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1 Introduct ion 

In this paper, we study discrete analogues of  fractional integral operators. The 

key examples are given by the operators 1~ and J:,, defined initially on functions 

on Z and Z 2, by 

I ~ f ( m ) =  E f ( m - - n  2)n -A and J~ f ( ra l ,m2)= ~ f ( m l - n ,  m 2 - n  2)n -A. 
n----1 n = l  

Let us deal with I~ first. Its continuous analogue is the operator 

dt 1 F(x - u) du F:  ~ F ( ~ - t 2 )  t~ - -  ~"---T; 

and, as is well-known, this operator is bounded from Ln(IR) to Lq(iR), wherever 

1 < p < q < oo and 1/p - 1/q = (1 - X)/2. On the basis of  this, it is a reasonable 

guess that Ia is bounded from P'(Z) to ~(Z)  wherever 1/p - 1/q = (1 - X)/2 (to 

which one must add the further necessary conditions that l ip  > 1 - X and 1/q < )0. 
While it is easy to make this conjecture, proving it seems quite difficult. There 

is a similar conjectural statement for the operator dA, but the numerology of  the 

exponents is a little different. 

In [SW2], we began the study of  these operators. Further advances were made 

by Oberlin [O]. These recent results have inspired us to return to the problem, and 

this work has allowed us to go a substantial way in completely resolving these 

questions. We now sketch some of  the background. 

The multiplier corresponding to I:~ is m:~(O) = ~n~__l n -~ e 2*rin2o, that is, 

I:~-"f (0) = mx(O) f(O). In [SW2], we used the Hardy-Lit t lewood circle method to 
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show that i f  1 < A < 1, rax(O) is in L r,~ with r = 2/(1 - A). This implied the 

following. 

T h e o r e m  A.  For �89 < ~ < 1, Ix is bounded from gP to e q provided 1/p - 1/q = 

( l - A ) / 2 ,  1 / q < ~ , l / p >  1 - A a n d p < _ 2 < _ q .  

Interpolation with the trivial result that 11+, is bounded f rom gP to gP showed that 

for 1 < A < 1, Ix is bounded from e ~' to s i f  1/p - 1/q > (1 - A)/2, 1/q < )~ and 

l i p  > 1 - A. We obtained some results for 0 < A _< �89 by a further interpolation. 

Simple examples show that for 0 < A < 1, the conditions 1 / p -  1/q >_ (1 - )~)/2, 

l i p  > 1 - A and 1/q < A are necessary. 

Oberlin's result is the following. 

T h e o r e m  B.  For 1/p - 1/q > (1 - A)/2, 1/p > 1 - )~ and  1/q < A, 0 < A < 1, 

I~ maps e" to eq. 

Theorem B substantially improves our results in the region 0 < )~ < �89 (although it 

does not contain the case of  equality for 1/2 < A < 1 in Theorem A). 

In fact, after Theorem B the only remaining question is what happens in the 

case of  equality when 1/p - 1/q = (1 - A)/2, It should be noted that i f0  < A < t 
- - 3 '  

these three conditions are equivalent to the two conditions l i p  > 1 - )~ and 1/q < A. 

Figures 1, 2 and 3 illustrate this. 

Theorem B shows that the open regions in the lower right-hand comer  of  the 

above figures correspond to p's and q's for which Ix is bounded, improving our 

results for the case 0 < A < �89 and solving the problem for 0 < A < �89 Oberlin's 

arguments do not use the circle method, and his result motivated us to reexamine 

and substantially refine our arguments using that method. We prove the following 

result. 

T h e o r e m  1. For 0 < A <_ �89 1/p - 1/q = (1 - A)/2, 1/p > 1 - )~ and 1/q < A, 

11~r~Yli~q __ all:ll~,. 

This conclusion goes beyond the previous results for A's with ~ < A < �89 It 

completely settles the question for 0 < A <_ I/2. 

If one knew that 11+~ were bounded on e p, 1 < p < c~, with suitable bounds 

depending on 7, interpolation with the results in [SW2] would fully resolve the 

problem, i.e., the remaining cases when 1/2 < A < I. We give a new result in this 

direction. 

T h e o r e m  2. For 4 < p < 4, 
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! = I - A  
P 

I _ ! = I - A  
) q 2 

l_= A q 

P 

Figure l .  �89 < A < 1 

Theorem 2 is an improvement over the result in [SWl]. 

results of [SW2] then shows the following. 

C o r o l l a r y  of  T h e o r e m  2. For i < A < 1, 

Interpolation with the 

III~flleq ~ All file, 

provided 1 / p -  1/q = (1 - )0/2, 1/p > 1 - A, 1/q < )~, and 1/p < ~ and  1/q > �88 

So the remaining boundedness question concerns the two half-open solid line 

segments on the line segment 1/p - 1/q = (1 - )0/2 in Figure 4. 

The situation for Jx is similar with a different range of  exponents. The multiplier 
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is 
O 0  

m (o, r  = e e 
n = l  

In [SW2], we showed that for ~ < A < 1, ma(O,r is in L r,~176 with r > 3/(1 - A). 
This implies Theorem C. 

T h e o r e m  C. Suppose ~ < A < 1, 1 / p -  1/q = (1 - A)/3, l i p  > 1 -A,  1/q < A; 
then d~ is bounded from e p to ~q provided p and q satisfy p < 2 <_ q. 

Interpolation shows that Jx is bounded from s to ~ provided �89 < A < 1, 1 / p -  1/q > 
( 1 -  A)/3, 1/p > 1 -  A and 1/q < A. 

