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1. Summary and introduction 

Suppose X:  k x 1 is a random vector having a k-variate normal distri- 
bution with mean vector/~: k x 1 and positive definite covariance matrix 
5-I,: k x k ,  i.e., with density function 

( 1 ) f(X)=(2rO-k/~J ~,I -~/~ exp {---~-(X--p)'~,-~(X--/~)} o 

The problem treated here is to construct the tolerance region based on 
a sample S=-(X1, Xs, . . . ,  X~) of size N drawn from this population, 
which is a multivariate generalization of the univariate case treated by 
Wald and Wolfowitz [19]. 

The tolerance region under consideration is defined as the region 
R(S) such that, for given r ( l > r > 0 )  and p( l~>p~0),  

( 2 ) A ( S ) = P { X e  R(S)IS} ,  

( 3 ) P[A(S)~_p] =T. 

A(S) represents the proportion of the population which R(S) includes 
for a particular sample S. This proportion varies from sample to sample. 
The requirement (3) for the tolerance region is to guarantee, with the 
confidence coefficient r, that  the proportion A(S) is greater than or equal 
to a preassigned p. 

Since we are concerned with a normal population, i t  is natural to 
consider, as R(S), the ellipsoidal region, because the equiprobability sur- 
face of the multivariate normal distribution (1) i s  an ellipsoid. More- 
over the population tolerance region defined by 

( 4 ) Ro-  [X: (X- t~) 'Z- ' (X- t~)  ~_ Z:(q)} (q=l--p)  

has the smallest volume among regions which include proportion p of 
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the population, where Z:(q) is the upper 100 q% point of the chi-square 
variate with k degrees of freedom. 

The following three cases are considered separately: 

( i )  p is unknown, ~ is known, (section 2), 
(ii) ~ is unknown, p is known, (section 4), 
(iii) both p and ~ are unknown, (section 5). 

For these cases, p or ~ or both must be replaced by its respective 
estimate obtained from the sample S. We use the usual unbiased esti- 
mates, 

- I ~' _ _ I  ~ X = . - - ~  X,, and Lo---~-~ (X.--l~)(X.--,u)', (t~ is known) 

1 ~(X.-- .X)(X.--fO',  (,u is unknown).  or L= N--1 = 

Noticing that  the ellipsoid obtained by replacing the unknown parame- 
ters of (X-~) '~,-I(X-p) by the corresponding estimates converges in 
probability to the ellipsoid in the population as N-~co, we can take our 
tolerance region in the form 

(4) 
o r  

(5) 

o r  

(6) 

R(2, C')- {X: 

R(L,, C')~ {X: (X--/~)'Lg'(X-p)~_ C'} , 

R(X, L, C')- [X: (X-2)'L-'(X-2)<C'} , 

according to the three cases under consideration, where C' -C  2 =  ~.~ is the 
constant, depending on k and N, to be determined so that  the require- 
ment (3) is satisfied. In this formulation, it is of course necessary that  
C' should tend to X~2(q) as N-~oo. 

In the following sections, A(S) and R(S) in (2) and (3) will be writ- 
ten as the function of C ' and the statistics which are used in the defini- 
tion of the sample eUipsoidal region. 

For cases (ii) and (iii), there is a difficulty in constructing the re- 
gions satisfying the requirement (3) exactly, which arises from the com- 
plexity of the exact density functions of some positive definite quadratic 
forms. In section 3, some approximations to the probability function 
of the quadratic form are considered, which forces us to modify the 
requirement (3). 

In section 6, a brief discussion of simultaneous tolerance intervals 
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is given by an argument similar to that  developed by S. N. Roy and 
others. After a short discussion of some distribution theory (section 7), 
some charts are given in order to facilitate in the practical use of the 
method (section 8). 

2. The case when p is unknown but ~ is known 

In this case, the problem is to determine the positive constant C ~ 
which defines the ellipsoidal region 

( 4 ) R(X, C')= {X: (X-2:)'E-'(X-2)~_C'}, 
such that the requirement (3) is satisfied for any p. It is easily seen 

that, for fixed X, the variable 

z ' : = ( X - R ) ' E - ' ( X - 2 )  

= {(x- t) - (2- ~)} '•-1 {(x- t) - (2- ~)} 

is distributed according to the noncentral chi-square distribution with 
k degrees of freedom with the noncentrality parameter 

( 7 ) ~'= (2--~)':E-1(2--~). 

