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1 Introduction

In this paper, we study discrete analogues of fractional integral operators. The
key examples are given by the operators I, and Jy, defined initially on functions
on Z and 72, by

Lf(m)=Y f(m-n*)n~* and Jxf(mi,m2)= Y f(mi—n,ms—n?)n">
n=1

Let us deal with I, first. Its continuous analogue is the operator

* g 1 [ du

F»-»/l FO-2)% = 5/1 Fl—u)—irs

and, as is well-known, this operator is bounded from L?(R) to LI(R), wherever
l<p<g<ooand 1/p—1/g=(1- A)/2. On the basis of this, it is a reasonable
guess that [, is bounded from ¢7(Z) to #¢(Z) wherever 1/p —1/q = (1 — A)/2 (to
which one must add the further necessary conditions that 1/p > 1~Xand 1/q < A\).
While it is easy to make this conjecture, proving it seems quite difficult. There
is a similar conjectural statement for the operator Jy, but the numerology of the
exponents is a little different.

In [SW,], we began the study of these operators. Further advances were made
by Oberlin [O]. These recent results have inspired us to return to the problem, and
this work has allowed us to go a substantial way in completely resolving these
questions. We now sketch some of the background.

The multiplier corresponding to I is my(8) = Y20, n~*2™n*0 that is,
If (8) = ma(6) £(6). In [SW,], we used the Hardy—Littlewood circle method to
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show that if 1 < A < 1, my(f) is in L™ with r = 2/(1 — X). This implied the
following.

Theorem A. For 3 < )\ < 1, I, is bounded from {P to {9 provided 1/p—1/q =
1-XN/2,1/g<M1/p>1-Aandp<2<q.

Interpolation with the trivial result that I; .. is bounded from ¢? to ¢ showed that
for § < A < 1, I, is bounded from ¢ to ¢ if 1/p— 1/q > (1 - A\)/2, 1/g < X and
1/p>1— XA. We obtained some results for 0 < A < 1 by a further interpolation.
Simple examples show that for 0 < X < 1, the conditions 1/p—1/¢ > (1 — X)/2,
1/p>1— Xand 1/q < X are necessary.
Oberlin’s result is the following.

Theorem B. Forl/p—-1/g> (1-2)/2,1/p>1-Xand1/q< ) 0<A<],
I, maps ¢° to £9.

Theorem B substantially improves our results in the region 0 < A < % (although it
does not contain the case of equality for 1/2 < A < 1 in Theorem A).

In fact, after Theorem B the only remaining question is what happens in the
case of equality when 1/p — 1/¢g = (1 — A)/2. It should be noted that if 0 < A < 1,
these three conditions are equivalent to the two conditions 1/p > 1-Xand 1/g < A
Figures 1, 2 and 3 illustrate this.

Theorem B shows that the open regions in the lower right-hand corner of the
above figures correspond to p’s and ¢’s for which I, is bounded, improving our
results for the case 0 < A < } and solving the problem for 0 < A < 1. Oberlin’s
arguments do not use the circle method, and his result motivated us to reexamine
and substantially refine our arguments using that method. We prove the following
result.

Theorem 1. For0 <A< 1,1/p—1/g=(1-})/2,1/p>1-Xand1/g<

lx fliee < Al flle-

This conclusion goes beyond the previous results for \’s with % <A< % It
completely settles the question for 0 < A < 1/2.

If one knew that I, were bounded on 7, 1 < p < oo, with suitable bounds
depending on 4, interpolation with the results in [SW;] would fully resolve the
problem, i.e., the remaining cases when 1/2 < A < 1. We give a new result in this
direction.

Theorem 2. For $ <p<4,

M1siyfllee < Ayl Flles.
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Figure 1. 1 < A < 1

Theorem 2 is an improvement over the result in [SW;]. Interpolation with the
results of [SW,] then shows the following.

Corollary of Theorem 2. For ; <A< 1,

11 fllea < Allfller

provided 1/p—1/q=(1-X)/2, 1/p>1-X\1/g< ) and1/p< $and1/q> }.

So the remaining boundedness question concerns the two half-open solid line
segments on the line segment 1/p — 1/¢g = (1 — A)/2 in Figure 4.

The situation for J, is similar with a different range of exponents. The multiplier
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is

o
. 2 .
my (0’ ¢) — E e27r'm 6 e21r1n¢ n——/\.
n=1

In [SW,], we showed that for % < A< 1,my(8,¢)is in L™ with r > 3/(1 — A).
This implies Theorem C.

Theorem C. Suppose % <A<L1l/p-1/g=(10-A)/3 1/p>1-\1/g< X
then Jy is bounded from (P to ¢2 provided p and q satisfy p < 2 < q.

Interpolation shows that J), is bounded from ¢ to ¢9 provided % <A< 1,1/p-1/qg>
(1-A)/3,1/p>1—-Aand1/g < A.
Oberlin [O] proved the following result.
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Theorem D. Suppose 0 < A <1, 1/p—1/¢> (1-))/3, 1/p>1—)and
1/q < A; then Jy maps £ to £9,

Again, simple examples show 1/p—1/¢>(1-X)/3,1/p>1-Aand 1/q < X are
necessary conditions for Jy to map £? to £2. Oberlin’s result solves the ¢# — ¢4

boundedness question for p and ¢ satisfying 1/p — 1/¢ > (1 — X)/3, but not in the
case where > is replaced by =. We settle this question for 0 < A < 1.

