TOLERANCE REGIONS FOR A MULTIVARIATE NORMAL
POPULATION*

MINORU SIOTANI

1. Summary and introduction

Suppose X': kx1is a random vector having a k-variate normal distri-
bution with mean vector p: kx1 and positive definite covariance matrix
: kxk, i.e., with density function

(1) F(X)=(2r)" 2|7 exp [“‘—;—(X—ﬂ)'Z'l(X-H)} .

The problem treated here is to construct the tolerance region based on
a sample S=(X,, X, --+, Xy) of size N drawn from this population,
which is a multivariate generalization of the univariate case treated by
Wald and Wolfowitz [19].

The tolerance region under consideration is defined as the region
R(S) such that, for given 7 (1>7>0) and » (1>p>0),

(2) A(S)=P{X e R(S)|S},
(3) P{A(S)zp} =r.

A(S) represents the proportion of the population which R(S) includes
for a particular sample S. This proportion varies from sample to sample.
The requirement (3) for the tolerance region is to guarantee, with the
confidence coefficient y, that the proportion A(S) is greater than or equal
to a preassigned p.

Since we are concerned with a normal population, it is natural to
consider, as R(S), the ellipsoidal region, because the equiprobability sur-
face of the multivariate normal distribution (1) 'is an ellipsoid. More-
over the population tolerance region defined by

(4) R={X: X—pyS(X—p) S 1@} (g=1—p)

has the smallest volume among regions which include proportion p of
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the population, where X3(q) is the upper 100 ¢% point of the chi-square
variate with k degrees of freedom.
The following three cases are considered separately :

(i) g is unknown, 3] is known, (section 2),
(i) X is unknown, z is known, (section 4),
(iii) both g and 3} are unknown, (section 5).

For these cases, # or 3} or both must be replaced by its respective
estimate obtained from the sample S. We use the usual unbiased esti-
mates,

a=l

5;=_11V§ X, and L,=—11V§1 (X.—@)(X.~p), (# is known)

L ﬁ (X,—X)(X,—X), (¢ is unknown).

L=
or N>

Noticing that the ellipsoid obtained by replacing the unknown parame-
ters of (X—p)>)"(X—p) by the corresponding estimates converges in
probability to the ellipsoid in the population as N—oo, we can take our
tolerance region in the form

(4) R(X, CY={X: (X—XyS(X~X)=<CY,
or

(5) R(L,, CY=(X: (X—p)Ls'(X—p)=CT},
or

(6) R(X, L, CY)=[X: (X-X)YL(X-X)<C%,

according to the three cases under consideration, where C'=Cj} y is the
constant, depending on k and N, to be determined so that the require-
ment (3) is satisfied. In this formulation, it is of course necessary that
C? should tend to X(q) as N—co,

In the following sections, A(S) and R(S) in (2) and (3) will be writ-
ten as the function of C? and the statistics which are used in the defini-
tion of the sample ellipsoidal region.

For cases (ii) and (iii), there is a difficulty in constructing the re-
gions satisfying the requirement (3) exactly, which arises from the com-
plexity of the exact density functions of some positive definite quadratic
forms. In section 3, some approximations to the probability function
of the quadratic form are considered, which forces us to modify the
requirement (3).

In section 6, a brief discussion of simultaneous tolerance intervals
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is given by an argument similar to that developed by S. N. Roy and
others. After a short discussion of some distribution theory (section 7),
some charts are given in order to facilitate in the practical use of the
method (section 8).

2. The case when g is unknown but X is known

In this case, the problem is to determine the positive constant C?
which defines the ellipsoidal region

(4) R(X, CY)={X: (X-X)Z(X-X)<C%,
such that the requirement (3) is satisfied for any p. It is easily seen
that, for fixed X, the variable ,
=(X-XyS(X—-X)
= {(X—p)—(X—p}V = (X~ p)—(X—p)}

is distributed according to the noncentral chi-square distribution with
k degrees of freedom with the noncentrality parameter

(7) ?=(X—p) S (X—p) .
Therefore the conditional probability A(S) under a particular sample S,
which is now written as A(X, CY or A(<% C%), is evaluated from