Therefore the conditional probability A(S) under a particular sample S, 

which is now written as A(X, C ~) or A(v ', C'), is evaluated from 

A(v', C')--P{Xe R(ff, C')IX} 

(8) 
~ = 0  r'r I$ 'y'/'+r-'e-'/2dy" 

For fixed C 2, A(r s, C 2) varies from, sample to sample; in other words, 
A(r', C ' ) i s  a random variable whose distribution is derived from the 
distribution of r t  Moreover, for fixed C 2, A(r', C') is a continuous and 
strictly monotonic decreasing function of r t  Therefore if, for a given 
7, r'r is the value such that  

(9) 

then we have 

(10) 

P [r 2 -  ( X -  p ) ' Z - ' ( X -  p) _~ 4} = 7,  

P[A(r', C2)>=A(v' r, C')} - P r  {r'_~r~} = 7,  

since the relation A(r', C'):>A(r', C') is exactly equivalent to the rela- 
tion r ' _ ~ .  (Fig. 1.) Hence if, for a preassigned p, we determine C; 
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Fig. 1. A(r~, C~). 

satisfying 

(11) A(v~, C~)=p, 

which can be done uniquely, C~ and therefore the region R(X, C~) ful- 
fills the required condition (3). 

r~ is calculated from 

r,~= _l_z2(~), where 5 = l - r ,  (12) 
2 J  

since Nc ~ has the central chi-square distribution with k degrees of free- 
dom. The charts for computing CI by (11) will be prepared in section 
8 for k=2 and k - 3 .  It is noted that  CI depends on N and tends to 
Z:(1--p) as N-->oo. 

The above argument is summarized as follows: 
The T tolerance dlipsoidal region, which contains, with probability 

T, at least a proportion p of the k-variate normal population with known 
~ ,  is the region defined by 

(13) R(2, C',)- {X : (X-X) '~ - ' (X-R)_~C: }  , 

where C~ is given from (11) for v~=-~NX,"(1-7). 

3. The approximation to the probability function of the positive 
definite quadratic form 

Consider the positive definite quadratic form 

(14) Q ~ = ! y l + !  X +  . . .  + ! y~, a~ a~ ae 

where Yl, " " ,  Y, are normally and independently distributed about zero 
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with unit  variance and O<a~<=a~_ . . .  <=a~. The exact and approximate 
distributions of Q~ have been discussed by many authors, for example, 
Geisser [1], Gurland ([3], [4]), Grad and Solomon [2], Laurent  [6], Pachares 
[8], Robbins [10] and Solomon [18]. Recently, Shah and Khatri  [17] have 
discussed the case when y~, i = 1 ,  . . - ,  k, are noncentral normal variates. 

Unfortunately,  the existing results are not appropriate for the pur- 
pose of this paper. Consider the problem of finding a function h(a) of 
a~, . . . ,  a~ but  independent of y 's  such tha t  

(15) P [ y , '  + . . . -FyJ<=h(a)$} 

gives a good approximation to or a close lower bound of the exact value 
of P(Q~$) .  Moreover it is desired to make the form of h(a) as simple 
as possible. 

Since y,~-}- . . .  +y2  is a chi-square variable with k degrees of freedom, 
let us put  Z~-y~ '+ . . .  +y~.  Then the inequalities 

k 

(16) P [z,,' _ a~t} _ P(Q~ < t) ~ P {Z,,' =< ([[a~)'/'~t} 

hold for any positive a's and for any t. The first inequality is obvious 
and the second inequality is the result obtained by Okamoto [7]. The 
equality signs hold if and only if all the as are equal. From the point 
of view of the approximation, the lower bound is very poor but, on the 
other hand, the upper bound gives quite close values to P ( Q ~ $ )  for all 
t unless the variation of a~'s is too large, as seen below. Therefore, 

s tar t ing with (T[a~) '/*, we seek a desirable h(a). Noticing tha t  among 
I:=1 

k 

the elementary symmetric functions, $1( = ~a~), $2, . . . ,  Sk( = ~a~) of al, 
1:=1 

a~, . - - ,  a~, we have the Maclaurin inequalities [5], 

(17) 

we t ry  to determine the positive integral values of 2, and i in 

(18) hr  -S,M SE 
"-'/r / 

i = 1 ,  2, . . . ;  l ~ u ~ k - 1 .  

In Tables 1 and 2 numerical results are given for k = 2  and 8 respec- 
tively. The entries in tables are the values of the following expressions : 
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(a) k=2 : 

( I )  Exact :  f 1 alt p(Q, Kt) = P  y~+ ~ y]K 
- -  ( l + u  l + u  - -  l + u ;  ' 

where u =  al ( l_u>~0) .  
as .  

(II) h(a)=  ~/a--~,: P{Z~gh(a)t} =PtZ~K l + u  a,t l 
- - J u  l + u )  

(III) h(a )=  ,,,/a~ / 4'a--~-'~= [ 1 ( 1 + 1/1- '  : , , :  

p{Z]gh(a ) t }=p t z ]<  2 a,t } 
- -  - -  l + u  

t_th _] - ,+,, 

TABLE 1. P(Qt~L) and P{ZiS~h(a)t} for k=2. 

