that  in an a • table the (i, 3.) cell has 
the probability P~t ( i=1,  . . . ,  a; 3"=1, . . . ,  b), and that  observations are 
continued until the count of the (1, 1) cell becomes k. As a result of 
such a sampling, the frequency X~ of the (i, 3.) cell ((i, 3.)r 1)) is 
observed. The joint distribution of X~/s is the NMn, 

(6.1) P(X~j=x,j; i = 1 ,  . . . ,  a, 3"=1, . . . ,  b, (i, j ) r  l)) 

where 

~ 

i = 1  j = l  

b 

x . . = Z ~ z , ~  and x u = k .  
~=1 J = l  

Let the row-wise and the column-wise sums be X,. and X.~ respec- 
b 

tively. Then the maximum likelihood estimators of p~j, p , . = ~  p~j and p.~= 
j f f i l  

~,p~ are 
i = 1  
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(6.2) i~,j=X, flX.., i~,.=X,./X.., izj=X.j/X.. . 

Note that  although each of (X1.-k,  X,., . . . ,  X~.) and (X . , - k ,  X.2, . . . ,  
X.,) is an NMn variate, the joint distribution of them is not the NMn 
but a more complicated one, on which we shall not discuss here. Wishart 
[27] treated the distribution under the name "bivar ia te  multimonial 
(Pascal case)"  and Wiid [25] treated its conditional distribution. 

Now the problem is to test the hypothesis of independence H0 : p,j---- 
p,.p.j for all (i, j )  against p~jCp~.p.j for some (i, 3"). The test procedures 
are obtained by the similar argument as that  of Neyman's  in the case 
of usual sampling [17]. First, the likelihood ratio principle leads to the 
critical region 

(6.3) 
a b a b 

2 = 2 ( Z  3-I, X~j log X~j-'~, X~. log X.-32,  X.j log X.j+X.. log X..)>c 
f.ml J 'ml  ~ml  ] ~ 1  

which is formally the same as the test of independence in usual contin- 
gency tables. The test statistic a is distributed asymptotically as the 
Z '~ with d.f. (a--1)(b--1). 

Since the statistic 

(6.4) Q= Z (X,j-kp,j/pn)" (X. .-k/pn) ~ 
(,, ~),(,. ,) kp~j/pn k/p,l 

is distributed asymptotically as Z ~ with d.f. ab-1, another critical region 
is defined by 

Q'= :E (X,j-kX,.X.flXl.X.1)3 (x.._kx.~./x,.x.,), 
2 ,, j),(1, 1) kX,.X.;/X,.X., kX../X1.X.~ 

_ X,.X.I ( ~  X..X5 X..)>s'. 
kX.. X,.X.j 

The asymptotic distributions of Q' and ~ as well as 
in the usual sampling case are the same. 

the test statistics 

I. 

(A.I) 

Appendix 

Negative hypergeometric distribution 

The negative hypergeometrie distribution (NHg) is defined by 

:(o+:_i) 
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_ F(a+b)n ! (a+z- -1)r  ~ 
F(b)F(a+b+n) z t 

z=0 ,  1, 2, . . . ,  n; n : positive integer; a, b>0.  

This is a special case of the generalized hypergeometric distribution 
([14], [19], [20])and has some nice properties contrasted with the hyper- 
geometric, as is stated below. So it deserves the name NHg, which 
was used only by Hopkins [10]. 

The moments of (A.1) are easily obtained by changing the para- 
meters from those of the hypergeometric distribution (Hg) 

z = m a x  (0, n- -N) ,  . . . ,  min (n, M); 

M, N, n : positive integers, n < M + N .  

E(Xr 

pl t 

Hg NBg 

M(,)n(n) (a+r--l)(r)n(,) 

(M+N)(r) (a+b+r--1)(r) 

Mn an 
M + N  a+b 

Mn(Mn--n+N) an(an+n+b) 
(M+N) (M+N--1) 

MNn(M+N--n) 
(M+N)S(M+N--I) 

(a+c) (a+b+l)  

abn(a+b+n) 
(a+b)~.(a+b+l) 

If M, N-~oo, keeping M/(M+N)=p  constant in (A.2), and if a, b--> 
oo, keeping a/(a+b)=p constant in (A.1), then the both distributions 
approach to the binomial 

(A.3) ( n ) 

which has the variance a~=p(1-p) /n .  Note that  /~,<a~ for the Hg, 
while p8>4  for the NHg; these distributions approach to the binomial 
from " t h e  opposite directions." 