Oberlin [O] proved the following result. 
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T h e o r e m D .  Suppose O < A < 1, 1 / p - 1 / q  > ( 1 - ) ~ ) / 3 ,  l / p >  1 -  A and 

1/q < A; then Jx maps gP to ~,  

Again,  s imple  examples  s h o w  1/p - 1/q > (1 - A)/3, 1/p > 1 - A and 1/q < A are 

necessary condit ions  for Ja to map @ to gT. Oberlin's result so lves  the gv -> gq 

boundedness  quest ion for p and q satisfying l i p  - 1/q > (1 - A)/3, but not  in the 

case  where  > is replaced by = .  We settle this quest ion for 0 < A < 1 - -  2 ~ 

T h e o r e m  3.  For 0 < A < 1 
- -  2 '  

IIJ~flle~ -< Apllflle, 

provided l i p  - 1/q = (1 - X)/3, l i p  > 1 - A and 1/q < )~. 
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Figure 4. 

Note that Theorem 3 goes beyond Theorem D only when IX > ~. 

We shall also show that the method of the proof of Theorem 2 yields 

T heorem 4. IIJx§ fill, < ATIIflle~ for  ~ < P < 3. 

(This result was obtained by a different method in [SW1].) We then have the 
following. 

Corol lary of  Theorem 4. For �89 < IX < 1, 

IIJxflleo -< All file, 

provided 1/p - 1 / q  = (1 - a ) / 3 ,  1 / p  > 1 - ),, 1/q < ),, and 1 / p  < ~ and 1/q > I" 
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We now describe somewhat imprecisely the new ideas involved in the proofs. 

As before, we begin by writing the multiplier of  the operator I~, rex(0), as 

approximately 

(1.1) 

with 

f 2-j+1 jZ(y _ i8) y~12 dy 
j = l  J 2 - J  

oo 

= Z n= 

where ~: is a derivative of  a O function. Next, consider a Farey dissection (of  level 

2 j/2) in terms of  fractions aj/qj,  (aj,qj) = 1, 0 < aj < qj, and qj < 2 j/2. We apply 

this dissection to the j th summand in (1.1); and, using a well-known approximation 

to O which results from its transformation formula, we get modulo error terms 

rex (O)  ~ 

�9 2 - a + 1  

E E 1 S(aj ,qj)  Xqj(O - aj/qj) f2 (y - i(O - aj/qj)) -a/z yX/2 dy. 
q~2J12 QIq=~jlqj qJ -~ 

(a,q)=l 

Here Xq~ (O - aj/ax) = x(qj2J/2(O - aj/qj) ), with X the characteristic function 

of the unit interval. The S(a, q) are the Gauss sums. 

In our previous paper, we used essentially this formula to get an estimate of  

the size of Imx(O)l, which was enough to prove our restricted results for eP -+ gq 

boundedness. If we want to go further, we must analyze not only the size of 

mx, but in effect its cancellation properties which will ultimately determine the 

boundedness of Ix. We do this in two steps. 
First we rearrange the sum above by focusing on the size of the denominators 

qj which occur. That is, for each s we consider those qj's where 2" < qj < 2 ~+1 

and define, using the above summation, Bx(s, O) by 

.x(s,o)= E E E -  
2 �9 < q < 2  a+ l  j q j = q  

Thus, essentially, 

mx(o) = sx(s,O). 
s--.O 

We let Bx(s) denote the convolution operator whose multiplier is Bx (s, 8). It 

turns out that the crucial estimates for Bx(s) (and hence Ix) are for A near �89 We 

obtain these by interpolation of  two estimates. First 

ItBx(s)ll,=-~t~ _< A~ 2 -*/2, when ~()~) = 1, 
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which again is merely a size estimate of  Bx(s, 0). The second estimate needed for 

the interpolation is 

IIBx(s) Ilo-~eoo ~ Ax,. 2 (x+")~, for N()~) = -1 ,  

and any ~ > 0. 

This is not an estimate of the size of  the multiplier Bx(s, 0), but the size of  its 

Fourier coefficients, and is the most delicate part of  the proof. Very curiously it 

involves A = -1 ,  and for this value of  A we know of  no simple interpretation of  the 

operator Ix. Once these estimates have been proved, we get the desired results for 

the main contributions to rex(O). There are also two error terms, but these can be 

handled by somewhat similar but cruder estimates, which will then complete the 

proof of  Theorem 1. 

2 The  proof  of  T h e o r e m  1 

For any complex number A, define the operator Ix as 

o~ f ( m  - n ~) 
Ixf(m) = Z n x 

n----1 

The main job in proving Theorem I is to prove that for �89 < A _< 1 (especially when 

A is close to 1) 

(2.1) IIIHIItv < AIIfll~p, 

whenever I /p+ 1/ff = 1 and 1 / p -  1/p' = (1 - A)/2. Theorem 1 then follows from 

the first Main Theorem of  [SW2], Theorem A above, by interpolation. Now 

Ixf(O) = m~,(o)f(o) with rex(0) = Z e2nin2O n-X" 
n : l  

If  ~A < �89 rex(0) does not exist as a function but is a well-defined distribution. 

Then slightly modifying the discussion in [SW2], we write 

fo ~176 e-2nnZy yX n-X = c( :gn 2 / :  dy 

Then 

fo rnx(O) = c(A) y~ Y(y  - iO) dy with .T(z) -- n 2 e -2nn2z 
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for ~ z  > 0. It is clear that the contribution o f  f ~  to mx(8) has an absolutely 

convergent Fourier series and thus corresponds to an operator that is bounded 

form F to ~ whenever q > p > 1. Thus it suffices to consider the operator  with 

multiplier 

f01 v~ (t)) = yX/2 j:(y _ i•) dy = Z v;~,j (8), 
j = l  

where 

~ 2- j+1  
y~/2 .~(y _ iO) dy. v~,j(O) = -J 

q <_ 2 -j/2,  (a,q) = 1, and 

1 S(a, q) + Ey,q (0 - a/q), 
27r 23/2 " q(y - i(O - a/q))3/2 

Following the lines in [SW2] we shall prove 

P r o p o s i t i o n  2.1.  For 2-J < y < 2 .  2 - j ,  

I 0 -  a/ql < 1/q2 j/2, 

( 2 . 2 )  . r ( y  - i a )  - 

where 

Aq 1/2 e_5m~ 
Ey,q(O) = E S ( a , q , m )  hmqy  and Ihm,q,~(O)l < 

mr q ' ' 

with 6 > O, f o r  101 _ 1/q2 j/2. 