-altl(iSru)' . . . . . . . . . .  ~ . . . . . . . . . . . . . .  ; . . . . . .  : . . . .  1.5--- . . . .  2.0-----3-.0 . . . . . . . . . . . . . . . . .  " ,  0.2 t 0.4 I 0 6 i 0 8  i 1.0 4.0 t 5.0 
u . . . .  i i . . . . . .  I . . . . . . . . .  . . . . . . . . . .  

( I )  0.1836 0.3331 0.4548 0.5540 0.6350 0.7781 0.8546 0.9490 0.9806 0.9925 
0.7 ( l l )  0.1839 0.3339 0.4564 0.5564 0.6379 0.7821 0.8689 0.9525 0.9828 0.9938 

(m) 0.1813 0.3297 0.4512 0.5507 0.6321 0.7769 0.8647 0.9503 0.9817 0.9933 
(IV) ~ . , 0.6263 0.7716 0.8603 0.9478 0.9805 0.9927 

i 

( I )  0.1900" 0.3422 0.4644' 0.5628 0.6423 0.7811 0.8642 0.9460 0.9777' 0.9906 
0.5 ~ ( l I )  0.1911 0.3458 0.4708 0.5720 0.6537 0.7963! 0.8801 0.9585 0.9856 0.9950 

,, (m) 0.1813 0.3297, 0.4512 0.5507. 0.6321 0.7769 0.8647 0.9503 0.9817 0.9933 
, (IV) I i I ~ o.6105 0.7569! 0.8483 0.9409 0.9770' 0.9910 

P 

( I )  0.20661 0.3649 0.4873 0.5824! 0.6583 i 0.7862' I 0.8619 0.9391' 0.9719, 0.9867 
0.3 ( I f )  0.2113 0.3779 0.5094 0.6130 0.6948 0.8314 0.9068 0.9716 0.9913 0.9974 

(III) 0.1813 0.3297 0.4512 0.5507 0.6321 0.7769 0.8647 0.9503 0.9817 0.9833 
(IV) i ' 0.5526 0.7175' 0.7999:0.9202 0.9656 0.9852 

(b) k = 3  : 

( I ) Exact  : 

where u =  al 
as 

P[Qs<t} =PI w yi+ u y] 
- t u + w + u w  u + w + u w  

uw walt } 
+ u+w+uw ~ -  u+w+uw 

and w =  a2 (l_>_w~u~_0). 
as 
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TABLE 2. P(Q,<t) and P[X~S~_h(a)t} for k=3.  

141 

\~ walq(u+w+uw) 

0.7 (IV)(m) (11)(I) 

0.7 - - -  
( I )  

0.9 (11) 
(hi) 
(IV) 

0.5 

(I)  
(1I) 

1.0 i (m) 

, (IV) 
. . . . . . . . . . .  ! . . . . . . . .  

0.4 (I)  (11) 

.... i i ;  

0 6 (II) �9 (~) 

0.3 1 

I 
0.2 0.4 0.6 0.8 1.0 1.6 2.0 2.4 3.0 4 . 0  5.0 

i 

O. 1052,0. 24990. 3883 O. 5093 O. 6107 O. 8130 O. 8876 O. 93300. 9695 O. 9919 O. 9979 

O. 10550. 25090. 3904 O. 5124 O�9 6146 O. 8181 O. 8923 O. 9370 O. 9723 O. 9932 0 9983 

O. 1036 O�9 2470 O. 3851 O. 50640. 6084 O. 8130 O. 8884 O. 93420. 9707 O. 9926 O. 9982 

~, '0.6011 0.80690.58370�9 

O. 1051 O. 2497 O. 3881 O. 5091 O. 6104 O. 8132 O. 8877 O. 9332 O. 9696 O. 9919:0. 9979 
0.10520.25030.38960�9149149 
0.10360.24700.38510.50640.60840.81300.88840.93420.97070.99260.9982 

i i i 0.60360.80900.88530.93200.96940.99220�9 
. . . . . . . .  ,, . . . . . . . . .  , . . . . . . . . . . . . . . . . . . . .  p 

( I )  0.10840.25560.39460.51490.61490.81300.88590.93070.96730 99070.9973 
q . ! 

