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1 I n t r o d u c t i o n  a n d  resu l t s  

1.1 L a p l a e i a n  g r o w t h  In this paper, we study two growth models in the 

complex plane--the needle and the geodesic 0-models, defined below. 

Let {Kt}, t > to, be a growing family of connected sets: Kt o is the initial 

configuration, and K~ c Kt for s < t. The growth is localized at a finite number of 

points aj(t), 1 < j < d, so that Kt \ Kt o consists of d disjoint smooth Jordan arcs 

("arms") from Kto to aj(t); the points aj(t) are the "tips" of the arms at time t. We 

call such a family {Kt} a radial chain with d arms. We also consider the family of 

domains fh = (2 \ Kt and the (Loewner) chain of the Riemann maps 

(1.1) qo,: m ~ (Izl > 1) ~ ~ (oo ~ oo, qo~(oo) > 0). 

The dynamics of  the tips aj(-) is described in terms of the Laplacian fields VGt, 

where Gt = log J~- 11 is the Green function offer with pole at infinity. Let (~(t) E 0A 

be the points (called poles) corresponding to the tips: 

d . 2 )  ~ , :  r ~ aAt).  

The common assumption for the two models will be the following: the velocities 

of the tips at time t are proportional to some fixed power rl of the magnitude of  the 

field XTGt, so 

(1.3) la~(t)l + 

The notation xj + yj means [xl : x2 

1~oT(ff~(t))l-'., 

: ' "  : Xd] = [Yl :Y2 : " "  :Yd]" Since the 
Laplacian field is infinite at the tips, i . e . ,  q o ~ ( ( j ( t ) )  = 0, we take second derivatives 
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in (1.3). We refer to (1.3) as the o-equation; in the literature, it is sometimes called 

the Laplacian growth equation with parameter 7. If rl = 1/2, then (1.3) means 

lajl + 0~j, where wj's are harmonic measures of infinitesimally small arcs of equal 

length at the tips of the arms. Even if one is only interested in this particular case, 

it is often helpful, as we shall see later, to consider other values of 7. 

In addition to velocities, we need to specify the geometry of the arms. 

Needle model. A set K is a needle configuration if it consists of several straight 

line segments ("needles") with a common endpoint at the origin. A (radial) needle 
or starlike q-process is a chain of needle configurations satisfying the rl-equation. 

Any such process is related to a set of d fixed directions; the tip points move along 

the fixed rays with velocities given by (1.3). The process is then described (up to 

a time change) by an autonomous system of ordinary differential equations in a 

phase space of dimension d - 1, and so the initial lengths of the needles determine 

the evolution uniquely. 

Geodesic model. A radial chain {Kt} is called geodesic if the tips move along 

the field lines. More precisely, it is required that at a point aj(t), the j-th arm be 

second order tangential to the hyperbolic geodesic (external ray) from aj(t) to 

in f~t. A geodesic rl-process is a geodesic chain satisfying the rl-equation. The 

evolution is determined by the initial configuration because the geodesic condition 

prescribes the curvature of the arms. It is not difficult to prove an appropriate global 

existence theorem using, for instance, an approach with Loewner's equation. 

The above definitions do not depend on time parametrization. We usually 

identify chains which differ only by some time change. 

The main theme of this paper is the stability analysis of stationary solutions. 

A chain {Kt} is called stationary if Kt = A(t)Kto for some positive increasing 

function ~(t), which means that the shape of configurations Kt does not change in 

time. It is clear that stationary chains are starlike, and therefore they are in one-to- 

one correspondence (up to a time change) with needle configurations. We use the 

term stationary solution for stationary ~7-processes as well as for the corresponding 

needle configuration. 

1.2 Needle  d y n a m i c s  The needle rl-model with ri = 1/2 is similar to a 

model suggested independently by Meakin [9] and Rossi [ 11 ] as a simplified, non- 

branching version of the DLA process; see also [7]. In [11], one considers the 

strip {0 _< x < N, y > 0} on the lattice Z 2, and identifies the sides x = 0 and 

x = L. The initial N trapping sites are located at the bottom {Y = 0} of the strip. 

Random walkers are launched, one at a time, from a site chosen at random near 

Y = oo. When a walker arrives at a trapping site, it occupies it and becomes part 
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of the aggregate; the site immediately above the one where the walker has landed 

becomes a trapping site. In this way, vertical needles are grown. One disregards 

the walker if it reaches a site already occupied. (If the aggregation on the sides of 

the needles is allowed, we would just get an ordinary DLA process [ 14].) 

One can also consider a radial version of  the Meakin-Rossi model so that 

the needles are grown along the straight lines which pass through the origin at 

equal angles; each time the length of a needle is increased by 1. Initially, many 

needles compete to trap the walkers. Then more and more needles are left behind 

and (almost) stop growing, while the competition continues between the longer 

needles until only few needles survive. 