A@, CY=P{X e R(X, C)| X}

( 8 ) o0 T!r c?
= Q-T2 P S yk/2+r—le—u/2dy .
) 0

=0 provp (-—;—-k+r

For fixed C?, A(<}, C?) varies from sample to sample; in other words,
A(z*, C?) is a random variable whose distribution is derived from the
distribution of ¢!. Moreover, for fixed C? A(z* C?) is a continuous and
strictly monotonic decreasing function of z!. Therefore if, for a given
7, 7; is the value such that

(9) Pir=(X—py S (X—pzl =7,
then we have
(10) P{A(F, CYZ A<, CY) =Pr{rig) =7,

since the relation A(z*, C*)=z A(z}, C?) is exactly equivalent to the rela-
tion ’<7}. (Fig. 1.) Hence if, for a preassigned p, we determine C?



138 MINORU SIOTANI

1.00
D P ——— 2_
< 0.953 S e S S P
R e
0.90 T,
d \ Cing —] ~l C,’
\ ~c?=6
085 b
00 7201 0.2 03 - 04 035
r ——— .Cz
Fig. 1. A(z, C?).
satisfying
an Az, CH=p,

which can be done uniquely, C? and therefore the region R(X, C?) ful-
fills the required condition (3).
7} is calculated from

12) rf:lﬁx,:(a), where 5=1—7,

since Nz* has the central chi-square distribution with k degrees of free-
dom. The charts for computing C? by (11) will be prepared in section
8 for k=2 and k=3. It is noted that C? depends on N and tends to
1 (1—p) as N—co.

The above argument is summarized as follows:

The 7 tolerance ellipsoidal region, which contains, with probability
7, at least a proportion p of the k-variate normal population with known
37, 18 the region defined by

(13) R(X, Ch={X: (X-Xys(X-X)sC}},
where C: is given from (11) for =} =_1-\1-r-x,f(1—7’).

3. The opproximation to the probability function of the positive
definite quadratic form

Consider the positive definite quadratic form

(14) Q="Ly+ Lyt o+ 1y,
a, [2 2 a

k

where ¥, -+, ¥ are normally and independently distributed about zero
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with unit variance and 0<a,<a,< --- <a,. The exact and approximate
distributions of @, have been discussed by many authors, for example,
Geisser [1], Gurland ([3], [4]), Grad and Solomon [2], Laurent [6], Pachares
[8], Robbins [10] and Solomon [18]. Recently, Shah and Khatri [17] have
discussed the case when y,, i=1, ---, k, are noncentral normal variates.

Unfortunately, the existing results are not appropriate for the pur-
pose of this paper. Consider the problem of finding a function h(a) of
a;, -+, a; but independent of y¥’s such that

(15) Ply’+ --- +yi<h(a)t}

gives a good approximation to or a close lower bound of the exact value
of P(Q.<t). Moreover it is desired to make the form of h(a) as simple
as possible.

Since ¥+ -+« +¥, is a chi-square variable with k degrees of freedom,
let us put 2’=y?*+ --- +y2. Then the inequalities

(16) P{t’<at} <P@Q: _S_t)_S_P{xk’g(i[ai)vkt}

hold for any positive a’s and for any f. The first inequality is obvious
and the second inequality is the result obtained by Okamoto [7]. The
equality signs hold if and only if all the @, are equal. From the point
of view of the approximation, the lower bound is very poor but, on the
other hand, the upper bound gives quite close values to P(Q.<t) for all
t unless the variation of a,’s is too large, as seen below. Therefore,

k
starting with (T[a;)"*, we seek a desirable h(a). Noticing that among
i=1

k
the elementary symmetric functions, S,(=3la:), S, ---, Si(=T[a:) of a,,
t=1

a;, -, @, we have the Maclaurin inequalities [5],

1/3 1/(k—1)
@ LG (x21)

we try to determine the positive integral values of v and ¢ in

Sl/k % .
(18) ha)=Sy* —S-E—T 1=1,2, - -; 1Sv<k--1.

v
In Tables 1 and 2 numerical results are given for k=2 and 8 respec-
tively. The entries in tables are the values of the following expressions:
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(a) k=2:

1 U a,t
1) Exact: P St:P{ i s }
(I) Exac (@Q:<1) 1+uy+1+uy_1+u

where u=—gi- (1zuz=0).
a..