0.6 (IT) O. 1093i0. 2589 0.40110. 5246 O. 62710. 82810.8998 O. 9424 O. 9753 O. 99410 �9 
(Il l) O. 10360. 2470,0�9 3851'0. 5064'0. 6084 O. 8130 O. 88840. 9342 O. 97070�9 9926'0 9982 
(IV) ; ; jO. 5858 O. 7940 0.8736 O. 9234 0.9644'0. 9904 O. 9975 

( I )  0.108910.256510.39600�9149149149149 
0.8 ( l l )  i0.1096,0. 2596 0.40210. 5256'r0. 6282 0 . 82900.9005 0.9428 0 . 9755 O. 9942 O. 9987 

(Il l) 0"10360"2470,0.38510.50640.60840.81300.88840.93420.97070�9 

,0.11060.2598 0.3998 0.5201 0. 6194 O. 8142 0�9 O�9 9291 0.96520.9891 0�9 
O. 11160. 263710.4076 0.53190. 6345 O. 8339 O. 9042 0.9464 0.9769 O. 9947 O. 9988 
O. 10360.24700.3851 0.50640.50840.81300�9 

i ~ ! 0.58950.79710.87610.92520.96550.99080.9976 

). 1177 0.2714'0.4106 0.5281 0.6242 0.81210.8820 0.9263 0.96390.9884 0.9962 
). 1208 O. 2823'10.4322 O�9 5592 O. 6620 0 8548 O. 9194 O. 9558 O. 9823 O�9 9963~0.9992 

(lID ). 1036 O. 2470 O. 38510.5064 0.6084 0.8130 0.8884 0.93420. 9707 O. 9926 0.9982 
(IV) i0.5343 O. 7477 O. 8359 O. 8945 O. 9-164'0.9832t0 . 9948 

). 1188 0.2743 O. 41520�9 5334 O. 6294 0.8145 0.8823 O. 92410 9631 O. 9866 0.9952 
I I r ! " n ! 

0.121- = 0.28390.43430.56150.66440�9149 
! I ' 1 , 

O. 103E 0�9 O. 38510.5064 O. 6084 0.8130 0.8884 0.9342 0.9707 O. 9926 0 9982 
i i0.55850.7699 O. 8543 O. 9091 O. 955610.98700.9963 

0.8 ( I ) [0.121~ 0�9149 
(11  io 1254 0  ,160 572510 67520 85440 92620, 030 98 , . ,9590 9,,4 
(]]I) O. 103(i O. 2470,0.38510.5064 O. 6084 0.8130 0.8884~0.9342 0.9707 0.99260.9982 
(IV) i ~0.5657 O. 77640. 859510.91280.95800.987910,9966 

1.0 ( I )  0.1257i0.28500.43060.6486i0.64230.81660.87950.91980.95650.98330.9954 
( I I )  0.13010.501110.45660.585710.58830.87350 93250.96440.985610.9975i0.9995 

t 1 (llI) I0.103~0 �9 2470 O. 38510. 5064 O. 608r O. 8130 O. 8884 O. 9342 0.9707't0.9926 0.9982 
(IV) I ; Ii0 �9 5635 O. 7744 0.8580 O. 91160.9573i0.9877i0,9965 i 
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( I I )  h(a)=(ala2a,)I/~: P{Z~h(a)t}=PfZ~ u-t-w+uw walt } 
- - ( u w )  ~/~ u + w + u w  

[ (III) h(a)= (a'a'a')'/aL ~/i/3 ~ / ~ - k a , a ~  L-3-\-~-~ A'-~-2 "}'--~-../J " 

P[Zi~h(a)t ] =P{ZlN3.  walt 
- - u + w + u w  J 

(IV) h(a)=(ala2as) I/3" [ (ala2as)~/3 ]s_ 9alaja8 
L(1/3)(a~+a~+as)J (a~+a~+aa) 8 : 

P{Z]~h(a)t}=P{Z]~9 u-Fw+uw wa,t } .  
( l + u + w ) '  u+w+uw 

As seen in the following sections, we are concerned with the upper par t  
of the range of P(Q~_t)(>__p=0.8 or 0.9, say), and we are looking for 
an h(a), such tha t  P{X~_h(a)t} is smaller than, but  not so rough or 
approximately equal to P(Q~_t). From this point of view and from the 
inspection of Tables 1 and 2, it is seen tha t  

(19) h(a)=(a~ ... a k ) , / k r _  (a~ : -.- a~)~_~/~ l '  (k=2, 3) 

J | .~----(a,q- . . .  q-a~) 

satisfies our requirements unless u=al/a~ is too small. A similar ex- 
amination could be carried out for k~_4, if necessary, but  this would 
be quite laborious. 

Now we shall re turn  to the problem of the construction of the  tol- 
erance region. 

4. The case when p is known but ~ is unknown 

Using the unbiased estimate L0 of ~,, we want  to determine the 
value of C s so tha t  the ellipsoidal region 

(5) R(Lo, C')-- {X: (X-p)'L[l(X-p) ~_ C'} 

has the required property.  However, the exact t rea tment  is very com- 
plicated in this case and some modification or approximation will be used. 