Here 
q q 

S(a,q)  = Ee21rir2a/q and S(a ,q ,m)  = E e21rir2a/q e21rimr/q" 
r = l  r = l  

We postpone the proof  o f  Proposit ion 2.1. 

Motivated by Proposition 2.1, we define major arcs, for a fixed j ,  as follows. 

For  0 < s < j / 2  - 10, 2 8 _< q < 2 8+1, and (a, q) = 1, set 

b ( a ,  q, s) = {0 :10  - alql  <- 1/2825/2} �9 

We also define 

I j (1 ,1)  = {0 : 0 < /9 < 1/22 j/2) O {0 : 1 -  1/22 j/2 < O < 1 ) .  

The contribution from I j ( l ,  1) to our operators may be treated in the same manner  

as the other intervals; however, the discussion o f  Ij(1,  1) causes some notational 

inconvenience, so we omit it. Note that since s < j / 2  - 10, the major  arcs 

corresponding to a fixed j are disjoint. For if 

Ij(al,ql,Sl) N I3(a2,q=,s2) ~ 0, 
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we would have 

So 

ql q2 q2 

(11) 
_< ~ max 2~ , ,2  ~2 . 

2 - 8 ' 2  - s2  < 2 - j /2  max (2  - s '  , 2 - 8 2 )  , 

which contradicts the fact that sl and s2 are less than or equal to j /2 - 10. We then 

decompose v~,(O) into three pans: 

vx(O) = P~,,l(O)/27r23/2 + P,x,2(O) -4- Px,3 (0). 

Px,I(O) is the contribution to the major  arcs f rom the main term in (2.2), that is, 

S(a, q) /q(v - i(O - a/q) ) 3/2. The term Px,2 (0) is the contribution f rom Ey,q(O-a/q) 
in the major  arcs, and Px,a (0) denotes the contribution f rom the complement  o f  the 

major arcs. 

In analyzing the three components  of  vx (0), we deal with a double summation: 

in the index j arising f rom the decomposi t ion 

oo - 2 - i +  I 

s y,~/2 y(y _ iO) dy .(o1 = -, 

j=l 

and the index s, which measures the size of  q for the fraction a/q. For the term 

Pa,1, we carry out the summation in j first and then the summation in s. For  both 

Px,2 and P~,3, the summation is in the reverse order, first in s and then in j .  

Let  X denote  the characteristic function o f  [-1,1] .  Then,  for  0 < 0 < 1, 

oo ~--]0 2s+ 1 

P ,l(O) = Z E 
j = l  s = l  q ( j ) = 2  s 

OQ 

--Z Z 
s = l  j >2s+20  
o~ 

= Z 
s = l  

q(J) 
S(a(j),q(j)) 

a(j)=l q(J) 
(a(j),q(j)=l 

�9 : 2"2-j 

q(J) ] ] 

y~/2 
a(J) ) ) 3/2 
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where 

Bx(s, O) = (o ~ ,  q q~__l S(a'q) " ~ X q(j) " 
j >2a-F20 (~,q)=l .~)=. 

q(3)=q 

~2.2-J yM2 
-j 

We remark that because of  the cut-off  function X(2J/2 2" (0 - a(j)/q(j))), the 

functions Px,l(0) and Bx(s,O) are supported in (0, 1). To be precise, we  should 

consider these functions extended to all o f  R to be periodic with period 1. Similar 

remarks apply to other functions of  0 below. 

Next note that for a fixed s (but varying j with j > 2s + 20) the supports 

of  the functions X(2J/22~(O- a(jl)/q(jl))) and X(2J/22"(O- a(j2)/q(j2))), with 

a(jl)/q(jl) ~ a(j2)/q(j2), are disjoint. For otherwise we would have 

1 < la(jl) a(j2)l < 2 ( 1  1 ) 
422" - q(Jl) - q(j2) - ~ max 2/X/z, 2j2/2 . 

But j l ,  j2 > 2s + 20, so this cannot happen. Thus, 

2~+1 ~ ~" i 2-2a-19 
B~(~,O) = ~ S(a,q) . y~/~ 

q~2"  a= l  Lj (,,O) (a,q)=l 

dy 
{y - i(O - a/q)}a/2" 

Here p(s, 0) = 2-J ,  where j is the largest integer such that 2-J  > 22s0 z. So 

22"02 < p(s, 0) < 2.22~02. If  p(s, O) > 2 -2"-19, the integral is interpreted to be 0. 

Note  that as a result we can always insert the factor X(C22"(O - a/q)) in front o f  the 

integral in the above sum for an appropriate c, e.g., e = 10. 

We set 

u ~ , , f  = (B~(~, 0 ) / ( 0 ) )  v 

Our goal is now to show that for �89 < I < 1, 1/p + 1/p' = 1, 1/p - 1/p' = (1 - I ) / 2 ,  

(2.3) llB~,,Jlle~, ~ A2 -~(~)" Ilflle~ 

for some positive 5. For then we can add in s to show that the operator corresponding 

to Px,1 satisfies the estimate o f  (2.1). 

We prove (2.3) by  complex interpolation. In fact, we show that Bx,, extends to 

an analytic family of  operators in - 1 < ~ I  < 1. 
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For A = 1 + i'r, we have 

(2.4) IIB~,~flle2 < A2 -~/2 (1/l~yl + 1)llfll~2; 

and for A = - 1  + iA, and any ~/> O, we have 

(2.5) lIB.,8 file oo ~ An 2 ~(~+~ 

The estimate (2.3) will follow from (2.4) and (2.5) by complex interpolation 

where we interpolate the operators f ~ (A - 1) B~,,f. 
To deal with B~ (s, 0), we consider first 

2-2s - l g  P 
Ua(s,O) = X(c22S0) [ yX/2 (y _ i0)-3/2 dy. 

Jp (s,O) 

Here U~(s,O) = 0 if  p(s,O) > 2 -2s-19. 