Theorem 3. For0 < A< 1,
72 fllee < Apllfller

provided1/p—1/q=(1-))/3,1/p>1-Xand1/g< A\
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Note that Theorem 3 goes beyond Theorem D only when A > %
We shall also show that the method of the proof of Theorem 2 yields
Theorem 4. || J14iy fllee < Ay|lflles for § <p< 3.

(This result was obtained by a different method in [SW,].) We then have the
following.

Corollary of Theorem 4. For 3 <A <1,

[Ixfllee < Allfller
provided 1/p—1/g=(1-))/3,1/p>1-)1/g< ) and1/p< Zand1/g> L.
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We now describe somewhat imprecisely the new ideas involved in the proofs.
As before, we begin by writing the multiplier of the operator I, mx(6), as
approximately

9—J+1

(1.1) Z/ Fly —i0)y*? dy
j=1727

with
> 2
f(z) - Z nle 2 n 3
n=—00

where F is a derivative of a © function. Next, consider a Farey dissection (of level
23/2) in terms of fractions a;/q;, (a;,q;) = 1,0 < a; < g;, and g; < 29/2. We apply
this dissection to the jth summand in (1.1); and, using a well-known approximation
to © which results from its transformation formula, we get modulo error terms

m)‘(e) ~
2~ 3+1

1 : ' )
Yo Y 55,45 ey (0 — a5/a5) /  (y—i0—ai/g) ¥ Y2 dy.
ag2i/? ela=2i/e 9 -
(a,q)=1

Here x,, (6 — a;/a,) = x(¢;27/%(6 — a;/q;)), with x the characteristic function
of the unit interval. The S(a, q) are the Gauss sums.

In our previous paper, we used essentially this formula to get an estimate of
the size of |m,(#)], which was enough to prove our restricted results for & — {4
boundedness. If we want to go further, we must analyze not only the size of
m., but in effect its cancellation properties which will ultimately determine the
boundedness of Ix. We do this in two steps.

First we rearrange the sum above by focusing on the size of the denominators
g; which occur. That is, for each s we consider those g;’s where 2° < ¢; < 2st1
and define, using the above summation, B, (s, §) by

B)‘(s,o) = Z Z Z cee
28 < g<2e¥l j gj=q

Thus, essentially,

o
ma(6) = Y Ba(s,0).
s=0
We let B, (s) denote the convolution operator whose multiplier is Ba(s, ). It
turns out that the crucial estimates for By (s) (and hence I,,) are for A near % We

obtain these by interpolation of two estimates. First

”Bz\(s)”lz-—)t2 < A, 2—8/21 when ‘SR(A) =1,
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which again is merely a size estimate of B, (s,8). The second estimate needed for
the interpolation is

(IBr(8) ller 500 < Ang 2(l+ms — for R(\) = —1,

and any 5 > 0.

This is not an estimate of the size of the multiplier By (s, 8), but the size of its
Fourier coefficients, and is the most delicate part of the proof. Very curiously it
involves A = —1, and for this value of A we know of no simple interpretation of the
operator I). Once these estimates have been proved, we get the desired results for
the main contributions to m,(8). There are also two error terms, but these can be
handled by somewhat similar but cruder estimates, which will then complete the
proof of Theorem 1.

2 The proof of Theorem 1

For any complex number A, define the operator I as

B = 3 A2,

The main job in proving Theorem 1 is to prove that for 3 < X < 1 (especially when
A is close to 3)

2.1 Ixflleer < Allf ller,

whenever 1/p+1/p’ =1and 1/p—1/p’ = (1 — A)/2. Theorem 1 then follows from
the first Main Theorem of [SW,], Theorem A above, by interpolation. Now

I f(6) = ma(6)£(6) with mx(6) = i e2min’0 =X
n=1

If ) < %, m(8) does not exist as a function but is a well-defined distribution.
Then slightly modifying the discussion in [SW], we write

n A= c(/\)n2/ e~V M2y with e()) = (21r)(2+’\)/2/r‘ (2‘;—2>
0

Then

oo

ma(0) = C(/\)/ y‘ﬁ\ Fly - 1,0) dy with F(2) = an e—21m22
0

n=1
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for Rz > 0. It is clear that the contribution of [ to m,(6) has an absolutely
convergent Fourier series and thus corresponds to an operator that is bounded
form ¢? to £ whenever ¢ > p > 1. Thus it suffices to consider the operator with
multiplier

1 oo
NOE / P Fy - i) dy =3 va; (6),
7=1

where
2—j+1

ni®) = [ i) d
-3
Following the lines in [SW] we shall prove

Proposition 2.1. For 277 < y < 2-274, ¢ < 279/2, (a,q) = 1, and
16 —a/q| < 1/q2972,

. 1 S(a,q)
2.2 - = . E -
@D FW-9) = 5 i@ —ajq) R T v (0 ~a/q),
where
S(a,q,m A2 42
Eyq(0) = E _“““‘q ‘) hm,qy and |hmqy(6)| < L e?

m#0
with § > 0, for |0] < 1/q29/2.