I t  is well known in the theory of matrices tha t  for two positive 
definite matrices ~ and L0 (L, is positive definite with probability one), 
there exists a nonsingular matr ix  T such tha t  

(20) T ~ T'= I and TL, T' = D,o-diag(~, . . . ,  ,~o,.), 

where 0 < ~ , ~ < :  . . .  _~)~k<oo are the roots of the determinantal  equa- 
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tion [ L 0 - 2 0 ~ [ = 0 .  Using this mat r ix  T, make the t ransformat ion 

(21) Y=T(X-t~)  and T(X,~--tt)=Y,~, a = l ,  . - . ,  N .  

Then 

(22) 

(X- / , ) 'Lo ' (X- /~)  = Y'D~ 1Y 

. . .  + l__y  
201 20~ 20~ ' 

where  yl, " " ,  y~ are now mutual ly  independent and are normally 
t r ibuted with 0 mean and unit  variance.  

dis- 

Consider the explicit evaluation of 

A(S)-A(Lo, C~)=P, {X ~ R(Lo, C2) IL0} 

-A(20, CS). 

This is of the same form as P(Q~_t) of the last section, and the  com- 
plexity of the 20,'s in the exact  or approximate expressions of A(20, C ~) 
is such tha t  an evaluation of P{A(20, C~)>=p} is untractable.  In order 
to solve our problem, even if approximate,  let us consider the replace- 
ment  of A(20, C 2) by B(h(20), C~), which is an abbreviated notation of 
the form 

(24) P{y~§ . . .  +y~2<__h(20)C'120 } =P{Z~2<=h(20)C2120}, 

and let us assume for a moment  t ha t  we can find a h(20) such tha t  for 
any fixed 20, A(20, C 2) is closely bounded below by B(h(20), C ~) for all C s 
or at  least for all C ~ which gives A(20, C 2) the value g rea te r  than  or 
equal t o  a preassigned p. In this case we can determine the tolerance 
region with the confidence coefficient g rea te r  than  or equal to a given 
r based on B(h(20), C'). 

('a(~0)c 2 

This varies from sample to sample, in other  words, varies by sampling 
fluctuations in 20 or h(20). For a fixed C ~, B(h(20), C ~) is a continuous 
and str ict ly increasing function of h(20). Therefore, if we determine hr 
such tha t  

(26) P {h(20) ~hr} = r ,  
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and then determine C] satisfying 

B(h. C ; ) = p ,  

i,eo, 

(27) 

we have 

C|=Z,/(q)/h,, where q = l - p ,  

Since 

(28) 

P [B(h(~), C]) ~ B(h,, C])] = P [B(h(~0), C~) ~ p} 

=P{h(2o)~_h~}- 7. 

P[A(2o, C])~_p} ~_P[B(h(2o), C]):>p} = 7, 

the ellipsoidal region determined by C] thus obtained, i.e., 

(29) R(Lo, e l ) -  [X: (X--p)'L['(X--,u)~_C]} , 

is the tolerance ellipsoidal region with the confidence coefficient > r -  
Now we shall consider the assumption made on the function h(~0). 

Unfortunately the author has not succeeded in finding such a h(20) ex- 
cept the ones which give rough lower bounds of A(2o, C s) and hence re- 
sult in significantly larger regions than exact one. For example, ~o,, 
the smallest characteristic root of L0~ -~, causes a great  loss. However, 
if we allow h(~0) to be reasonable such tha t  even if B(h(~o), C t) is greater  
than A(~o, C s) for some range of C 2, the  excess is so small that  B(h(2o), C ~) 
can be regarded as a good approximation to A(20, C ~ for these C ~, we 
could find such a function and t rea t  the problem. In fact, we have 
prepared in the last section (with the replacement of al's there by ~o~'s) 

(30) [ (h, . . .  ]' 
h(~o)=(~o,... 

t 
( k = 2 ,  3) 

k 

as a reasonable function for our aim.* If h(2o) like (30) are necessary 
for k~_4, similar trials as the cases of k = 2  and 3 will be done. Using 

* In the  last  section, (30) has  desired propert ies  unless u=201/2o~ is too small.  But  
each of 201, - - . ,  20e, the roots of L0~ -1 tends  to 1 in probabil i ty  as N--,co and so for a 
sufficiently large sample, it is expected with h igh probabil i ty t h a t  u is not  too small. For  
k=2 ,  the following data are obtained. 

' "  i. ...... 31 41 51 61 81 101 

0.96742 P(u~0.3) 0.99412 0.99894 0.99981 0.99997 1.00000 1.00000 

P(u~0.2) ]0.99720 0.99985 0.~%J999~ 1.00000 1.00000 1.00000 1.00000 
I 
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these h(10)'s, we can go t h rough  f rom (25) to (29) wi thout  any change 
except  the  replacement  of ' => ' in the  middle of (28) by ' :> ' which is 
the  nota t ion for the  s ta tement ,  " g r e a t e r  than  or approximate ly  equal 
to ". 