) k@)= vaa,: P{Esha)) _—.P{ng 1+u 16_?”}

T Vu
@D @)= x/ala({i‘a’> [—2L(ai+%)]
2

P{<h(a)t} = P{x;gz ﬁtu}

10y T+u 14+u
2

TABLE 1. P(Qcs<!) and P{L2gh(a)t} for k=2,

aAV) ha)= vaz,(*"i'a? ) Piish@y =Plag 4/e @i ]
o+

e et o e e ¢ —— S

‘ !2104!06;08;1011.5’20 3.0%4.0‘5.0
L o | | i

‘at/ 1+ %)

\ .
(1) 01836033310454805540063500778108646094900980609925
0.7 (II) 0.1839 0.3339 0.4564 0.5564 0.6379 0.7821 0.8689 0.9525 0.9828 0.9938
(m) o. 1813 0. 3297 0.4512 0.5507 0.6321 0.7769 0.8647 0.9503 0.9817 0.9933
(v) : | - 0.6263 0.7716 0.8603 0.9478 0.9805 0.9927

(I) 01900034220464405628064230781108642094600977709906

0.5 - (I) |0.1911 0.3458 0.4708 0.5720 0.6537 0. 7963 0.8801 0.9585 0.9856 0.9950
; (m) |0.1813 0. 3297 0.4512 0.5507 0.6321 0.7769 0.8647 0.9503 0.9817 0.9933
(IV) | i 0 6105 0.7569' 0.8483 0. 9409 0. 9770 0.9910

(D ‘o, 2066| 0.3649 0.4873 0.5824 0.6583 0. 7:362I 0.8619 0.9391 0. 9719 0.9867

0.3 () 0.2113 0.3779 0.5094 0.6130 0.6948 0.8314 0.9068 0.9716 0.9913 0.9974
(I) ©0.1813 0.3297 0.4512 0.5507 0.6321 0.7769 0.8647 0.9503 0.9817 0.9933

W | j ’ ! 0.5526 0.7175 0.7999 0.9202 0.9656 0.9852

(b) k=3:

1) Exact: P{O,< ={ e -
(I) Exac =t} =P u+w+uwyl+ u+w+uwy§

ww = wa,t }
utwtuw - wtwtuw )’

where =% and w=9% (1zwz=uz=0).
a/s as



TOLERANCE REGIONS FOR A MULTIVARIATE NORMAL POPULATION 141

TABLE 2. P(Q:<t) and P{G3<h(a)t} for k=3.

. warkf(u-w-+uw) ] . l
\\\ 0.2 04 06 0.8 1.0 1.6 2.0 24 30 4.0 5.0
% i i

A

. -

- .
w
w. o~ LT

(I) o 10520 24990 38830.50930.61070.81300.88760.93300.9695 0. 99190 9979
lo.71 (I ‘0.1055.0.2509‘0.39040.51240.61460.81810.89230.93700.97230.99320.9983
! (1) 'jO.1036‘0.24700.38510.50640.60840.81300.88840.93420.97070.99260.9982

0.7 (IV) 1 f '0 60110.80690.88370.93080.96880.99200.9980

! (I) 0.10510.24970.38810.50910.61040.81320.88770.93320.9696 0. 99190 9979
0_9[ (m) o. 10520 25030.38960.51150.61360.81730.89170.93660.97200.9931 0.9983
(m 0.10360.24700.38510.50640.6084 0.81300.88840.93420.97070.9926 0.9982

m [ ] ! i 0.60360.80900.88530.93200.9694.0.99220.9980

(I) 0. 10840 2556’0 39460. 51490 61490 81300 88590 93070 96730. 99070 9973
0.6 (o) 0.10930. 25890 40110 52460.62710.82810.89980.94240.97530.9941 0.9986
(H) 0.10360.24700.38510. 5064 0.60840.81300. 88840 93420.97070.9926 0.9982

|
|
(IV) ; } | 0 58580.79400.87360.92340.96440.99040.9975
N
|

(I) 0 10890 25650.39600. 51640 61640 81370.88600. 93030 96570 99010 9970
0.5 0.8 (I 0 1096.0. 25960.40210. 52560 62820.82900.90050.94280.97550.99420.9987
(1) 0 10360 24700 38510.50640.60840.81300.88840.93420.9707 0.9926 0.9982