It is clear that U~(s,O) is integrable as a function of  0 for IRA > - 1  and that if 

g1(0) and g2 (0) are trigonometric polynomials,  f U~ (s, 0) gl (0) g~ (0) dO is analytic 

in iRA > -1 .  

In order to continue U~ to iRA > -1 ,  we split U~ into two parts. Let r be 

a smooth fuflction supported in 101 < 2 with r = 1 for lel _< 1 and choose a 

constant Cl (cl = 2c will do) so that 

r  x(cO) = 0(c10) .  

Then 

where 

and 

u~(~,o) = ~]~, l (S,o)  + u~,~(s,O), 

2- -28-19  

UA,1 (8, O) = r 22s0) ~0 Y~/: (y - i0)-3/~ dy ,  

~--2s-- 19 

U:~,2(s,O) =X(c22so) (1 - r 22s0)) fp y)~/2 (y _ i0)-3/2 d~ 
(s,O) 

- r 22"0) [.r y~/~ (y _ io)-3/2 @ 
dO 
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As with Ux, it is clear that U.X,1 and Ua,2 are integrable if ~A > - 1  and, for  gl and 

g2 trigonometric polynomials,  f Uxj gig2 are analytic functions o f  A in B~A > - 1  

f o r j  = 1,2. 

We need the following lemma. 

L e m m a  2.1.  (i) For j = 1,2 and ~A > -1, U~j(s,O) is supported in 

101 < 1/c2 2~ = 1-!6 2 -28. 

(ii) For j = 1,2 and ~A = 1 + i7, the functions U~j(s,O) satisfy 

IUa+~,~(s,O)l <_ A(1/171 +1).  

(iii) For each s ce(Ux,l(S,O)) (originally defined for  B~A > -1 )  extends to a 

function analytic in ~A > - 2  and for  A > -1  satisfies 

IcdU~,l(S,O))l <_ A. 

(Here ct denotes the Eth Fourier coefficient.) 

(iv) For 0 # O, 

U-l+i-r,2 (s,0) = lim Ua,2(s,O) 
,,k--~ - 1 +i-y 

exists, and there is an L 1 function h(O) such that, for  ~A > -1, 

IU~,2(O)l < Ah(O), 

where the constant A is independent of  A. 

P r o o f  o f  L e m m a  2.1.  (i) is clear. To prove (ii), make the change of  variables 

y = y'O in each of  the integrals for Uxj ,  j = 1,3, 4 to see that 

<_ I fnJ(~ y�89 
dy I IU~,j (8,0) 1 A tjAj(O) (y 4-i)3/2 I" 

To estimate the integral, it suffices to observe that 

and 

Therefore, 

ia ( fa )  yO+i-y)/2 dy . y-2 (y :~-~3/2 -- y-l+,-r/2 dy + 0 dy , 

f 2 - 1) A y- l+ i~  dy = -~7 

IVl+i%j (8,0)1 _~ A(1/["/I + 1). 
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We turn to (iii). Since Ux,1 has small support, the integral over [ -  �89 �89 defining 

its Fourier coefficients, may be replaced by an integration from - o o  to oo. Then 

cg(U~,,1) dl,s * e A 

where dl,~ is the Fourier transform of  ~(C 1 2 2s')  evaluated at g, and 

OC 2 - 2 s - l g  

e~e,8 = f e-2'~ie~ YA/2(YiO)-3 /2dy  �9 

Since ~ e  Ide,*[ < A, it suffices to show e~,, extends in ), to a function analytic 

in ~A > - 2  and, for ~A _> -1 ,  

lee~,,I < A. 

To study e~, s, we use the identity 

(27r)a/2 

f_ '~ e-=~'~~ (y - io)-~/= dO = r (~)  
o o  

0, 

_ _  ~1/2 e - 2 , ~ , .  { > O, 

~_<o. 

(This identity can be checked by taking the Fourier transform of  the right-hand 

side and using the Fourier inversion formula.) Thus 

2 - 2 m - l g  O~ fo f ~ e -ZTr ieO(y_ iO) -a /2dOdy  

f A~l/2 f :- , , -1,  yA/2 e-2,reVdy, if • > 0, 

0, if g _< 0. 

It is clear that eeX, s is analytic in ~RA > - 2 ,  and a change of  variables shows that 

l ee~,sl < A fo r~A _> - 1 .  

We consider next (iv). The limit clearly exists for 0 ~ 0, and we turn to the 

domination o f  U~,2 by an L 1 function h(O). In the support o f  (1 - 0(c122"0)), p(s, 0) 
2s 2 (which is roughly 2 0 ) is greater than c22 -2" for a positive e2. Thus for NA _> - 1 ,  

2- -2a- -19  

I u~,3(o) I _< AX(C22"O) (1  - V'(c122~0))~12-,. y - l / 2  ly - io1-3/u dy  

<_ Ax(c22SO)22s, 

and the L 1 n o r m  of  this function is bounded. 
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Next, for N,X > -1 ,  

fo(s,o) 
[U)~,4(s, 0)1 <_ 1~b(c122"0)1 y-l~2 [y _ iO[-al: dy 

dO 

< A Ir 0 -3/2 (p(s,o)) a12 

< A~(c122"0) 8 -1/2 2". 

The right-hand side of  the above inequality clearly has bounded L I norm, and 

the proof of  the lemma is complete. 

From [.emma 2. l ,  we see that U~,s, defined originally for ~RA > - I ,  extends 

to a family of  distributions in ~RA _> - 1  and, in fact, defines an analytic family o f  

operators in - 1  _< ~A _< I. For if gl and g2 are trigonometric polynomials,  the 

function 

f U~,s gl g2, 

which is an analytic function of  A for ~A > - 1 ,  is seen to be continuous up to 

~A -- - 1 by using Lemma 2.1 and the dominated convergence theorem. To prove 

that (2.4) and (2.5) are satisfied, we need the following proposition. 