The above a rgumen t s  are summarized  as follows: 
The region R(Lo, C~) in (~9) is a tolerance region that contains at 

least proportion p of a k-variate normal population with known mean 
~ Z ~ h and unknown covariance matrix,  Z .  C~ is given by Ca = , (q)/ ~, (q= 

l - p ) ,  and h~ is the lower ( 1 - D  point of the distribution of h(lo), which 
is a function of 1o~, . . .  ~o,, the characteristic roots of Lo~.-', chosen prop- 
erly for  the problem. I f  h(lo) can be chosen (though it failed to be found 
here) so that B(h(1o), C'~)~A(to, C "~) holds for all lo and C ~, the confidence 
coe~cient of the region is >__r. I f  h(1o) is a function like (30), the con- 
fidence coe~cient of the region is ~r .  

I t  is noted tha t ,  for h(t0) in (30), C]-~Z~(q) as N->oo since each of 
lo~, . . - ,  ~o~ tends to 1 in probabil i ty and hence p l i m h ~ = l .  

5. The case  when  both p a nd  ~ are unknown 

I t  is ordinary in practical applications tha t  both p and ~, are un- 

known and mus t  be es t imated  f rom a sample. Using X and L, the  
region to be de te rmined  is (6), i.e., 

R(X, L, C')----[X: ( X - 2 ) ' L - ' ( X - X ) ~ C ' } .  

In the canonical form, this can be expressed with s tandard  normal  variates  
a s  

(32) R(:Y, t ,  C') - {Y: ( Y - - Y ) ' D ; ' ( Y - - Y ) ~ C ' } ,  

- 1 ,v 
where  Y, Y.'s are N(O, I)-var iates ,  Y=-~-Zffil Y., D , = d i a g ( t ,  . . . ,  i ,), 

wi th  0<11_~1,_~ . . -  < : 1 , < ~  and the  l , ' s  are the  roots of the  determi-  
nanta l  equat ion in I 

(33) I L - - I ~ ,  [ ----0. 

Then 

, Entr ies  are eas i ly  calculated from the  cumulat ive distribution function F(u) of u, 

U(N--1)/I 
(31) F(u) = 2  ~'-I  ( l + u ) N _ l  ( l ~ u ~ 0 ) .  

For  k---3, the  comparable  data  has  not been calculated because of the complexity of the  
cumulat ive distribution function of ~01/20s. 
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A(S)=A(~', ,~, C2)=P{YE R(Y', ,~, C')[ I7, R} 

Now set 

(35) 
and denote 

G(p, C'l ?). 

G(p, C')=P{A(Y, l, C')~p} 
its conditional probability for a particular value of Y by 
Then 

O(p, C')=E~ {G@, C'l ?)} 

1 NY'Y}d}",  . . .  dYk = N ~ / ' ( 2 z ) - v ' f : |  " " I:~G(p, C'l ?)exp {--2 

We consider the approximation of G(p, C') by expanding G(p, C21t ") in 

a Taylor series and taking expectations. Since :Y is distributed sym- 
metrically about 0 and each principal axis of the ellipsoid under con- 
sideration is parallel to the corresponding y-axis of coordinates, it is 
clear that  G(p, Cs[ ~r)is an even function of each component of :K. 

Hence, in the expansion of G(p, C'I:K) in a power series of components 

of :K, only even powers will occur. Accordingly the Taylor expansion 
about O is 

. i ~ , a ~ G  G(p, C'[ Y')=G(p, C'IO)-t'--~-r-, . . , 1 , . ~  
Z_I I$=1 aY~ 

(36) +-~'! ~,I a~. +3 Y~YI a'G ~ + . . . ,  
aY, ~J aY~OY} 

where all the derivatives are evaluated at Y=O. Taking expectations, 
we obtain 

(37) 

G(p, C')=G(p, C'IO)+-~N ~. ' a'G - a?~  

1 ~ _ _ _ + ~  o'o , o,o } §  
oY: ,)J aY~aY'~ 

since ~" has the distribution N(O,--~I). On comparing (36)with (37), 

we see that  if in (36) we set ~'~- 1 ( i=  1, . . . ,  k) (36) becomes iden- 
4Y- 

tical with (37) except for terms involving the second and higher powers 
of 1IN. Then for moderately large N we have the approximation 
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(38) G(p, C~)~-G (p, C ~ ~-~--e) , 

where e is the column vector whose components are all unity. 
Thus for moderate N, we need only consider 

(39) 

A I I .)' . 

i )'_<c,12 } 

instead of A(~', 2, C ~) in (34) and consider the determination of C' satis- 
fying this requirement. However, there is the similar complicated situa- 
tion as in the last section in the explicit evaluation of (39), which is 
due to variations in 2=(21, . . . ,  24). This forces us to make the analogous 
modification of (39) as made for A(20, C2), i.e., to replace (39) by 