Now consider another limit process. If n, N-->oo, keeping n / N = p  
constant in (A.2), the distribution approaches to 

while if n, b ~ ,  keeping n[b=--O>O constant in (A.1), the distribu- 
tion approaches to the NBn 
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This difference is explained by the fact that  (A.2) is invariant under 
the exchange of the parameters (n, N)~-->(M, M-t-N-n), while (A.1) has 
not such symmetry. 

If X~ and X2 be independent Bn (resp. NBn) variates with X~ hav- 
ing parameter (M, p~) in (A.4) ((a, 0.) in (A.5)), then the uniformly 
most powerful unbiased tests for the problems Hi: p~_p, (0~<=0~)against 
Pl>P~ (0~>0~) and ~ : P~-----P2 (0~.=0~) against P~-CP2 (0~r are obtained 
in terms of )(1 given X~--kX2=t ([3] section 8, [15], 140-143). The con- 
ditional distribution for p~=p~ (0~=0~) is 

(A.6) P(X~=~IX~-}-X,=t)=(M~)(t~) / (M~+tM' ) , 

(-o,)(-a, = ) / .  

2. Models inducing the NHg [19] 

a. Inverse sampling without replacement: A lot consists of m ac- 
ceptable items and n defective ones. Suppose that items are drawn at 
random one by one and X defectives are observed before the ath ac- 
ceptable one. Then we have 

(the waiting-time distribution, hypergeometric case, [26]). 

sampling with replacement 

: binomial 

sampling without replacement 

: hypergeometric 

b. Compound binomial : 

by the compounder 

inverse sampling with replacement 

: negative binomial 

inverse sampling without replacement 

: negative hypergeometric 

The compound of the binomial distribution 

( 9'1,)p.rqb-1 
X 

1 p,~-,q~-i 
B(a, b) 

is the NHg (A.1). ([12], [21], etc.). 
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c. Exceedance:  Let  (X1, . - . ,  X=) and (Y1, "" ,  Y,) be two random 
samples from the same population with a continuous distribution func- 
tion, and S be the number  of Y's which are larger  than Xcd), the d~h 
order statistic of (X ,  . . . ,  X,,). Then, 

(A.9) 

(See [5], [8], [19]). 
d. An occupancy problem: If  n indistinguishable balls are placed 

at  random into m cells, then the probability tha t  a group of d pre- 
scribed cells contains a total of exact ly  s balls is 

The exceedances in ' c '  is regarded as the balls which are placed into 
m - d + l  prescribed cells when n indistinguishable balls are placed at  
random into m +  1 cells. 

e. An urn  model : An urn  contains b-c coloured balls and a-e  whi te  
ones. A ball is d rawn at  random and if it is coloured (white) it is replaced 
by additional c coloured (whi te )ones .  Then, in n trials X coloured 
balls will be observed with probability (A.1). (A.1) is called the P61ya 
distribution in relation to this model. 

3. Multivariate negative hypergeometric distribution 

The r -var ia te  NHg is defined as an extension of (A.1), 

r 

( (A.IO) P(X=x)= n - y  ,=~ x, ,=o 

n !  T[ F(a, + x,)F(.~, a~)F(a, +n--y)  
~=1 i = 0  

(n-y)]-[ x, ! F(a,)F(~ a,+n) 
~=1 fffiO *=0  

where 

a~>O, i=O, 1, . . . ,  v; n :  positive integer,  

x , = 0 , 1 , 2 ,  . . . ;  ~ x , = y = 0 , 1 ,  . . . , n .  
i = l  

The factorial moments  are given by 
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r 

, n(')II (a~+s~-  IF ,  ) 
(A.11) E(]-[ X,r = ,~ , s = Z  s , .  

,=t (~, a ~ + s _  1)(,) ~=, 
f=0 

r 
If ao, at, . . . ,  at"--> oo, fixing the ratios a , / ~ a , = p ~  constant,  the limit 

distribution of (A.10) is the Mn (2.3), and if a0, n-~oo, fixing ao/(ao+n)= 
p, then the limit is the joint distribution of independent NBn. 

(A.12) ~[ F(a ,+z , )  #,q~, . 
*=, F(a , )x ,  ! 

Let X0, Xt, . . . ,  Xr be independent variates with X~ having 

F ( a , +  x,) p~,q~,. 
F(a,)x, ! 