Here
q

q
S(a, Q) — 2621”'1-2 a/q and S(a, q, m) — 2621"21-2 a/q e21rimr/q.

r=1 r=1

We postpone the proof of Proposition 2.1.
Motivated by Proposition 2.1, we define major arcs, for a fixed j, as follows.
For0<s<j/2-10,2° <¢<2°, and (a,q) = 1, set

Ij(a,q,5) = {6: 10— a/q| < 1/2°27/2).

We also define
1) ={6:0<0<1/22?yu{:1-1/229/2 <9 <1}

The contribution from 7;(1, 1) to our operators may be treated in the same manner
as the other intervals; however, the discussion of I;(1,1) causes some notational
inconvenience, so we omit it. Note that since s < j/2 — 10, the major arcs
corresponding to a fixed j are disjoint. For if

Ij(aliqusl) n Ij(a2,Q2a52) # @’
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we would have

1

aq:

a; az

< 2 11
o el = 27 T\ )

27019752 < 271/ max (2_‘",2"“) ,

So

which contradicts the fact that s; and s, are less than or equal to j/2 — 10. We then
decompose v, (#) into three parts:

va(8) = Pr1(0)/272%/% + Py2(8) + Ppa(8).

P, ,1(0) is the contribution to the major arcs from the main term in (2.2), that is,
S(a,q)/q(y — i(6 — a/q))*/?. The term P, ; (6) is the contribution from E, ,(§—a/q)
in the major arcs, and P 3(8) denotes the contribution from the complement of the
major arcs.

In analyzing the three components of v, (), we deal with a double summation:
in the index j arising from the decomposition

9—i+1

v(9) = Z /2 M2 Fly —1i6) dy

and the index s, which measures the size of ¢ for the fraction a/q. For the term
P, 1, we carry out the summation in j first and then the summation in s. For both
P2 and P, 3, the summation is in the reverse order, first in s and then in j.

Let x denote the characteristic function of [—1,1]. Then, for0 <8 <1,

1-10 ge+1 a(#)

-5 . $(0(3):9G))  (od oo (o _ o)
PalO) =23, 2 X T (22 (0-35))
(a(4)sq(5)=1

2-277 2/2
. / y dy
273 a(4)

C (- qu)))w




DISCRETE FRACTIONAL INTEGRAL OPERATORS 461

where
2l+1 1 q ()
By(s,08) = - S(a,q) - (2j/22" (9 - 2—J—))
A(5,0) .,:ZM;( ) 2 X o)
(a,q)=1 Iz
q(i)=q

2:277 Y2
dy
b -
Y q(7)

We remark that because of the cut-off function x(27/22° (8 — a(j)/q(j))), the
functions P, ;(6) and B)(s,6) are supported in (0,1). To be precise, we should
consider these functions extended to all of R to be periodic with period 1. Similar
remarks apply to other functions of 6 below.

Next note that for a fixed s (but varying j with j > 2s + 20) the supports
of the functions x(27/22*(8 — a(j1)/q(51))) and x(29/22%(8 — a(j2)/q(j2))), with
a(j1)/q(j1) # a(42)/g9(j2), are disjoint. For otherwise we would have

1 _ |aGy) _ a()

2 1 1
< — —_ ],
4222 = | q(h) q(2) | ~ 2° ax (211/2’ 212/2)
But ji, ja > 2s + 20, so this cannot happen. Thus,

23+1 q S(a q) 2-23—19 dy
PR TE S0 ol -CU I R
q;a (%L, q p(5,60) {y—i(0—a/q)}3/?

Here p(s,0) = 277, where j is the largest integer such that 27 > 22492, So
22592 < p(5,0) < 2-22%6°. If p(s,0) > 272519, the integral is interpreted to be 0.
Note that as a result we can always insert the factor x(c22%(6 — a/q)) in front of the
integral in the above sum for an appropriate ¢, e.g., ¢ = 10.
We set
Braf = (Bx(s,6) f(6))".

Our goal is now to show thatfor < A < 1,1/p+1/p =1,1/p-1/p = (1 — A)/2,

(2.3) 1B fllew < A2750% || f|lgp

for some positive §. For then we can add in s to show that the operator corresponding
to P, ; satisfies the estimate of (2.1).

We prove (2.3) by complex interpolation. In fact, we show that B , extends to
an analytic family of operators in —1 < R\ < 1.
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For A =1+ 4+, we have
24) I1Bxs fllee < A27°72 (/1] + DI lles;
and for A = —1 + ¢}, and any 5 > 0, we have
(2.5) [Brs fllew < Ap 25047 flpn.

The estimate (2.3) will follow from (2.4) and (2.5) by complex interpolation
where we interpolate the operators f — (A — 1) By, f.
To deal with B, (s, 6), we consider first

2-—25 —-19
Us(s,6) = x(e20) [ My - i) dy.
p(s.8)
Here U, (s,6) = 0if p(s,6) > 2725719,

It is clear that U,(s,8) is integrable as a function of 8 for ®A > —1 and that if
1(6) and g,(6) are trigonometric polynomials, [ Ux(s,8) g1(8) g2(6) d6 is analytic
inRA > -1

In order to continue U, to $\ > —1, we split U, into two parts. Let () be
a smooth function supported in |§] < 2 with %(6) = 1 for |§] < 1 and choose a
constant ¢; (¢; = 2¢ will do) so that

P(c10) x(c8) = P(c10).