1 ) ' + . . .  +(y~ 1 ) '~h,(2)C,12 t B(h'(2), C')=PI(Yl ~/--~ ~/~ 
(4o) 

=P{Zl ~_h'(2)C~12} , 

where Zf is a noncentral chi-square variate with k degrees of freedom 
and with noncentrality parameter 

(41) k 
' , ; ~  / \ 4 N  / 2/ 

and h'(2) is a function of 2, . . - ,  2, chosen in a manner similar to that  
of the last section. The only point of difference from the last section 
is that  Z7 here is noncentral instead of central. However, since we are 
considering the case of large N, the effect of noncentrality, ~o'---k/N, on 
the selection of h'(2) will be so small that  we can safely take h'(2) of 
the same form as h(20) in the central case. Especially, for k=2 and 3, 
we could use 

(42) h,(2)=(2~...2,.)l/k I (2~ ' "2k)  1/~ 12 ( k = 2 , 3 ) .  +( 21+ ..  +2~) 

If we have a close lower bound of A e, 2, C 2 for all 2 and C ~, we 

of course use it as B(h'(2), C9. 
Using h'(2) chosen in this manner, we can construct a tolerance 

region with confidence coefficient, ~_r, a preassigned value. We have 
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(43) 
yffio ~2./ ~'~'(~)c ~ t/2+./-1 -y/2 

As in the last section, we first calculate h'r for a given r such that  

(44) P{h'(~)~h'r} = 7, 

and then determine C~ from 

(45) B(h~, C])= p ,  

i.e., 

(46) C]=W~2(q)]h; , where q= l - p  . 

Then, for a sufficiently large sample, 

P el) p} 

~-P[B(h'(2), C])>__B(h~, C~)] 

--P[h'(~)~_h'r} =r . 

Accordingly the following conclusion is obtained: 
For su~ciently larg~ sample, the ellipsoidal region determined by 

C~, R(Y, ~, C~) and hence 

(47) R()(, L, C ~ ) - [ X :  ( X - S L ) ' L - ' ( x - f o ~ _ c ~ }  

is a tolerance region, with the confidence coe~eient ~T, that contains at 
least a proportion p of a k-variate normal population with unknown mean 
and with unknown covarianee matrix, ~ .  C~ is calculated f rom (46), 
where h'~ is the lower (i--T) point of the distribution of h'(~), which is 
a function of 2 ,  . . . ,  ~, the characteristic roots of L ~ - ' ,  chosen properly 
for  the problem. 

It is easily seen that  when h'(~) in (42) is used, C~-->Z/(q)as ]V-)co, 
since ~ - ) 0  and h~-)l in probability as N-->co. 

6. Simultaneous tolerance intervals 

The development by Roy, Bose and others in a series of papers ([11], 
[12], [13], [14], [15] and ]16]) for obtaining simultaneous confidence intervals 
can be made for the tolerance statement. Denoting any nonnull k-dimen- 
sional non-stochastic vector by a, we shall consider the determination of 
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a set of the simultaneous tolerance intervals 

(48) R~(J(, L, d2) -- {X: a'.X--[d~a'La]'/~_a'X~_a'.X+[d2a'La]V~} 

such that  for given p and r ( l > p ,  ~'>0), 

(49) A~(X, L, d 2) --- P {X e R~(X', L, 42) I X, L},  

(50) ~ [A~()~, L, d ~)_>_ p ; for all a} >_ ~-. 

I t  is easily seen that the statement A~,(7(, L, d2)>_p for all a, is equiva- 

lent to the statement inf A~(X, L, d*)>~p and since 

inf A~(X, L, dS)--inf P [ X  e R~,(f(, L, d 2) I f  C, L} 
a 

(a,La)~l~ -- 

----inf Pt  a'(X--],)(X--.X)'a <d ' [ ) ( ,  L} 
a a'La = 

>_p{sup_ sd21x' L} 
= P {(X-- X ) ' L - ' ( X -  X)_~ d'l .~, L} 

=A(X, L, d2), 
we have 

(51) P{inf A~()~, L, d2)>__p} :> P[A(.X, L, d~)~p}. 

Consequently, the problem of determining the value of d 2 so that  the 
simultaneous confidence coefficient is greater than or equal to r is the 
same one as in section 5. But the solution which gives the coefficient 
exactly equal to r could not be obtained there, and some modification 
has been made, namely, -~T has been replaced by ~ r .  If, with the 
same modification, CI is used as d ~ in (48), we can have a set of simul- 
taneous tolerance intervals (48) for all nonnull a, each of which contains 
at least a proportion p of a normal population N(a',u, a'Za), (p, Z are 
unknown) and these intervals have the simultaneous confidence coefficient 
~T. When we know a priori either p or ~ ,  obvious modifications of 
the above argument are necessary. 