Then the conditional distribution of (X,, . . . ,  Xr) given ~. X i = n  is (A.10). 
t=0 

A multivariate extension of inverse sampling without  replacement 
induces the distribution treated in ' f '  of section 3 and not  (A.10). The 
compound of the Mn (2.3) by the multivariate beta distribution 

r 

B(a,,  a,, . . . ,  a~) - ;=o 

is (A.10). (See Ishii and Hayakawa [12]). 
Multivariate extension of the model of exceedance, the occupancy 

problem and the P61ya's urn model are straightforward.  

T H E  INSTITUTE OF STATISTICAL MATHEMATICS 

FACULTY OF ENGINEERING, UNIVERSITY OF TOKYO 
T H E  INSTITUTE OF STATISTICAL MATHEMATICS 

REFERENCES 

[ 1 ] A. M. Adelstein, "Accident proneness: A criticism of the concept based upon an 
analysis of sbunter's accidents," ]. Roy. Sta!ist. Sac., (A), 115 (1952), 354-410. 

[ 21 A. G. Arbous and H. S. Sichel, "New techniques for the analysis of absenteeism 
data," Biometrika, 41 (1954), 77-90. 

[ 31 J. J. Bartko, "The negative binomial distribution: A review of properties and ap- 
plications," The Virginia Journal of Science, 12 (1961), 18-37. 

[ 4 ] G. F. Bates and J. Neyman, "Contributions to the theory of accident proneness, ' I. 
An optimistic model of the correlation between light and severe accidents ' and ' II. 
True or false contagion ' , "  University of  California Publications in Statistics, 1 (1952), 
215-275. 

[ 5 ] B. Epstein, "Tables for the distribution of the number of exceedances," Ann. Math. 
Statist., 25 (1954), 762-768. 

[ 6 ] W. Feller, An Introduction to Probability Theory and its Applications, Vol. 1, 2nd Ed., 
John Wiley, New York, 1957. 



424 MASAAKI SIBUYA, ISAO YOSHIMURA AND RYOICHI SHIMIZU 

[ 7 ] R. A. Fisher, "Note on the efficient fitting of the negative binomial," Biometrics, 9 
(1954), 197-199. 

[ 8 ] E.J.  Gumbel and H. von Schelling, " T h e  distribution of the number of exceedances," 
Ann. Math. Statist., 21 (1950), 247-262. 

[ 9 ] J. Guriand, "Some applications of the negative binomial and other contagious distribu- 
tions," Amer. f .  Pub. Health, 49 (1959), 1388-1399. 

[10] J. W. Hopkins, " A n  instance of negative hypergeometric in practice," Bull. Int. 
Star. Iz~t., 34 (1955), Book 4, 298-306. 

[11] J. O. Irwin, " A  distribution arising in the study of infectious diseases," Biometrika, 
41 (1954), 266-268. 

[12] G. Ishii and R. Hayakawa, "On  the compound binomial distribution," Ann. Inst. 
Stat. Math., 12 (1960), 69-80. 

[13] N. I. Johnson, "Uniqueness of a result in the theory of accidental-proneness," Bio- 
metrika, 44 (1957), 530-531. 

[14] C. D. Kemp and A. W. Kemp, " Generalized hypergeometric distributions," f .  Roy. 
Statist. Soc., (B), 18 (1956), 202-211. 

[15] E. L. Lehmann, Testing Statistical Hypotheses, John Wiley, New York, 1959. 
[16] J. E. Mosimann, " On the compound negative multinomial distribution and correla- 

tions among inversely sampled pollen counts," Biometrika, 50 (1963), 47-54. 
[17] J. Neyman, "Contribution to the theory of the Z 2 test," Proc. Berkeley Symposium on 

Math. Star. and Prob., 1949, 239-273. 
[18] G. P. Patil, "Minimum variance unbiased estimation and certain problems of addi- 

tive number theory," Ann. Math. Statist., 34 (1963), 1050-1055. 
[19] K. Sarkadi, " O n  the distribution of the number of exceedances," Ann. Math. Statist., 

28 (1957), 1021-1023. 
[20] K. Sarkadi, "Generalized hypergeometric distributions," Publications of  the Mathemat- 

ical Institute of  the Hungarian Academy of  Science, 11 (1957), 59-69. 
[21] J. G. Skellam, " A  probability distribution derived from the binomial distribution by 

regarding the probability of success as variable between the sets of trials," f .  Roy. 
Statist. Soc., (B) 10 (1948), 257-261. 

[22] H. S. Steyn, "On  z2-tests for contingency tables of negative multinomial types," 
Statistica Neerlandica, 13 (1959), 433-444. 

[23] I. Yoshimura, " Unified system of cumulant recurrence relations," Rep. Star. Appl. 
Res., JUSE, 11 (1964), 1-8. 