(IV) | ; ; ' 0 59150.79880.87740.92620.96610.99100.9977

(I) 0. 11060 25980 39980. 52010 61940 81420 88540. 92910 96520 98910 9965
¢ (I) 0.11160.2637,0.40760. 53190.63450.83390.90420.94540.97690.9947 0.9988
’ () 0.10360. 24700 38510.50640.60840.81300.88840.93420.97070.9926 0.9982
i

(V) i ! ! 0 58950 79710.87610.92520.95550. 99080 9976

(1) 0.11770. 27140 41060 52810 62420 81210 88"00 92630 96390. 98840 9962
0.4 (I) (0.12080. 28230 43220.55920.66200.85480.91940.95580.98230. 99630 9992
() p. 10360.24700.38510. 50640 60840.81300.88840.93420. 97070 99260 9982

0 53430.74770.83590.89450. 94640 98320 9948

!
|
!

E

(1) p. 1188;0 27430.41520. 53340 62940.81450.88230.92410. 96310 98660 9952

0.6 (m) 0. 12150 2839|0 43430 56150.6644 0.85650.92060.95660. 98280 99640 9993
0. 3851‘0.50640 6084 0.81300.88840.93420. 97070 9926 0.9982

!
(I 0.1060.2470 : ‘
) l | 0.55850.76990.85430.9091 0.95560.98700.. 9963
!
|

(I) 0.12180. 28040 42300 54130 63630.81610. 88140 92250.95900.98480.9941

0.8l (I D. 12540, .29160. 44400 572510 .67520.86440.92620.96030.98460.99690.9994
() [0.10360.24700. 38510. 50640.60840.81300. 88840.93420.97070.99260.9982
av) i [ o 56570.77640. 85960 91280. 95800 9879|0 .9966
(1) o. 1257;0 28600. 4306;0 54860.64230.81660.87950.91980.95650. 9833;0.9954
Lo| (T [0.13010.30110. 4566‘0 .58570.68830.87350.93250.96440.98660.99750.9995

| {
() 1{0.10360. 24700 38510. 5064‘0 60840.81300. 88840 93420. 9707;0 9926/0.9982
| |
) ' ! i '0 56350 77440. 85800 91160. 9573{0 9877{0.9965
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- Vs . 2 —_ 1 UtWwWHuUw wa,t
(II) Rha)=(a,3,05)"" : P{i<h(a)t} =P {ng (ww)” u+w+uw }
— v (2,0405)"" ' f1/1 1 1AL
(D) (@)= (maa)] 7 Mﬂﬁ@ﬁﬁﬁ] =[L{( s )]

P{ti<h(a)t} =P{x;§3._ﬁ%}

= 3, (210,09 ! —_ 9aa,a,
IV) ha)=(a,0:0,)" [(1/3)(0'1 Fant as)] @+ a,+a) :

P{i<h t=P{Z§ gutwtuw _ wat }
{Xi<h(a)t} < Crniny  ahwrow

As seen in the following sections, we are concerned with the upper part
of the range of P(Q.<t)(=p=0.8 or 0.9, say), and we are looking for
an h(a), such that P{X:<h(a)t} is smaller than, but not so rough or
approximately equal to P(Q.<t). From this point of view and from the
inspeetion of Tables 1 and 2, it is seen that

(19) h@)=(a, -+ ayr{ @@ T g 3
et - +a)
satisfies our requirements unless u=a;/a, is too small. A similar ex-
amination could be carried out for k=4, if necessary, but this would
be quite laborious.
Now we shall return to the problem of the construection of the tol-
erance region.

4. The case when u is known but 3} is unknown

Using the unbiased estimate L, of 37, we want to determine the
value of C? so that the ellipsoidal region

(5) R(L,, C)={X: (X—pyLi'(X—p)=C’}

has the required property. However, the exact treatment is very com-
plicated in this case and some modification or approximation will be used.