P r o p o s i t i o n  2.2. (i) IS(a,q,m)[ < Aq U2. 
(ii) For any ~1 > O, there is a constant A n such that 

Z I ~ S(a'q'm)e2'~l~ < A'~M2+~' 
a=l l<_q<_M 

( a , q ) = l  

for all M, m and t. 

Here we only need conclusion (ii) when m = 0, so that S(a, q, m) = S(a, q); 

later we require conclusion (ii) for any m. The assertion (i) is well-known, see 

[W]; we prove conclusion (ii) later. 

Now 

B~(s,O) = Z S ( q )  U~ s,O- . 
q = 2  �9 a = l  

(a,q)=2 

So since Bx(s, 0) is a finite sum of  translates of  Ux(s, 0), it follows that Bx,, is an 

analytic family of  operators in - 1  < ~A < 1. Conclusion (i) of  Lemma 2.1 implies 

that the supports of  the Ux (s, 0 - a/q) are disjoint, so conclusion (ii) of  L e m m a  2.1 

and Proposition 2.2 imply 

IB~+~.~(s,O)l <_ A ( 1  + 1/1~rl)2 - ' /2 .  
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Thus 

IIBI+~ flle= 

which is (2.4). Also, 

< A (1 + Uh'l) 2 -8/2 Ilfllt~, 

2~+1 

c~ (B_,+, . ,  (~,01 = ct (u_~+,.,(~,o)) �9 
q_--2 �9 a=l  (a,q)=1 

S(a, q) e2~rit 9 . 

Thus conclusions (iii) and (iv) of Lemma 2. i together with Proposition 2.2, part 

(ii) imply, for any 77 > 0, 

let ( B - l + i - r  (g, 0 ) ) [  < A,720+n)s. 

Thus 

giving (2.5). 

Px,1 �9 

We now turn to Px,2: 

where 

IlB-l+er s -< An 20+~ 
This concludes the proof of (2.3) and completes our discussion of 

P,x,2 (0) = ~-'~ PJ ~,,2 (0), 
j = l  

j /2 - -10  2 a+l 

Z Z ! 
m = - ~  s = l  q = 2  a q 

m~O 
q 

with hm,q,u(O) a s  in Proposition 2.1. We shall show that for NA = �89 + e, 

(2.6) IIFff,,= (0)IIL~ ~ A2 -~j ,  

so that 

II(P~,2 ])Vile2 _< A2-~J  Ilfllt2, 

and for ~, \  = e, and any ~ > e, 

(2.7) Ict J ~J 2vJ, (P~,~)I -< A, 2- 

so that 

II(eL])~litoo < A~ 2-~J 2.J Ilfilt,. 
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We can then choose y = e/4. By interpolation, this will show 

p j  v , " '  I1(x,~Y) IIt~ -A2-~311II le  . 

whenever ,k > 1~pC So, adding in j ,  we see that the operator corresponding to Px,z 

satisfies the estimate of  (2.1). 

To prove (2.6), we note again that the supports of the functions X(2J/z 2" (O-a/q)) 
(with j fixed) are disjoint. So 

A I/2"2-~ y�88 Ih,~,q,~ (o)1 dy 

< A2 23, 

since by Proposition 2.1 

e-SmZ 
Ihm,q,y (O)l < A ql/,;15/4 

To prove (2.7), observe that 

j / 2 - -  I0 2 s+ l  q 

p j  ,. 1 m) e 2~il 

m#O (a,q)=l 

So, using Propositions 2.1 and 2.2, we see that with A(q) denoting a bound for 

we have 

E S(a, q, m) e 2~i~a/q, 
(a ,q) - - I  

pj _ q-3/2 2-J/4 
s < j / 2 - - 1 0  q_<2 ̀ +1 

<- An 2-J/4 2-~J E 2s/2 2rls 
s< j~2 

_< An2 € 2-1J, 

which is (2.7). This finishes the discussion of  Px,2. 

We turn now to Px,a. For a fixed j ,  let 

j/2-1o q 
= U U U iu, o,q,s) 

s = l  2S_<q<2S+ 1 a=Z (a,q)=l  
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and let W3 be the complement  of  V~ in [_1,  1]. Then 

c~ 2.2-5 

= x,3 (O), where Xw 5 (0) f U(y - iO) dy. Px,3(0) ~ p j  p/,3(0 ) = yXl2 
J 2 - 5  

We prove that for ~ = 1 + i'y, 

I [ pJ _< 2-j/4,  (2.8) } ,+,~,3 (0)l A 

and for A = - 1  + i7, and any r7 > 0, 

(2.9) Icl(P_J1+i%3)l < An2�89 2 nil2. 

Interpolation and summation in j then shows that the operator corresponding to 

Px,a satisfies the estimate of  (2.1) and the proof will be complete.  To prove (2.8), 

we note that by Dirichlet's principle, for any 0 there are a and q with (a, q) = 1 

so that l0 - alq I <_ 1/q2 j/2 and q <_ 2 j/2. If  Xwj (0) ~ O, q > A 2 -j/2. Thus for 

)~ = 1 + i7, we use Proposition 2.1 to see that 

P J , 3 ( 0 )  < A2 -jla sup f2.2-5 dy _ y(1+i7)12  
0 J2-5 (Y -- iO) 312 

_2-5+I 
< A 2 -j/4 f dy 
-- J2-5 V 

< A 2 -j /4.  