Then
U,\(3,0) = UA’l(S,e) + U,\Yz (3’0)’

where

2—23—19

Ura(00) = wies20) [ 0 i0) Y ay,

0

and
. 2—23—19
UA,2(8, 0) =X(C2239) (1 — ¢(Cl 2280)) / A/2 (y )_3/2 do
p(s,9)

—1/)(C 2230)/ A/2 0)—3/2 dy

=U,\,3 (8, 0) + U,\,4 (S, 0)



DISCRETE FRACTIONAL INTEGRAL OPERATORS 463

As with Uy, it is clear that Uy ; and U, ; are integrable if A > —1 and, for g, and
g» trigonometric polynomials, [ U, ; g1g» are analytic functions of A in A > —1
forj=1,2.

We need the following lemma.

Lemma 2.1. (i) For j = 1,2 and R\ > -1, U, ;(s,0) is supported in
6] < 1/c2% = L 272,

(ii) For j = 1,2 and R\ = 1 + iv, the functions U ;(s,0) satisfy

[Ui 4,5 (5,0)] < A(1/]7] +1).

(iil) For each ¢, c;(Ux,1(s,8)) (originally defined for R\ > —1) extends to a
Junction analytic in R\ > —2 and for A > —1 satisfies

fee(Un1(s,0))| € A.

(Here c; denotes the £th Fourier coefficient.)
(iv) For 6 # 0,
U-1tiy,2(5,0) = ,\_’lir&” Us,2(s,8)

exists, and there is an L function h(f) such that, for R\ > -1,
[Ux2(0)] < Ah(6),

where the constant A is independent of \.

Proof of Lemma 2.1. (i) is clear. To prove (ii), make the change of variables
y = 3’0 in each of the integrals for U, ;, j = 1,3,4 to see that

B; (0
/‘ 5 (6) y % tin dy
4;(6) (y £4)%/2
To estimate the integral, it suffices to observe that

/A (a+imz__ W _/A ~Hiv/2 gy 4 O /'A -2 g
1 Y (y+32 ) Y Y 1 v

[Ur;(s,0)] < A

and

A 1+'1 2 X
Tt dy = — (A" —-1).
/1 Y YT ( )

Therefore,
|Ui4iy,j (5,0)] < A(1/|y] + 1).
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We turn to (iii). Since Uy,; has small support, the integral over [—1, 1], defining
its Fourier coefficients, may be replaced by an integration from —oo to oo. Then

ce(Ua,1) = dps * €3,

where d,,; is the Fourier transform of v(c; 22¢-) evaluated at ¢, and

2—23—19

o
e?,s — / e~21ri£0 / yA/2 (y _ 1:0)—3/2 dy .
—oc 0

Since Y, |de,s| < A, it suffices to show ei‘,s extends in A to a function analytic
in R\ > —2 and, for R\ > -1,
[ezsl < A

To study e; ,, we use the identity
(27r)3/2
T(3
/oo e—21ri£9 (y _ 1:0)_3/2 de = r (E)

0, £<0.

£1/2 e—21r£y’ . { > 0,

(This identity can be checked by taking the Fourier transform of the right-hand
side and using the Fourier inversion formula.) Thus

A
et,s_/
0

B {AZI/2 frh_w yM2 e 2 udy, if £> 0,

2—25—19

°S)
yA/Z / e—2m’10 (y _ io)—3/2 dOdy

0
0, if £ <0.

It is clear that e2 , is analytic in R\ > —2, and a change of variables shows that
lez,| < A for®Rx > —1.

We consider next (iv). The limit clearly exists for # # 0, and we turn to the
domination of Uy by an L! function 4(6). In the support of (1 — (c;2%46)), p(s, 6)
(which is roughly 22462) is greater than c;272* for a positive ¢;. Thus for RA > -1,

2—-25-—19

|Ux3(8)| < Ax(c2®#0) (1 - 1/)(c122"0))/ y~ V2 |y — i6)7%/2 dy

622—2‘

< Ax(c2%6)2%,

and the L! norm of this function is bounded.
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Next, for R\ > —1,

|Usa(5,0)] < [9(c:2%°6)| / 2y — 6 dy

< Alp(er2%9)] 6732 (p(s,6))"/
< Ap(c,2%°0) 971/2 20

The right-hand side of the above inequality clearly has bounded L' norm, and
the proof of the lemma is complete.

From Lemma 2.1, we see that U, ,, defined originally for ®A > —1, extends
to a family of distributions in RA > —1 and, in fact, defines an analytic family of
operators in -1 < RA < 1. For if g; and g, are trigonometric polynomials, the

function
/ Ux,s 91 92,

which is an analytic function of A for R\ > —1, is seen to be continuous up to
R\ = —1 by using Lemma 2.1 and the dominated convergence theorem. To prove
that (2.4) and (2.5) are satisfied, we need the following proposition.

Proposition 2.2. (i) |S(a,q,m)| < Ag'/2.
(ii) Foranyn > O, there is a constant A, such that

>

1<q¢<M

q
TS

Z S(a,q,m) e 5| < A, M**7,

a=1

{a,q)=1

forall M, m and ¢.