It is well known in the theory of matrices that for two positive
definite matrices 3} and L, (L, is positive definite with probability one),
there exists a nonsingular matrix T such that

(20) TXT=I and TLT' =D,=diag(dy, -, 4u),
where 0< 4, S -+ S4a< oo are the roots of the determinantal equa-
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tion | Ly—2,3]| =0. Using this matrix T, make the transformation
(21) Y=T(X—p) and T(Xa—p)=Ya, a=1, ---, N
Then

(X—py L' (X—p)=Y'D3'Y

(22) S TR DU S
P Yi+ P Y+ + ™ Yic
where y,, -+, ¥. are now mutually independent and are normally dis-

tributed with 0 mean and unit variance.
Consider the explicit evaluation of

A(S)=A(L,, C*)=P,{X € R(L,, C*)| L}

(29) =P [ttt o AR SC A=, o, A
201 102 201:

=A(4, CY).

This is of the same form as P(Q.<t) of the last section, and the com-
plexity of the 4,’s in the exact or approximate expressions of A(4,, C?
is such that an evaluation of P{A(4, C)=p} is untractable. In order
to solve our problem, even if approximate, let us consider the replace-
ment of A(4, C*) by B(k(4,), C*), which is an abbreviated notation of
the form

(24) Plyi+ -+ +9’ShA)C | 4} =P{L <h(2)C [ 4} ,

and let us assume for a moment that we can find a h(2,) such that for
any fixed 2, A(4, C*) is closely bounded below by B(h(1,), C?) for all C?
or at least for all C* which gives A(4,, C*) the value greater than or
equal to a preassigned p. In this case we can determine the tolerance
region with the confidence coefficient greater than or equal to a given
T based on B(h(i,), C%).

n(apc?

1 yk/z—le-y/z dy .

(25) B(h(2,), c')=WSO

This varies from sample to sample, in other words, varies by sampling
fluctuations in 2, or h(4,). For a fixed C?, B(h(1,), C?) is a continuous
and strictly increasing function of h(). Therefore, if we determine A,
such that

(26) P{h(d)zh} =T,
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and then determine Cj satisfying
B(k,, C)=p,

ie.,
27 i=%(q)/h, , where ¢=1-p,
we have
P{B(h(2), C3)2B(h,, C3)}=P{B(h(4), C})=p}
=P{h(2)zh}=7.
Since
(28) P{A(&, C)zp} 2 P{B(h(4), CHzp} =7,

the ellipsoidal region determined by C? thus obtained, i.e.,
(29) R(L,, C)={X: (X—p)'Li'(X—p)<Ci},

is the tolerance ellipsoidal region with the confidence coefficient =7.
Now we shall consider the assumption made on the function h(1,).
Unfortunately the author has not succeeded in finding such a h(2,) ex-
cept the ones which give rough lower bounds of A(4, C* and hence re-
sult in significantly larger regions than exact one. For example, A,
the smallest characteristic root of L,> !, causes a great loss. However,
if we allow h(2,) to be reasonable such that even if B(h(4,), C*) is greater
than A(4,, C*) for some range of C*, the excess is so small that B(k(2,), C?)
can be regarded as a good approximation to A(4, C?) for these C? we
could find such a function and treat the problem. In fact, we have
prepared in the last section (with the replacement of a,’s there by 2,’s)

(201 i Zok)llk ], (k=2, 3)
(Zox‘l' ctt +20k)

(30) B = (o -+ 2| -

&

as a reasonable function for our aim.* If h(2,) like (80) are necessary
for k=4, similar trials as the cases of k=2 and 3 will be done. Using

* In the last section, (30) has desired properties unless #=21/dex is too small. But
each of A1, *++, dox, the roots of LyY,~! tends to 1 in probability as N-+oc and so for a
sufficiently large sample, it is expected with high probability that « is not too small. For
k=2, the following data are obtained.

o N 21 31 a1 | 5 61 81 101

T~

P(uz0.3) 0.96742 | 0.99412 | 0.99894 ; 0.99981 | 0.99997 | 1.00000 | 1.00000
P(uz0.2) 0.99720 | 0.99985 , 0.99999 | 1.00000 | 1.00000 | 1.00000 | 1.00000

—
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these h(4,)’s, we can go through from (25) to (29) without any change
except the replacement of ‘ =’ in the middle of (28) by ¢ =’ which is
the notation for the statement, “ greater than or approximately equal
to”.