The initial, stochastic stage of the Meakin-Rossi model is perhaps the most 

interesting. We can give a non-trivial (but not an optimal) bound for the doubling 

time; this will appear elsewhere. In this paper, we rather concentrate on the long 

time behavior and replace the stochastic mechanism with a differential equation, 

thus obtaining the starlike ~/-model with r/=l/2. The dynamics turns out to be quite 

simple. 

T h e o r e m  1, Consider a starlike o-process and let lj(t) denote the lengths of  
the needles. Assume ~,k lk(t) -+ oo. Then there exist limits 

l~ = lim 13(t) 
t - ~  ~ k  l~(t)' 

and the limiting configuration (with lengths l~ ) is a stationary solution. 

Note that some (or most) of the lengths l~ can be zero. 

By definition, a stationary solution of  the starlike 0-model is (asymptotically) 

stable if it is (asymptotically) stable for the system of differential equations de- 

scribing the model. Geometrically, stability means that if we slightly change the 

initial configuration Kto of a stationary solution without changing the directions 

of the needles, then the shape of configurations Kt does not change much in the 

course of the process. One can show that the limiting configurations arising in the 

Meakin-Rossi model have to be stable. 

In the case of  d-fold symmetry of  directions and 0 = 1/2, it is claimed in [6] 

that five needles of  equal length are asymptotically stable and that six needles 

of  equal length are stable, as well as six-needle configurations with long needles 

alternating with short ones. In general, see Example 1 in Section 3.2, the symmetric 

configuration with d needles is asymptotically stable with respect to the starlike 

r/-model if r /<  2(d - 2) -1 and d is even, or if 0 < 2d( d2 - 2d - 1) -1 and d is odd. 

For example, three symmetric needles are asymptotically stable for r] < 3, four 

symmetric needles are asymptotically stable for ~/< 1, five needles for r/ < 5/7, 
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six needles for rl < 1/2, etc. The case of non-symmetric stationary configurations 

is less studied. Some examples can be found in Section 4 of  [12]. 

I f  a needle configuration is a stationary solution of  the geodesic rl-model, then 

it is also a solution of  the starlike model, so the term "stability" may have two 

meanings. To avoid confusion, we sometimes use the terms G-stability and . -  

stability respectively. In all known examples, G-stability is a stronger property, 

though we do not have a proof of  this fact in the general case. We also do not know 

if the following statement holds for all ~7 > 0. 

T h e o r e m  2. I f  ~7 > 1/2, then the number o f  needles in a .-stable stationary 

solution o f  the geodesic ~7-model is bounded by a finite constant depending only 

on rl. 

1.3 Geodesic model  The geodesic model arises as a limiting case (6 ~ 0) 

of  the following version of  the radial Meakin-Rossi  model, see Sections 3.1-3.2 

of  [ 12]: instead of  prolonging the arms of  the cluster along the straight lines, each 

time we add a &segment of  the corresponding external ray. 

Another interpretation (which may not be completely satisfactory) of  geodesic 

rl-processes with rl = 1/2 is to consider them as generalized, "finger" solutions 

of  the zero-tension Hele-Shaw free boundary problem after the time at which the 

classical solution blows up, see, e.g., [5]. 

The geodesic model is more difficult than the starlike model because the phase 

space is infinite dimensional. The competition between the arms remains the main 

feature of  the process. The competition is stronger for larger rl'S: if  rl = c~, then 

typically there is a sole winner; but if~7 = 0, then all arms survive. See [12] for the 

case rl = -1 .  Computer simulations (which we reproduce from Selander's thesis 

[ 12]) give some idea of the asymptotic behavior o f  the geodesic model in the case 

rl = 1/2. 

I 

+ 
Figure 1 
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Figure 2 

In Figure 1, the initial configuration (left picture) has 3 arms, and the process 

converges to the symmetric state (right picture); the middle picture shows some 

intermediate state of the process. In Figure 2, we start with 16 arms. After some 

time, it becomes clear that only half of them have a chance to survive; and a little 

later, we see that probably one or two more arms will also disappear. There are 

many more pictures in [ 12], and they all suggest that the process always converges 

to some steady state: some arms disappear and the others straighten out. 

The geodesic model can be described in terms of Loewner's equation; see [ 12] 

and the next section for details. Also see [4] for a general discussion of the role 

of Loewner's equation in aggregation models. The family of Riemann maps (1.1) 

corresponding to a radial chain with d arms satisfy the equation 

z + r ~ ( t ) ,  
r  = ~',(z) . z ~ z - cj( t)  

j = l  

where the poles ffj(t) are given by (1.2), and #j(t) are some non-negative functions. 