Here we only need conclusion (ii) when m = 0, so that S(a,q,m) = S(a,q);
later we require conclusion (ii) for any m. The assertion (i) is well-known, see
[W]; we prove conclusion (ii) later.

Now

- % S0y (w-),

9= o
So since B, (s, 8) is a finite sum of translates of U)(s, 8), it follows that B, , is an
analytic family of operators in —1 < R®A < 1. Conclusion (i) of Lemma 2.1 implies
that the supports of the U, (s, — a/q) are disjoint, so conclusion (ii) of Lemma 2.1
and Proposition 2.2 imply

|Bisiy(5,0)] S A(L + 1/|7])27*/2.
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Thus
IBisiy fllee < AQ + /W) 272 (|£le2

which is (2.4). Also,

2a+l q
S(a, ita
ce (B—l+i'y (3,0) = Cp (U—1+i'y(s3 0)) - Z Z (q q) 2Tt s
q=22 a=1
(a.q)=1

Thus conclusions (iii) and (iv) of Lemma 2.1 together with Proposition 2.2, part
(ii) imply, for any 5 > 0,

|ce (B-14iy (£,8))] < An2(1+ﬂ)s.
Thus
IB-14iy fllee < Ap 2042 |11,

giving (2.5). This concludes the proof of (2.3) and completes our discussion of
Py
We now turn to P; 5:

P2 (0) = Y P, (),
j=1

where

o) j/2-10 22+1

Pa®)=Y X Yo

m=— =1 =28
m#:o 8 a

g 2.9~7
<3 Seamx (272 (0-3)) [0 by (0-5) o
a=1

—i
with A, 4 ,(6) as in Proposition 2.1. We shall show that for R\ = 1 +¢,
(2.6) 1P 2 Oz < A28,

so that
(P, £)Vllee < A28 | flga,

and for R\ = ¢, and any 5 > ¢,
X)) lee (P )] < A, 2737273,

so that
||(P,{‘2f)"||,m < A,,2—§J' 279 || fller.
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We can then choose n = ¢/4. By interpolation, this will show

1P Nl < A2739)|fles

whenever A > 1/p'. So, adding in j, we see that the operator corresponding to P, 2
satisfies the estimate of (2.1).

To prove (2.6), we note again that the supports of the functions x(27/2 2*(6—a/q))
(with j fixed) are disjoint. So

. A 2.277 9
|P§,2(0)| S g5 / . y4+€/ Z |hm,q.y (6)| dy
q 2-7 m=£0
< A27%,
since by Proposition 2.1
ql/2 —8m?
|hm,q,y (0)] < A—W—-
To prove (2.7), observe that
j/2—10 2~+1
o () <2 % 35 |3 Stams
m;éo s=1 q—23 (a. q) 1

[ x (@720) /2 v/ 1 (6)] dy |

So, using Propositions 2.1 and 2.2, we see that with A(g) denoting a bound for

L1(do)’

Z S(a,q,m)e%“"/",
(a,9)=1
we have
ICe (Pf,z)l < Y Y g A(g) 2t

$<j/2—-10 g<20+1

< An2—1/42—§j Z 98/2 9ns

8<j/2
< An2m‘.2—§j,

which is (2.7). This finishes the discussion of P ,.
We turn now to P, 3. For a fixed j, let

i/2-10 q

= U U U Gags

8=1 2s<gg28+1 1

q=
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and let W; be the complement of V; in [—1, 1]. Then

) 2.2~7
Py 3(0) = Z P{,(0), where P}.(8) = xw,() /2 ™2 Fly —i6)dy

j=1 -

We prove that for A =1 + i,

2.8) |Pyis 8)] < 427914,
and for A = —1+i7,andanyn> 0,

(2.9) let(PYy 41y 8)| < Aq2f 20972,

Interpolation and summation in j then shows that the operator corresponding to
P, 3 satisfies the estimate of (2.1) and the proof will be complete. To prove (2.8),
we note that by Dirichlet’s principle, for any  there are a and g with (a,q) = 1
so that |0 — a/q| < 1/¢27/ and q < 29/2. If xw,(8) # 0, ¢ > A279/2. Thus for
A =1+ iy, we use Proposition 2.1 to see that

2-2
/ Y2 _dy
2-3 (y - 2'0)3/2

—i+1
A9g—il4 /2 d_y
2-7 Yy

A27I/4,

‘Pf,3(9)’ < A7 sup

IA

IA

To prove (2.9), we note that

2.277 . 2.274 )
/ yA/2 ]:(y _ zg)do = 26—21“7: ] f n2 yA/2 e~2mn’y dy,
2 " 2-4

-3

which has Fourier coefficient bounded by A427/2 when A = —1 4 i~. Thus to prove
(2.9), it suffices to estimate the Fourier coefficients of I,;(6) + I1,(6), where

=Y Y 1Y Saaox(22 6- a/n)

1
35% ~10 2°<q<2%t (a,q)=1

9-J
. {/22 y(—1+i'y)/2 ay =3 }
273 [y —i(6 - a/q)]”
and

11;(8) = Z 3 3 ZS(a g,m)

1 —
o 8<j/2-10 22< g<20t (a“q) L,

2.2=7 -
/ y(—l+w)/2 gy (0 - _) dy.
2~3 q
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Here the argument is similar to that used in estimating P ;-
By Propositions 2.1 and 2.2, we have, for any 5 > 0,

9—i+1

: d
lee(I)] < Ay Y 2702040 - Ix(27/22°0) || - f =
s<i/2 2= Y
<A, 3 27 otms Lgms . 9mi/2 g
s<i/?