The above arguments are summarized as follows:

The region R(L,, Ci) in (29) is a tolerance region that contains at
least proportion p of a k-variate normal population with known mean
u# and unknown covariance matriz, >.. C3 1is given by Ci=X (q)/h,, (¢=
1—p), and h, is the lower (1—7) point of the distribution of h(2,), which
18 a function of Aoy, -+ - Au, the characteristic roots of L, ™', chosen prop-
erly for the problem. If h(4,) can be chosen (though it failed to be found
here) so that B(h(2,), C°)<A(%, C°) holds for all 2, and C*, the confidence
coefficient of the region is =7. If h(4,) is a function like (30), the con-
fidence coefficient of the region is Z=T.

It is noted that, for h(1,) in (80), Ci—>X.(q) as N—>oo since each of
Ay, *+, 4y tends to 1 in probability and hence plim h,=1.

Yoo

5. The case when both # and 3 are unknown

It is ordinary in practical applications that both g and 3] are un-

known and must be estimated from a sample. Using X and L, the
region to be determined is (6), i.e.,

R(X L, CY={X: X—-XYL(X-X)<CY.

In the canonical form, this ean be expressed with standard normal variates
as

(32) R(T, 1, CY=(Y: (Y-TY)YD;(Y-T)<CY,

where Y, Y.s are N(O, I)-variates, Y’:%r_i Y., D,=diag(d, - - -, 4),

a=1

with 0<A4 4 - £4.<oo and the A’s are the roots of the determi-
nantal equation in 1

(33) |L—2331=0.
Then

— Entries are easily calculated from the cumulative distribution function F(#) of #,
w(N-1)/
A+w)¥-1

For k=3, the comparable data has not been calculated because of the complexity of the
cumulative distribution function of 2¢1/2s.

(31) F(u)=2N~-1 (12u=0) .
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AS)=A(Y, 2, CY=P{Yec R, 2, CH|Y, 2}

(34) PL(Y- Tyt -+ (n-TrsC 7, 4.
Now set
(35) Glp, Ch=P(A(T, 3, Chzp}

and denote its conditional probability for a particular value of ¥ by
G(p, C*|Y). Then

G(p, C)=E7 {G(p, C*| Y)}
_ 1\,1:/2(2,,.,)--1/28°°

" 6o, 117y exo {—%Nf"f’}df’, e d¥.

We consider the approximation of G(p, C*) by expanding G(p, C*|Y) in

a Taylor series and taking expectations. Since Y is distributed sym-
metrically about O and each principal axis of the ellipsoid under con-
sideration is parallel to the corresponding y-axis of coordinates, it is

clear that G(p, C*|Y) is an even function of each component of Y.
Hence, in the expansion of G(p, C*|Y) in a power series of components

of Y, only even powers will occur. Accordingly the Taylor expansion
about O is

"7)= 10) +-L31 719G

6v, C'1T)=Glp, €°10) + L 5T 28
(36) 1 s O'G Y’Y’ ‘G
+ {MY 7 5 +a3) era b+ oo

where all the derivatives are evaluated at ¥Y=0. Taking expectations,
we obtain

Glp, CY=G(p, C*|0)+1- 5 T&

2N i=13Y?
(37) 1 k a!G k a‘G
5 2 oG ,
e o TS ITRT +

since Y has the distribution N <O, —%/,—I ) On comparing (36) with (87),

we see that if in (36) we set ¥;= x/}\_f- (t=1, .-, k) (36) becomes iden-

tical with (87) except for terms involving the second and higher powers
of 1/N. Then for moderately large N we have the approximation
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(38) G(p, C)=G(p, C*

\

lev ).

where e is the column vector whose components are all unity.
Thus for moderate N, we need only consider

A(Jl e 1, c=>=P{L(yl_L)’+

\vN 4 x/ﬁ
(39) .
+—21k—(yk— J}N )'sc1d

instead of A(Y, 2, C?) in (34) and consider the determination of C* satis-
fying this requirement. However, there is the similar complicated situa-
tion as in the last section in the explicit evaluation of (39), which is
due to variations in A=(4,, - -+, 4). This forces us to make the analogous
modification of (39) as made for A(4, C?), i.e., to replace (39) by