To prove (2.9), we note that 

2.2 -5 2-2-5 

./2-:/ n J 2 - 5  

which has Fourier coefficient bounded by A2 j/2 when A = - 1  + iv. Thus to prove 
(2.9), it suffices to estimate the Fourier coefficients of  Ij(6) + IIj(8), where 

b(o) = 
1 q Z q E  

s_<~--10 2S--<q< 2s+1 (aa, q)l__l 

and 

Ib(o) = 

S(a,q)x (2J/22s (0 -- a/q)) 

: "2-j y(-- 1+i'r)/2 dy 1 
J2-5 [y -- i(O -- a/q)]  3/2 

E 
m 

m~O 

q 
Z Z 1 Z S(a,q,m) 

s<j/2--10 2S_<q<2 s+l  q .=1 - (a,u)=t 

-J y(--l+i'y)/2 hm,q,~ _ 
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Here the argument is similar to that used in estimating P)~,I. 
By Propositions 2.1 and 2.2, we have, for  any ~7 > 0, 

I~,(b) l -< An Z 
,<512 

<-An E 
~<_512 

2 - j + 1  

2 - ' .  2 (2+n)8 �9 IIx(2J/2280)IIL, �9 y~ 
d2-J  

2 -8 �9 2 (2+n)" �9 2-"  �9 2 -512 �9 2 j 

<_ A n 2 j / 2  2)7512 " 

I f  we use Proposit ion 2.1 and Proposition 2.2 again, we see that 

Ice(IIs) I < A n ~ 2-"  �9 2 (2+n)8 �9 IIX(25122"O)IIL, 2,12 [z-J+' dy 
- J2-~ yr/4 

s< j~2 

< A,~ Z 2-s " 2(z+'7)8 " 2-8 " 2s /2  " 2 - J / 2  23/45 

s<_j/2 

<_ A n 2 j/2 2n5/2. 

With this we have proved (2.9). This finishes the proof  of  Theorem 1 except  for  

the propositions, to which we now turn. 

P r o o f  o f  P r o p o s i t i o n  2.1.  The proposition is obtained by a small modifica- 

tion o f  arguments in [SW2]. 

y(y  + io) = ~ V ( y  + io), 1 ~ e_2~rnZ(y_i8 ) where G(y - iO) = 2--'~ 

Write 0 = a/q + B and n = mq + r to see that 

q 

a(u - io) = ~ d ~'r" a/q ar(u - iS) 
r=l 

with 
1 o o  

'1/I,~ - -  O0 

Now apply the Poisson summation formula 

1 1 o~ 

IT) ,= - -  O0 

Arguing as is [SW2], w allows us then to complete  the proof  o f  Proposi t ion 2.1. 
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In this regard, notice that if 1~1 < A/q  yl/2, 

( 1 )  
q2(y + i/3) > rh withr/>O.  

P r o o f  o f  P r o p o s i t i o n  2.2. To prove conclusion (ii), we show that for some 

A1 and A2, 

M q 

E E 
q = l  a = l  

(,~,q)=l 

S(a,q, m) e -2'tit ~ < A1 2 A2 log M / l o g  log M M 2. 

Let 

a(q, m, e) = 

First note that if q is a prime, 

E S(a ,q ,m)  e 2'~it 9. 
a = l  

(a ,q)=l  

(2.11) la(q,m,g)l < 3q. 

In fact, 

So 

q q 

a(q,m,~)  = E e2nir ~ E e21rir2 a e2~ril 9. 
r=] a=l 

(~,q)=l 

q q--1 

I (q,m,e)J _< EIEe  'r'ge2""  I 
r - -1  a = l  

q q 

= E ] E e 2 ~ i ' g e 2 ~ i ' 9 - 1 ]  
r = l  a = l  

q q 

r = l  a = l  
q 

- - -  q + ~ . ( , - , e ) ,  
r = l  

where n(r, ~) = q if r 2 =- g (rood q) and 0 otherwise. For a fixed s n(r, ~) # 0 for at 

most two values of  r, since if rl 2 - r~ (rood q), then 

ff -q : if, -~)(~,+~) -- o. 

Then since the prime q divides the product, it divides one o f  the factors. Hence, 
rl -- +r2 (modq). This proves (2.11). 
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Next, we note that if (ql,q2) = 1, 

(2.12) o'(qlq2, m,  s = o'(ql, m l ,  e) o'(q2, m2, e) 

for appropriate integers ml and m2. The proof of (2.12) is essentially contained 

in, e.g., [V], Chap. 2. 

Now let n = nl n2.- .n~,  with nj distinct. Then r < A21ogn/loglogn. This 

follows since the smallest integer with r distinct factors is r!. Thus, from (2.1 1) 

and (2.12), we see that i fq  is the product o f r  distinct primes, 

a(q, m, t) <_ 3 A2 ~ q. 

Let a* (q) = supm,e la(q, m, ~)[. For 1 _< q < M, write q = qlq2, where q2 is square 

free, and each prime occurring as a factor of ql occurs at least to the power 2. Then 

since a*(q) < a*(ql)a*(q2), 

M M M/qt M 
,o M tr* (ql) 

O'*(q) ~ ~ O'*(ql) ~ tY*(q2) ~ m 13 a2 ~ M 2 ~ ql 2 
q=l ql=l q2=l ql=l 

Conclusion (i) implies a* (ql) < A q~/2. So it suffices to prove 

M 1 
(2.13) ~ ql/2 < A(I~ 

q=l 
each prime factor of q 

occurs to the power of at least 2 

for some N. 

But the sum on the left-hand side of (2.13) is dominated by 

II 
P. 

p r t c n e  
p<_M 

Since  Ep<M 1/p 
products. 

1 1 1 ) 
1 + - - 4 -  + +""  < H 

p p r t ~ n e  
p<_M 

< A loglogM, (2.13) follows by taking the logarithm of the 

3 T h e  p r o o f  o f  T h e o r e m  2 

To prove Theorem 2, we need several lemmas concerning multiplier operators. 

L e m m a  3.1. Let Ik be a family of disjoint intervals on R and denote their 
characteristic functions by Xk. Define projection operators Ek by putting 

(Bkf)  ̂  = Xk 1" 

Then for2 < 19 < oo, I1(~ [Ekf[2) a/~ [[L,(R) < C(p)IIflIL,(R). 
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Lemma 3.1 is due to Rubio de Francia [R]. 

Here and in what follows, C and C(p) denote constants (the second depending 

on p), which need not be the same at all occurrences. 