In terms of these functions, the rl-equation (1.3) has the form 

(1.4) #j(t) -1~7(r -('+'). 

The Loewner chain {~ot } is geodesic if and only if it satisfies the following geodesic 
condition: 

~/k, ~k(t) = --r E Ck(t) Jr ~j(t) 
j~k r 1 6 2  ~j( t ) .  

A radial chain is stationary if and only if the parameter functions of the (normalized) 

Loewner equation are constant: 

Cj(t) -- Cj, #~(t)  _ 
II#(t)ll ~J' 
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where Ill, II = ~,j. In particular, a stationary chain is geodesic if it satisfies the 
stationary geodesic condition: 

(1.5) Vk, Z Ck +@.' 
~#k (k--  a j = 0 .  

One can show that for any collection of positive numbers {aj} with ~ aj = 1, the 

system (1.5) has a unique (up to a rotation) solution {(j}; See [12]. Thus, one 

can identify the set of stationary geodesic d-arm chains with the d - I dimensional 

simplex 

(1.6) ~d = {O" E ]~f : Z a j = l ,  a j > O } .  

Stationary solutions of the geodesic rl-model are determined by the d - 1 equations 

in (1.4), so generically they are isolated points in Gd. 

Stability of stationary solutions is defined in terms of Loewner's equation, see 

the definition in Section 5. Roughly speaking, asymptotic stability means that if 

we slightly perturb the Loewner parameters of a stationary solution a in a finite 

time interval and then run the geodesic y-process, then I~j(t) -~ aj as t --} oc. We 

discuss stability analysis in Section 5; the results are stated in Theorems 4 and 5 

below. 

There is another aspect of  the stability problem. We can identify the boundary 

points of  Ca in R a with degenerate stationary chains (some of the needles have zero 

length). Considering small perturbations of such degenerate solutions, we come 

to the question of survival and disappearance of arms. This will be discussed in 

Section 4, and the result is stated in Theorem 3 

1.4 C h o r d a l  cha ins  Along with radial chains and models, we consider 

their chordal counterparts. A chordal chain {Kt} has d arms growing from the 

origin in the slit plane C\R+,  where R+ is the positive real axis. The corresponding 

family of  Riemann maps 

--} n , = c \ ( R +  o K , )  

with normalization ~t(z) = z 2 + 0(1) as z --+ oo satisfies the Loewner equation 

d 

j = l  , T j ' ~  - -  Z ~ 

where xj (t) E/R denotes the preimage of  the tip a~ (t). The chain is geodesic if the 

tips "follow" hyperbolic geodesics (with respect to fh) from a~(t) to co. In terms 



LAPLACIAN PATH MODELS 109 

of the Loewner equation, this is expressed by the chordal geodesic condition 

=  j(t) 

The needle and the geodesic q-processes are defined by the q-equation 

tt - -1--~ [aj(t)l + I~ ' (x j ( t ) ) [ - '  or, equivalently, #j(t) + [~t (xj(t))[ . 

We can think of  these models as representing Laplacian growth (or branching) at 

the tip of  an infinitely long needle. 

The parameter functions #j(t) are constant in the case of  stationary chains, 

#j(t) = #j. As in the radial case, the numbers trj = ~j/ll~ll determine a stationary 

geodesic chain uniquely up to a time change, so again we can identify the set of  

stationary geodesic d-arm chains with the simplex ~d, See (1.6) 

The chordal and radial models have similar features, but the chordal case is 

somewhat simpler from the technical point of  view (no trigonometry). We do our 

computations mostly in the chordal case. Another reason to consider the chordal 

version is that the simplest non-trivial cases in the stability and survival problems 

come with fewer needles than in the radial case. We borrowed the name "chordal" 

from [8]; this adjective reflects the fact that chordal arms grow from one boundary 

point of  C \ R+, the origin, to another boundary point, infinity. 

1.5 Su rv iva l  a n d  d i s a p p e a r a n c e  o f  a r m s  It is clear that every geodesic 

chordal process with one arm converges to a trivial stationary solution. Is this 

solution attracting with respect to the geodesic 0-model with two arms? We give 

an answer in the following theorem. 

T h e o r e m  3. Consider  a chordal geodesic  B-process with two arms. 

(i) I f  o < 1, then both arms survive: #~(t) 74 0 as t ~ oo. 

(ii) This is not  a lways  true i f  o > 1. 

In fact, in the case 0 > 1, the trivial stationary solution with one arm is a local 

attractor for the geodesic dynamics. The precise statement is this. Let {~t}t>_O be a 

normalized (#1 +#2 = 1) geodesic chain with two arms, and let K0 = {0}. Suppose 

also that {~t} satisfies the q-equation for t > 1. Then the smallness of  #1(') on 

[0, 1], #1(-) < consg(0), implies the disappearance of  the first arm: #l(t)  ~ 0. We 

do not know whether the one-arm stationary solution is a global attractor. 