B(r'(3), C’)=P{(y1—1/—_1ﬁ—>z+ +(yk- ‘/lﬁ )'gh'(z)C’lz}
=P{X, sh'@)C*|2} ,

(40)

where X is a noncentral chi-square variate with k degrees of freedom
and with noncentrality parameter

=l A

and A/(2) is a function of 2, ---, 4, chosen in a manner similar to that
of the last section. The only point of difference from the last section
is that ¥{* here is noncentral instead of central. However, since we are
considering the case of large N, the effect of noncentrality, ¢’=k/N, on
the selection of h’(2) will be so small that we can safely take h’(2) of
the same form as h(4,) in the central case. Especially, for k=2 and 3,
we could use

(42) W)=, + -+ L)V : (A - 2)VF ? k=2, 3).
S (A - +A)
k
If we have a close lower bound of A< ‘/lﬁ e, 2, C’) for all 2 and C?, we

of course use it as B(h'(2), C%).
Using Ah'(2) chosen in this manner, we can construct a tolerance
region with confidence coefficient, 27, a preassigned value. We have
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43) BH®QM), Ch=e""3) ¥

P T Y e dy.
gt (ki)

Sh'u)c’ E/2+i-1 —y/2

0

As in the last section, we first calculate k] for a given 7 such that

(44) PiW@Qzh}=r,

and then determine C:? from

(43) Bk, C)=1p,

ie.,

(46) '=X?(q)/h., where g=1—p.

Then, for a sufficiently large sample,
PIA, 4 Czr) =P{A(—kee, 2, C1) 28]
VN

2 P{B(k'(2), C})2p}
2 P{B(W(), C)zB(h,, C}
=P{WQ)zh}=r.

Accordingly the following conclusion is obtained :
For sufficiently large sample, the ellipsoidal region determined by

3, R(Y, 4, C3) and hence
(47 RZX, L, C)={X: (X—-X)YL '(X—X)sC3}

18 a tolerance region, with the confidence coefficient =y, that contains at
least a proportion p of a k-variate normal population with unknown mean
and with wunknown covariance matriz, 3. C3 is calculated from (46),
where h! is the lower (1—y) point of the distribution of h'(2), which 1is
a function of 2,, - -, A&, the characteristic roots of L>~!, chosen properly
Jor the problem.

It is easily seen that when A’(2) in (42) is used, Ci—%,*(q) as N—>co,
since ¢*->0 and h/—>1 in probability as N-—>co.

6. Simultaneous tolerance intervals

The development by Roy, Bose and others in a series of papers ({11],
[12], [18], [14], [15] and ]16]) for obtaining simultaneous confidence intervals
can be made for the tolerance statement. Denoting any nonnull k-dimen-
sional non-stochastic vector by a, we shall consider the determination of
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a set of the simultaneous tolerance intervals

(48) RJ X, L, d)={X: o’ X—[da'La]"*<a'X<a'X+[d’a’ La]"?}
such that for given p and y (1>p, r>0),

(49) A(X, L,d)=P{XeR(X, L, d)|X, L},

(50) P{AX, L, d)=p; for all a} =7.

It is easily seen that the statement A X, L, d)=p for all a, is equiva-
lent to the statement inf A,(X, L, d®)=p and since

inf AJ(X, L, d")=inf P{X ¢ R.(X, L, d)| X, L}

_1an{MSdIX L}

( IL )1/2
s d(X=X)X-X)a _
=inf P{ I <d'| X, L}
>P{sup CX—X)X-X)a g % L}
a'La

=P{(X—X')'L“(X——X)§d’ | X, L}
=A(X, L, dY),

we have

(51) Plinf A(X, L, d)zp} zP{A(X, L, d)=p}.