< An 9i/2 9nj/2

If we use Proposition 2.1 and Proposition 2.2 again, we see that

2—.1'+1
. d
eI)| < Ay 3 27020 x@iep 2z [ 2
9<3/2 24 ¥
< A, Z 9-% .9(2+n)s _9—s , 93/2 , 9=1/2 93/4j
3<j/2
< A, 93/2 9mi/2,

With this we have proved (2.9). This finishes the proof of Theorem 1 except for
the propositions, to which we now turn.

Proof of Proposition 2.1. The proposition is obtained by a small modifica-
tion of arguments in {SW].

d i 2, .
Fly+i) = -Gy +i0), where Gly—if) = 51; Y erentit),

n=-o0

Write § = a/q + 8 and n = mq + r to see that

q
Gly~i6) = Y™ /1 G, (y ~ if)

r=1

with

oo

1 .
Grly=i8) = 3z 3 et

Now apply the Poisson summation formula

1 1 > omi —m? /2% (y—if
G,(y-iB) = Z e2rimr/q o~m/2¢* (y—iB)

T 2y~ zﬂ) ~

Arguing as is [SW3], §2, allows us then to complete the proof of Proposition 2.1.
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In this regard, notice that if |3 < A/qy'/?

1
R(———) >n withy>0.
(q’(y+zb’)> =1 7

Proof of Proposition 2.2. To prove conclusion (ii), we show that for some
A; and A,,

M q
(2.10) ZI Z S(a,q,m) e~2mits| < A, 9Aalog M/loglog M pr2.
q=1 a=1

(a,q)=1
Let
o(g,m,f) Z S(a,q,m) > %

(aq) 1

First note that if ¢ is a prime,
(2.11) lo(g,m, £)| < 3q.

In fact,
q q 2
ir o ir2 & it &
a(q,m,f) — § :62mr q E : e2mr g eZml :.
r=1 =
(a,q)=1

So

lo(g,m,&)| <

2 &
2mir -g- e27n£ ’

r=1 a=1

2
{3 2
2mir 7

e2vnl e ll

r=1 eae=1
g

q+ Z’Z ezm'r’ 4 g—2mil &

r=1 qa=1
q
=q+ Y n(r)
. r=1

where n(r, £) = ¢ if r?> = £(mod q) and 0 otherwise. For a fixed ¢, n(r, £) # 0 for at
most two values of r, since if r = 72 (mod q), then

IA

rf—r% = (ri—ry)(r1+1r2) = 0.

Then since the prime q divides the product, it divides one of the factors. Hence,
r1 = 79 (mod q). This proves (2.11).
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Next, we note that if (¢1,¢2) =1,
(212) 0'((]1(]2,17’1.,[) = U(Q1,M1,e) O'(Q2,m2,e)

for appropriate integers m, and m,. The proof of (2.12) is essentially contained
in, e.g., [V], Chap. 2.

Now let n = nyny---n,, with n; distinct. Then r < Ajlogn/loglogn. This
follows since the smallest integer with r distinct factors is r!. Thus, from (2.11)
and (2.12), we see that if q is the product of r distinct primes,

(g, m,8) < 3% Tt g,
Leto™(q) = supp,; o(g,m, £)|. For1 < g < M, write g = q1g, Where g; is square

free, and each prime occurring as a factor of ¢; occurs at least to the power 2. Then
since 0”(q) < o*(q1)0* (g2),

- - w Ao it g2 S 9 (@)
Yo < Y @) Y ot(@) € A3tmsiew M2 Y o
g=1 q1=1 ga=1 a=1 ql

Conclusion (i) implies 6*(¢1) < 4 q:;/ 2, So it suffices to prove

M
1
(2.13) > v < A(log M)N

q=1
each prime factor of ¢
occurs to the power of at least 2

for some N.
But the sum on the left-hand side of (2.13) is dominated by

I (obednede)s 1 (8

14 P
P prime p prime
p<M P<M

Since 3° .5 1/p < Aloglog M, (2.13) follows by taking the logarithm of the
products.

3 The proof of Theorem 2

To prove Theorem 2, we need several lemmas concerning multiplier operators.

Lemma 3.1. Let I be a family of disjoint intervals on R and denote their
characteristic functions by x. Define projection operators E, by putting

(Exf)" = xx f-
Then for 2 < p < 0, (& |Eef )2 ey < C®)If o ry-
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Lemma 3.1 is due to Rubio de Francia [R].
Here and in what follows, C and C(p) denote constants (the second depending
on p), which need not be the same at all occurrences.