[24] I. Yoshimura, " A  complementary note on the multivariate moment recurrence equa- 
tion," Rep. Star. Appl. Res., fUSE, 11 (1964) 9-12. 

[25] A . J . B .  Wild, " On the moments and regression equations of the fourfold n~gative 
and fourfold negative factorial binomial distributions," Proc. Roy. Soc'. Edin., (A) ,  65 
(1957 58), 29 34. 

[26] S. S. Wilks, Mathematical Statistics, John Wiley, New York, 1962. 
[27] J. Wishart, "Cumulants of multivariate multinomial distributions," Biometrika, 36 

(1949), 47-58. 



NEGATIVE MULTINOMIAL DISTRIBUTION 425 

Table 1 

P . g . f .  

ch.f.  

c .g . f .  

f . m . g . f .  
factorial 
moment 

/ J [ " l  " '"  ~r ] 

s t + . . -  +sr=s  

cumulants 

s 

~-2.. 

s 

s 

g.21.  

K - I l l .  

K.4~176 

s 

s  

s 

s 

NMn (2.1) Mn (2.3) 

in terms of p's in terms of O's 

po*(1--~ p.iO) -z 
.i=~. 

Po* (1 -- ~ #seaj)-~ 
. i=1 

k{(logp0--1og(1--~ P.ieg)} 
. i = l  

( 1 -  ~. P.IO/Po) -~ 

(k+s-1)o)  l-lp?.i/po, 

r 
(1--0o+~ Ojtj)-* 

. /=1 

(1-00+ ~ Oje%) -* 
j=l 

--  k log { 1 --  O0 + N O.ie5} 
. i = l  

(1 -- ~. O.itj) - ~  
.1=1 

(-~)~,)l-Io/.i 
.I=1 

(1--po + ~ o.it.f) '~ 
. i = l  

( 1 -  Oo + ~  Off%)" 

n log { l -p0+  ~ PA t'l} 

(1+ Yl, toO) ,~ 
j = l  

r 
nO) ~ p~.i 

.i=l 

(put ~t=l--Oi) (put vi=l- -pt )  

kPdPo 

kP, (Po + m ) / Po 2 

kp~pj/pd 

kp~ (Po +Pl) (Po + 2p, )/po 3 

kpipj(po + 2p,) /po 3 

-- 2kptpspt/po s 

kpdpo+p~)po -~ 
x (1-6pi(po+pt)po-2) 

kptpjpo -2 
x ( 1 - - 6 p ~ ( p o + p t ) p o - 2 )  

kp~p.i {(P0 +2Pt)(P0 +2p.i) 
+pip~}po -4 

2kp~p.ip~(po+ 3pt) /Pd 

6kpiPlP~pm/po ~ 

-- kO i rip, 

--kOoT, np~** 

kOiOj npipJ 

kOiOj07*--O~) np,pJ(m--p~) 

-- 2kO, ajO~ 2np,pjpz 

-- k0o7, (1--60o7~) nptm (1--6p,m) 

kO iO j(1--60 i ~  ) nmm (1--6mr i ) 

kO~Oj{(~--O~)(~j--O.i) nplpJ{(v~--p~)(vJ--pj) 
+20tO:} + 2p,p.t} 

- -  2kOtO.iOt (71~--20~) 2np~p.fpt (v~--2p~) 

6kO~OjO~O,n 6np~pjp~ 
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Table 2 

Cor(X. x~)= 4p-~p~/(po+pd (p~+pj) = J a - i ~ j  

= qp~t~j/(t.+k) (p,~+k) 
(k+yo)p~ 

n(X~ l Xzo=xJo) =E(XJ I E.roX~=Yo)= (po+E~roP,) 

V(Xj l XJo=XJo) = V(Xj l E..oX,=vo) 
- -  ( k + y o ) P ~ ( P o +  E J o P ~ + P J )  

( P o + ~ i o P ~ ) 2  

recurrence formula for cumulants 

a 
xs  I . . .  s i+ l . . . ~ r = p ~ L  x s  I . . . s~ . . .  Sr 

recurrence formula for moments about a =  (ab . . - ,  a2), which may be a para- 
metric function 

s r ( a ) =  p ,  O~?sl . . .  s t ( a )  } _ (  k.~_~ _ a ~ l ~ s  I . . .  st(a) Its I u o ~ 

r ~a~ 
q ' ~  P i - ~ L  si / t~l  . . .  s j - I  . . .  s t ( a )  

j = l  r 