L e m m a  3.2. For some p, with 1 < p < oo, let m(O) be a bounded multiplier 

on LP(]~) with norm A. Suppose also that ~b(O) is a smooth function supported in 

[-2,2], and that 11,I2,... ,IN are disjoint intervals on 1~ o f  equal length d with 

centers rk. Assume finally that B1 , . . . ,  BN are complex numbers with IBkl <_ B. 
Set 

N 

M(O) = ~ - ~ B k r  m(O--rk), 
k = l  

where c > 4. Then M(O) is a bounded Fourier multiplier on LP(~) with norm at 
most C(p)ABN 1/2. 

P r o o f  o f  L e m m a  3.2. We may assume 2 _< p < oo. Let 34 be the 

operator corresponding to M(O), Tk be the operator corresponding to 

Bkr  ( - ~ ) ) m ( O -  rk), S the operator corresponding to the multiplier 

r  Ek as in Lemma 3, and finally Vkf(x) : e-2~i~kXf(x). Then 

T k f  = Tk Ek f , so 

I.A/gf(x)] = Tk f (x)  

,6 

1/2 
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So, by the Marcinkiewicz-Zygmund Theorem, 

k = l  L p  

< A B  vfNC(p)Ilfl lL~ 

by Lemma 3.1, and Lemma 3.2 is proved. 

Next, suppose v(O) is a function on R supported in -�89 < 0 < �89 Define 

o o  

vp r(0) -- v(0 + n), 
n ~ - - O O  

so that Vper is the periodic extension of v. 

L e m m a  3.3. Suppose for  some p, 1 < p < oo, v(O) is a bounded Fourier 

multiplier on Lp(]~) with norm A. Then vpe~(0) is a bounded multiplier on gP(Z) 

with norm at most CA. 

See [MSW], w for the proof of and discussion of Lemma 3.3. 

Using this, we get the discrete analogue of Lemma 3.2. 

L e m m a  3.4. Fix p with 1 < p < oo. Suppose that re(O) is a bounded Fourier 

multiplier on Ln(IR) and that ~(0) is a C ~ function supported on [-2, 2]. Further 

assume we are given disjoint subintervals I 1 , . . . ,  IN of  [0, 1] having equal length d 

and centers r l , . . . ,  rN. Let c be appropriately large, e.g., c >_ 4. Set 

N 

M ( O )  =  (c(O - m ( O  - 

k=l  

with B1,. . . ,  BN complex numbers. Then M(O), given on [0, 1] but extended by 

periodicity to the whole line I~, is a bounded Fourier multiplier on eP( Z) with 

norm of  most A B  v/-NC(p). (Here A is the multiplier norm o f  m on LP(R) and 

B = supl<k< N [Bk[.) 

We wish to deduce Lemma 3.4 from Lemmas 3.2 and 3.3. However, M(O) 

is supported in [0, 1], so we are speaking of the periodic extension of  a function 
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defined on [0, 1], while Lemma 3.3 applies to the periodic extension of  a function 

supported in [-�89 �89 To deal with this point, set/f/(0) = M(O - �89 Then to obtain 

the desired bound on the norm of  the multiplier M on tP(Z), it suffices to obtain 

the bound for M(O - �89 on e~'(z). By Lemma 3.3, this is dominated by the norm 

of  the multiplier M(O - �89 on LP(R),  which is the same as the multiplier norm of  

M(O) on LP(R); finally we apply L e m m a  3.2 to M(O) as a multiplier on LP(R). 

In this section, we take A = 1 + i7. As in Section 2, it suffices to deal with the 

operator corresponding to the multiplier ua (0), where 

va(O) ---- yX/2 3:(y - iO) dy. 

Let p > 1 be such that pi7/2 = 1. We change the definition of  vx,j slightly by setting 

p-j+l 
~p y(1+i7)/2 JZ(y _ iO) dy. vA,j = -J 

For simplicity of  notation, we assume ~-,,/log 2 = 27r, so that p --- 2. Then vx j is as 
2 

in Section 2. The argument for general p > 1 is then almost the same as for p = 2, 

which we now give. 

Since again 
o o  

= Z 
n ~ - - O 0  

the Fourier coefficients, ct (ux,j), satisfy 

for some ~ > 0. Hence 

n 2 e-2~n2y e2nin20 

e 2 e_ ~ t2/2 ~ 
let (ux,j)l _< A 

Ice (u~,,j) l <_ A, 
t 

and the operators corresponding to the multipliers ux,j are uniformly bounded on 

tP, for 1 <p_< co. 

We wish to show Y~j=I v~,j is 'bounded on ~ for 34- < p < 4, when A = 1 + i7. 

Put 
1 j~2 2-j+~ yXl2 1 

#~,j (0) -- 27r V~  -~ (y _ i0)3/2 dy, 

and 

~_<�89 (a,q)=l 
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As in Section 2, c is an appropriate large number. Further, r is an appropriate 

smooth function which is one for - 1  </9 < 1 and is supported in [-2,2].  Hxj(O) 
differs from Ij(O) of  Section 2 in that in HAj we have the cutoff  o f  function 

r - a/q)) rather than X(2J/22s(O - a/q)) of  Ij.  First observe that 

(3.1) Ilvm,j (O) - H x j  (/9)IIL~ ___ A2-~i  

for some 5 > 0. Using Proposition 2.1, we see that for /9 in a major arc, 

I ,~, j( /9)-  b(0) l  _< A2-J/a.  
Next, note that since s < j /2  - 10, on the support o f  X(2J/2 2~/9) - r  

1/91 >- 2 - ~  so 

yA/2 

~ 2 y~/2 I A 
---- (y --/-~"0)3/2 <_ (2J0)3/2 

<_ A 23s/2/23j/2 . 

Since also IS(a, q)/qj < A q-1/2, then on the major arcs, 

I b (/9 - a / q )  - H x , j  (/9 - a / q )  l 

q 

s<~ 2"<q<2J+l = (a,q)=z 

_< A2 -3j/a ~ 2 ~ < A2 - j /4 .  
s<_j/2 

Thus, on the major arcs, 

lux,j (/9) - H:~j (/9) 1 <- A2-J /4 .  

On the complement of  the major arcs, Iv~,j (0) I < A 2 -j/4, as we have seen in 

Section 2, and H~,j(0) = 0. Thus (3.1) is proved. 