Consequently, the problem of determining the value of d* so that the
simultaneous confidence coefficient is greater than or equal to y is the
same one as in section 5. But the solution which gives the coefficient
exactly equal to y could not be obtained there, and some modification
has been made, namely, =r has been replaced by =7. If, with the
same modification, C? is used as d* in (48), we can have a set of simul-
taneous tolerance intervals (48) for all nonnull a, each of which contains
at least a proportion p of a normal population N(a’y, a’>a), (¢, X are
unknown) and these intervals have the simultaneous confidence coefficient
>7. When we know a priori either p or 3I, obvious modifications of
the above argument are necessary.

7. Note on the distributions of k(1) and hA'(3)

In order to carry out the practical work when Y is unknown, i.e.,
to calculate C? in (27) and C} in (46), we must evaluate k. and A/ for
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a given y. At the present time, we have A(,) in (30) and A'(2) in (42)
as feasible for k=2 and 3. h(1,) and A'(2) for k=4 may be obtained by
the same procedure as stated in section 3, i.e., in (18). In these cases
they appear as functions of the elementary symmetric functions of the
characteristic roots of L,> ! or L3 ™', Therefore in order to evaluate
h, and k! for a given y, and hence in order to obtain the distribution
of h(1,) and Rh'(2), the joint distributions of these elementary symmetric
functions are necessary. Unfortunately, the domains with positive joint
densities are so complicated that we cannot evaluate the probability
functions of k() and A’(2) explicitly except for k=2.

Thus let us consider in this section the evaluation of k, and A only
for k=2. To treat these simultaneously, let 4, and 4, (0<6,<8,) be the
roots of

(52) |W—62|=0,

where nW is a Wishart matrix with # degrees of freedom. For sec-
tion 4, W, n, 6,(i=1, 2) correspond to L,, N, 4, and for section 5, to
L, N—1, 2,, respectively and consider the distribution of the statistic

_ 468)"
53 =.2\N%)
°2) HO= - oy

The joint distribution of 4, and 8, has the density function

54)  f(6, az)=4—”—:3_—17(0102)“-me—"“x“ﬂ“(o,—ex) 0<6,<0,) .

Making the transformations

(54) S1 = 01 + 02 and Sg = 0102 )
we have

55 = n* (n—3)/2 =S, /2
(55) F(Su S)=grie Sy,

since dS,dS,=(0,—6,)d8,df;. The domain is S?—4S,=0 or oo>~‘iigS, =0.
We transform (55) into the joint density function of H and S, by

S
H=4-*%_
St

and after this, we integrate out S,. Since the domain of the joint dis-
tribution of H and S, is c0>S,=2H>0, the density function of H is
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66)  fED=—lo HO| 20057 (o> HE0).

The probability integral for H can be evaluated in the following ‘man-
ner.

n("—l)/fi
3r'(n—1)

_ n(n‘l)/3
T 8r(n—1)

P(H>H¥*)= S:‘ ch—o/sS: Zen+0s-1g-24 74 I

Sw Z(2n+l)/3—le—ZSZ/n H(n—l)/adeZ
nH* K

f&d

n(n"l)/3
I'(n)

N i
nH*

—_ . H*(n—l)/as
I'(n)

Zenvn-lg-2d 7
L ]

nH
Using the notation I,(v) for the incomplete gamma function [9],

ren-| z-e-zaz,
we have
P(H<H*)=1—P(H>H*)

(57) =L () +-L- {(2n+r1()£}n(n_% Hx=05{1— L (20 +1)/3)} .

8. Charts for the practical use

To construct the tolerance ellipsoidal regions under the situations
in sections 2 and 5, we have to calculate the upper g=1—p point of
the noncentral chi-square distribution with %k degrees of freedom and
with a given value of the noncentrality parameter. Denoting the den-
sity function of the noncentral chi-square distribution by f(xZ; ¢%, i.e.,

£ h=erns & ! (Y-,
=gl 2~/2+fr(_;_k+j)

we give, for practical convenience, the charts of the relation between
X2(g) and ¢! satisfying

z '3 q
9 [ o prarz=p,

in Figs. 2a¢ and 2b for k=2, 8 and p=0.900, 0.925, 0.950, 0.975, 0.990.
Curves for the indicated range of ¢* are almost straight lines. For
section 2, ¢! here corresponds to ? there and X{*(g) here to C} there and
for section 5, ¢! corresponds to ¢’=Fk/N there and x{(a) to h/C? there.
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