7. Note on the distributions of h(20) and h'(2) 

In order to carry out the practical work when Z is unknown, i.e., 
to calculate C; in (27) and C] in (46), we must evaluate h r and h' r for 
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a given r. At the present time, we have h(~• in (30) and h'(~) in (42) 
as feasible for k=2  and 3. h(20) and h'(~) for k>=4 may be obtained by 
the same procedure as stated in section 3, i.e., in (18). In these cases 
they appear as functions of the elementary symmetric functions of the 
characteristic roots of L0Z -~ or L ~  -1. Therefore in order to evaluate 
hr and h~ for a given T, and hence in order to obtain the distribution 
of h(~0) and h'(~), the joint distributions of these elementary symmetric 
functions are necessary. Unfortunately, the domains with positive joint 
densities are so complicated that  we cannot evaluate the probability 
functions of h(~,) and h'(2) explicitly except for k=2.  

Thus let us consider in this section the evaluation of hr and h '  only 
for k=2.  To treat  these simultaneously, let 01 and 03 (0 <~ 0~ <; 0,) be the 
roots of 

(52) I w - o z  I = o ,  

where n W is a Wishart matrix with n degrees of freedom. For sec- 
tion 4, W, n, 0~ (i=1, 2) correspond to L,, N, ~0, and for section 5, to 
L, N - l ,  ~, respectively and consider the distribution of the statistic 

(53) H(#)= 4(0~#3)3/' 
(01+OJ ~ 

The joint distribution of #1 and 02 has the density function 

(54) 
4r(n-1) 

Making the transformations 

(54) SI=O~+03 

we have 

f (O,  03) = n" .(0zO3)~247 >/~(03-Ot) 

and S2=#tOj, 

(0<01_~02) �9 

~n 
(55) f ( S ,  $2)= S~"-3)/~e -"sl/2 , 

4F(n--1) 

since dSldS3=(Oz-Ol)d~ld$2. The domain is 31-4S3~0 or oo>-~-~_$3 ~ 0. 

We transform (55) into the joint density function of H and St by 

.~ 3IS 
H =  4--~- -  , 

and after this, we integrate out $1. Since the domain of the joint dis- 
tribution of H and $1 is oo>$1>2H:>0, the density function of H is 
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~(n-I)/3 . H(a_4)/3ir (56) f ( H ) =  3r(n--1) ,,ZC2'~+~)/~-~e-ZdZ (oo>H>=0). 

The probability integral for H can be evaluated in the following man- 
ner. 

P( I'~'~ ./~T./*) = ~,(a -- 1)13 f : ,  H(n_4)13 f :H Z($n+l)/3--1e--ZdZdH 
a t ( n - l )  

foo [" ZIn _ n ('~-~)/3 Z(2,+~)/3_~e_Zln * HC~-4)/3dHdZ 
3F(n--1) --* 

_ 1 f:~ Z ' - ' e - z d Z  nO'-')/3 "H*C'-1)/~ I~ 
F(n) �9 r (n)  J . . .  

Z(2n+x)/a-le-zdZ . 

Using the notation I~(v) for the incomplete gamma function [9], 

[F(v)]-li~ Z' -~e-ZdZ , 

we have 

P ( H <  H * ) = I - P ( H >  H*)  

(57) = In,j. (n) + F {(2n + 1)/3} n (~-~)/3 H.c._~)/3 {1-  I~u.((2n + 1)13)}. 
r (n)  

8. Charts for the practical  use 

To construct the tolerance ellipsoidal regions under the situations 
in sections 2 and 5, we have to calculate the upper q = l - p  point of 
the noncentral chi-square distribution with k degrees of freedom and 
with a given value of the noncentrality parameter. Denoting the den- 
sity function of the noncentral chi-square distribution by f(z~2; ~), i.e., 

f(Z~'; d,') = e -~'/~ ~, d'b~j / 1  . (Z~)k/2+j_,e_Z~,/2, 
~=o j i 2 '  2.n+,T,/~k_t_3) 

we give, for practical convenience, the charts of the relation between 
Z~2(q) and ~b s satisfying 

t" z~|Cq) I~ 
(58) 1o f(Z~ ; ~b')dZ~=p, 

in Figs. 2a and 2b for k = 2 ,  3 and p=0.900, 0.925, 0.950, 0.975, 0.990. 
Curves for the indicated range of ~h ~ are almost straight lines. For 
section 2, (p2 here corresponds to r~r there and Zi~(q) here to CI there and 
for section 5, r corresponds to ~ ' = k / N  there and Z~,~(a) to h'~Ci there. 
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