Lemma 3.2. For some p, with 1 < p < oo, let m(0) be a bounded multiplier
on LP(R) with norm A. Suppose also that )(6) is a smooth function supported in
[-2,2], and that 1,1,,...,In are disjoint intervals on R of equal length d with
centers ry. Assume finally that By, ..., By are complex numbers with |B| < B.
Set

N
M) = ZBm(co

%) mio — ),

where ¢ > 4. Then M(0) is a bounded Fourier multiplier on LP(R) with norm at
most C(p)ABN'/2,

Proof of Lemma 3.2. We may assume 2 < p < oo. Let M be the
operator corresponding to M(#), T, be the operator corresponding to
By (c (&%) m(@ — rx), S the operator corresponding to the multiplier
Y (c8)m(0), Ei as in Lemma 3, and finally V,f(z) = e ?""«2f(z). Then
Tif = T Ex f, 50

N
IMf(z)| =D Tk f(2)
k=1

N
=|>_T: Ex f(z)

k=1

N 1/2
Z (Ve Ekf|) .

I/\
/‘\
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So, by the Marcinkiewicz—Zygmund Theorem,

N 1/2
MFfll» < BVNC(p)A (Z \7 Ekf|2)
k=1

Le

N 1/2
=BVNC(p) A (Z tEkff)

k=1

Lr

< ABVNC(D)|fll s

by Lemma 3.1, and Lemma 3.2 is proved.
Next, suppose v(6) is a function on R supported in — < 6 < 1. Define

[> o]

Vper(0) = Z v(0 + n),

n=-—o0o
so that vy, is the periodic extension of v.

Lemma 3.3. Suppose for some p,1 < p < oo, v(8) is a bounded Fourier
multiplier on L?(R) with norm A. Then v,e;(0) is a bounded multiplier on {?(Z)
with norm at most C A.

See [MSW], §2 for the proof of and discussion of Lemma 3.3.
Using this, we get the discrete analogue of Lemma 3.2.

Lemma 3.4. Fix p with 1 < p < co. Suppose that m(0) is a bounded Fourier
multiplier on LP(R) and that ¢(0) is a C™ function supported on [—2,2]. Further
assume we are given disjoint subintervals I, ..., In of (0,1] having equal length d
and centers r,...,rN. Let ¢ be appropriately large, e.g., c > 4. Set

N
M) = 3 Bip(c(0 — ri)) m(8 — ri),
k=1

with Bs,..., By complex numbers. Then M(6), given on [0,1] but extended by
periodicity to the whole line R, is a bounded Fourier multiplier on ¢?(Z) with
norm of most AB\/N C(p). (Here A is the multiplier norm of m on LP(R) and

B = sup;ck<n | Bg|.)

We wish to deduce Lemma 3.4 from Lemmas 3.2 and 3.3. However, M(6)
is supported in [0, 1], so we are speaking of the periodic extension of a function
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defined on [0, 1] while Lemma 3.3 applies to the periodic extension of a function
supported in [—3, 1]. To deal with this point, set M(¢) = M (6 — 3). Then to obtain
the desired bound on the norm of the multiplier M on £°(Z), it suffices to obtain
the bound for M(6 — ) on ¢?(Z). By Lemma 3.3, this is dominated by the norm
of the multiplier M(¢ — 1) on LP(R), which is the same as the multiplier norm of
M(6) on LP(R); finally we apply Lemma 3.2 to M(6) as a multiplier on L?(R).

In this section, we take A = 1 + i-y. As in Section 2, it suffices to deal with the
operator corresponding to the multiplier v,(6), where

1
@) = [y - i) dy.
0

Let p > 1 be such that p*7/2 = 1. We change the definition of v, ; slightly by setting

-3+l

Vaj =/ o YU Fy —i6) dy.
p_J

For simplicity of notation, we assume v log2 = 2, so that p = 2. Then vy ; is as
in Section 2. The argument for general p > 1 is then almost the same as for p = 2,
which we now give.

Since again
o0

f(y_zg) — Z n2 e—21rn2y e21r12n29,

n=-—0oo

the Fourier coefficients, cg (vy,;), satisfy

—6 82/27

£2
lee (na5)] < Az e

for some § > 0. Hence

> lee(was)| < A,
4

and the operators corresponding to the multipliers v, ; are uniformly bounded on
P, forl < p<oo.
We wish to show 3722, vy ; is'bounded on ¢7 for 4 < p < 4, when A =1 + ir.
Put
1 2w /2 1
(6) = —= —— e dy,
O = e ey VG Y

s X% 8 (e (- 0) e (-5)

_7_ LR .s+l a=1
s<E-10 29<q<20Ht o=
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As in Section 2, ¢ is an appropriate large number. Further, 1 is an appropriate
smooth function which is one for ~1 < § < 1 and is supported in [-2,2]. H) ;(#)
differs from I;(f) of Section 2 in that in H, ; we have the cutoff of function
¥(c2?%(0 — a/q)) rather than x(27/22%(8 — a/q)) of I;. First observe that

3.1 lva,; (@) — Haj (0) [|lne < A27%

for some § > 0. Using Proposition 2.1, we see that for § in a major arc,
|I/,\,j(0) - I](o)l < A2-3/4,

Next, note that since s < j/2 ~ 10, on the support of x(27/22°0) — (c22°9),
6] > 272 so

g-i+t y,\/z

-3

2 Y2
- /1 (y — 1216)3/2

S A23s/2/23j/2 .