Let  
^ V 

= (/9)) 
We also define 

.hfx,j f = (u~ j  (/9)](/9))v and Afx f = (ux(/9)](/9)) v .  
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We shall show that for A = 1 + i7, 

(3.2) 

and 

II ( ~ j f ) l i e ,  _< Ap (1 + 11171) 11/11t,, 413 < p < 4, 

(3.3) ll(~_,7-tJ,.~f)ll~, <_ Ap(171+ ill71)llfllt,, 413 < p <4. 
J 

The estimate (3.2) together with (3. l) and the fact that the operator correspond- 

ing to v~j is uniformly bounded in e~' shows by interpolation that for ~ < p < 4. 

II ( (~ : ' .  - ~ ' .J)  f )  I1,. <- A 2 - ' ( "  Ilflle.- 

Thus ~ s  (Arxj - 7-U j )  is a bounded multiplier on ~ ,  ~ < p < 4. So matters are 

reduced to proving (3.3). We write 

where 

H~.~.~ (0) = 

Also set 

Hx j  = E Hxj,8, 
s< j/2 --10 

y] ~ q s(<,,q)V: c o- .5 o- . 

2o<q<2,+1 (o?q~L, 

^ V 

~7,j,sS = (~l+i.y,.(0)f(O)) . 

As in Section 1, for s fixed, the supports of the functions r - a/q)) are 

disjoint. Thus 

(3.4) IIn~,~,,llL~: -< A(1 + 1/171)2 -~/~ 

and 

(3.5) E ~ x ' J ' "  L~ < A(1 + 1/171)2-'/L 
J 

Thus, by interpolation with the e 2 results given by (3.4) and (3.5), it suffices to 

prove that for 1 < p < ~ ,  

(3.6) 11(7-t~,j,,f)llt,, _< A(1 + lll,,/I)2~l~llfllt,> 
and 

(3.7) 
J 

_< A CI71 + 11171)2 ~/~ Ilf l l t,. 
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The estimates (3.6) and (3.7) follow from Lemma 3.4. The intervals Ik are 
(a/q - 2  -28 , a / q + 2 - 2 8 ) ,  1 < a < q, (a,q) = 1, 28 < q < 28+~, and the Bk 

are S(a, q)/q, so that N < 228 and B < c/28/2. In proving case (3.4), we take 

re(O) = #j(0), which is easily seen to be a bounded multiplier on ep(z), 1 < p < cr 

uniformly in j .  To prove (3.5), we take ra(O) = ~ j  #j(0), which for ), = 1 + i"/ 

is seen to have norm at most c(P)(171 + 1/171) by the Marcinkiewicz multiplier 

theorem. This concludes the proof of  Theorem 2. 

4 T h e  o p e r a t o r s  3~ 

We indicate here the changes needed in the arguments of  Section 2 and Section 

3 to prove Theorems 3 and 4. 

To prove Theorem 3, the critical result is that for ~ < A < �89 + 1/p = 

1 and 1/p - 1//4 = (1 - A)/3, we have 

IIJx file.' -~ A Ilflle.. 

Write 

J~'] (o, r = ~ (o, r ](o, r 
=r 1 

with vx(a, r = ~ ~-~ 
n=l  

e2~in20 e2Vinr 

As in Section 3, write 

~,~ (0, r = ~ ~,~,~ (0, r 
j = l  

Further, f o r s < j / 2 - 1 0 , 2 "  < q < 2 8 + 1 , 1  < a < q ,  1 < b < q a n d ( a , q )  = l w e  

introduce major boxes Ij(a, b, q). Here, 

Ij(a,b,q) = {(0,r : 10-  a/ql < 1/282~/2,1r b/ql < 1/2q}. 

For (0,r e Ij(a,b,q),  

(4.1) 

v~,A0, r = 

s(a,q,b)[ ( q J2-~ (y_i -~--_a/q)) l /2  exp - 7  (y--'i-(O----~/q))] dy 

plus error terms. Instead of  Proposition 2.2, we have 
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Proposition 4.1. For tl and s integers, 

q I 
E S(a, q, b) e -2'~i*1 ~ e -2'~ie2b/q < Aq 2 . 

a=l  b= l  (,,,q)=l 

The proof of  Proposition 4.1 is simpler than the proof of Proposition 2.2, as is seen 

by first summing on b. 

The interpolation is now an g2 to s estimate for ~RA = 1 and an s to 

estimate for ~A = -2.  The contribution from the error terms in (4.1) and from 

the complement of  the major boxes is treated just as in Theorem 1. However, to 

study the contribution of the main term in (4.1) to the major boxes, we further 

decompose Ij (a, q, b). We write 

j / s - ,  

Ij(a,q,b) = U I~ (a,b,q), 
r~O 

where for r > 1 

I~(a,b,q) = {(0,r  2r/2 j < IO-a/ql  < 2r+1/2J, I r  < 1/2q} 

and 

I~ = {(0,r  10-a /q l  < 1/21,1r  b/ql < 1/2q}. 

We must then consider for each fixed r and s the contribution for all q, with 

2" < q < 2 "+1. Call the corresponding operator Dx,~,,. We then obtain for ~RA = 1 

IID~,~,~ f lies ~ 2 -"/5 2-,/2 Ilfll~, 

and for R A -- - 2  

liD,,r,, f Iltoo _< 2 r 2 5` I I :  l i t , .  

Thus, for ~RA > ~, we have by interpolation 

llOJ,:., / llt,; -< A2-~ 2-0` II .: lit, 

for l ip  + l ip '  = 1 and 1 / p -  1/I] = ( 1 - ) 0 / 3 .  Wethen  add i n r  ands ,  and 

conclude as before. 

The proof of  Theorem 4 is similar to that of  Theorem 2, except for the following 

change. In applying Lemma 3.1, we dealt with 2 2` intervals. Now we need the 

two-dimensional version of Lemma 3.1 (due to Journd [J]), which in this case we 

must apply to 2 3` boxes. 
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