LA
= @0y

Since also | S(a,q)/q] < Ag~'/2, then on the major arcs,

| 1; (0 ~a/q) — Hx; (6 —a/q)]

, 4 1 il .
S AYHAYT 2R N o N X(2/72°(0 - a/q))
s<4 28<g<2i+! q oL,

IN

A27%/4 N 90 < 4TI,

8<j/2
Thus, on the major arcs,
lva,; (6) — Hxj (6) | < A279/%,

On the complement of the major arcs, |vx; (§)| < A279/4, as we have seen in
Section 2, and H) ;(#) = 0. Thus (3.1) is proved.
Let v
Hasf = (Hri(0)F(0)) .
We also define

Moif = (ms@F®) and Nf = ()7 6).
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‘We shall show that for A = 1 + i+,

3.2) N(Haif) llee < Ap(Q+ 1/|1VD) || fller, 4/3 < p < 4,
and
(3.3) IO #Hai Hllee < Ap (M +1/1MDIIflles,  4/3 < p < 4.

2

The estimate (3.2) together with (3.1) and the fact that the operator correspond-
ing to vy ; is uniformly bounded in ¢7 shows by interpolation that for $ < p < 4,

[ (Hag = Nos) 1) [l < A2 | £leo

Thus 3=, (Mx,; — Ha,;) is a bounded multiplier on ¢, 4 < p < 4. So matters are
reduced to proving (3.3). We write

Hyj= Y Hxje

s<j/2-10
where

Bue@= Y - > Lswou(er (9-2))u(o-2).

] +1 =1
2°<q<2* ot

Also set v
Hyjof = (Hisins(0) F(6)) -

As in Section 1, for s fixed, the supports of the functions v¥(c2%*(6 — a/q)) are
disjoint. Thus

(3.4) 1Hasllpoe < AL+ 1/|y]) 2752

and

(35) [ #asa] . < A+ 1712
J

Thus, by interpolation with the £2 results given by (3.4) and (3.5), it suffices to
prove that for 1 < p < oo,

(3.6) |(HeyjsPlles < A+ 1/17) 272 fller
and

37 |3 Hoio 1|, < AU+ 1/D27 fller.
J

‘gp
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The estimates (3.6) and (3.7) follow from Lemma 3.4. The intervals I are
(a/g —27%, a/g+27%),1<a<gq (a,q) =1,2° < g < 2%, and the B;
are S(a,q)/q, so that N < 2% and B < ¢/2°/2. In proving case (3.4), we take
m(0) = p;(0), which is easily seen to be a bounded muitiplier on ¢7(Z), 1 < p < o0,
uniformly in j. To prove (3.5), we take m(6) = 3, p;(f), which for A = 1+ iy
is seen to have norm at most c(p)(|7| + 1/}v|) by the Marcinkiewicz multiplier
theorem. This concludes the proof of Theorem 2.

4 The operators J,

We indicate here the changes needed in the arguments of Section 2 and Section
3 to prove Theorems 3 and 4.

To prove Theorem 3, the critical result is that for 2 <A< % 1/p + 1/p =
land 1/p —1/p' = (1 —A)/3, we have

95 flleer < Allfller -

Write

oo

TF(6,8) = v (6,9) f(6,0), Wwithu,(6,9) = Z g2min®d g2ming,

As in Section 3, write

#) =Y i (6,9).

=1

Further, for s < j/2-10,2° < ¢<2°t,1<a<q,1<b<qand (a,q) =1 we
introduce major boxes I;(a, b, q). Here,

Ii(a,b,q) = {(6,6) : |0 — a/q| < 1/2°27/% |¢ — b/q| < 1/2q}.

For (,¢) € I;(a,b,q),

4.1)

VA.j(O, ¢) =

) 2.277 y /21 T (¢—b/g)?
Wowan [, gitram == (G 5o va) »

plus error terms. Instead of Proposition 2.2, we have
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Proposition 4.1. For ¢y and ¢ integers,

q q
> Y S(a,q,b) e 0T e 2milba) < AP,

=1 —
(ep=1 b=1

The proof of Proposition 4.1 is simpler than the proof of Proposition 2.2, as is seen
by first summing on b.

The interpolation is now an #2 to ¢2 estimate for ®\ = 1 and an £ to £
estimate for #X = —2. The contribution from the error terms in (4.1) and from
the complement of the major boxes is treated just as in Theorem 1. However, to
study the contribution of the main term in (4.1) to the major boxes, we further
decompose I;(a, q,b). We write

i/2—s

Ii(a,0,0) = | I} (a,b,9),

r=0
where forr > 1
I7(a,b,q) = {(6,9) : 27/2 < |6—a/q < 27"/, |6 —b/q| < 1/2¢}
and
I9(a,b,q) = {(6,9) : 10 —a/q] < 1/27,|¢—b/q| < 1/2q}.

We must then consider for each fixed r and s the contribution for all ¢, with
2% < q < 2*+1, Call the corresponding operator D) ,.,. We then obtain for R\ = 1

Dars flle < 27722792 f]

and for R\ = -2
IDrs fllee < 2722 F |-

Thus, for RA > £, we have by interpolation
IDars f llepr < A2707 275 || £ o

for1/p + 1/p' = 1and 1/p — 1/p/ = (1—))/3. We then add in r and s, and
conclude as before.

The proof of Theorem 4 is similar to that of Theorem 2, except for the following
change. In applying Lemma 3.1, we dealt with 22 intervals. Now we need the
two-dimensional version of Lemma 3.1 (due to Journé [J]), which in this case we
must apply to 232 boxes.
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