In the case of  d-arm stationary solutions, it is natural to expect that the right 

condition for the disappearance of  any additional small arms should be 

{3gma, x 
7 >  

1 - C~max ' 
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where 27ram~ is the maximal angle between the needles (including ~ in the 

chordal case); see the discussion in Section 4.1. 

1.6 S tab i l i ty  o f  s t a t i o n a r y  so lu t ions  We first consider the simplest 

case-- the chordal model with two arms. There is a I-parameter family of  geodesic 

stationary chains parametrized by the interval 

~ 2 - - - - { 0 . ( s ) = ( s , l - s ) :  0 < s <  1). 

If s is small, then lx << 12 and the needles are almost perpendicular. If  s is 

close to 1/2, then the lengths lj of the needles are almost equal. The symmetric 

configuration 0.(1/2) has both needles of the same length, making an angle 2~r/5. 

The configuration 0.(1 - s) is symmetric to r 

If s ~ 1/2, then there is a unique number T/~(S) such that the chain 0.(s) is a 

stationary solution of  the geodesic ~-model with ~/= ~(s) .  The chain a(1/2) is 

a solution for all ~/. In this way we obtain a function ~7~(s), s ~ 1/2 ("c" is for 

"chordal"). One sees easily that ~7~(s) ~ 1 as s ~ 0. The result of  Theorem 3 

suggests that ~/~ < 1; and, in fact, ~/~(.) decreases on (0, 1/2) from 1 to a limit 

~c(1/2) :-- lim ~7~(s), 
s-+l /2  

the exact value of which is 

(1.7) = .54656 .... 
-55  + 6V/'5 1og(3--~2 s) - 12 V~ log(1 2- -~)  

The graph of the function ~1~ is shown in Figure 4 in the next section, where we 

also provide some details of  computation. 

It follows that for 7/c(1/2) < ~/< 1, there are two (up to a reflection) stationary 

solutions: 0.(1/2) and 0.(s) with ~ ( s )  = ~. There are also unstable degenerate 

solutions corresponding to s = 0 or s = 1. One can guess that "by continuity," the 

solution with s ~ 1/2 should be a local attractor for the corresponding ~}-model 

with two arms and that the symmetric configuration o-(1/2) should be unstable. 

For ~7 < ~7~(1/2), the symmetric configuration should become stable (again, for the 

model with two arms) because there are no other solutions except degenerate ones 

which are unstable. In Section 5, we justify this answer. 

T h e o r e m  4. I f  ~l < 1, r / #  r/c(1/2), then the chordal geodesic 71-model with 

two arms has a unique (asymptotically) stable stationary solution. The stable 

configuration is symmetric i f  w < ~1~(1/2) and asymmetric/fr/c(1/2) < r /<  1. 
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Are the stable solutions of  Theorem 4 also stable for the model  with more than 

two arms? The answer should be "no": as the graphs in Figure 4 show, we have 

rk(s) < am~x/(1 - a m ~ )  for all s. If  as we believe the process with two arms 

always converges to a stationary solution, then it follows that at least three arms 

survive in any chordal geodesic q-process with q < 1 (unless we have started with 

just  two arms). 

We can apply similar methods in the radial case. The 2-arm geodesic model  is 

trivial: for  any 7, every solution converges to a symmetric 2-needle configuration; 

this follows from the geodesic condition. By the maximal angle criterion, this 

trivial solution has to be a local attractor for  any number o f  arms i f  r / >  1; but as 

will be seen below, for  q < 2.118... it is definitely not a global attractor. 

Consider the case o f  three radial arms. We first observe that a geodesic 

stationary chain a E Ca is a solution for some q-model if and only if  two or three 

o f  the numbers aj coincide. It does not seem easy to verify this statement by 

elementary m e a n s - - w e  rely on computer  calculations. As soon as we know this 

fact, the computation is quite similar to the chordal case. We consider  geodesic 

configurations of  the form a(s) = (s, s, 1 - 2s), 0 < s < 1/2, so that the first two 

needles are symmetric with respect to the line o f  the third needle. The 3-fold 

symmetric configuration a(1/3)  is a solution for any q. 

As above, we introduce the function q.(s),  s r 1/3, such that a(s) is a solution 

for the q(s)-model. It is easy to see that q~(s) --+ + ~  as s -~ 0 and that q~(s) --+ 1 

as s ~ 1. In fact, the function q~ decreases on (0, 1/2) \ {1/3} and has a limit 

(1.8) rb.(1/3) := lim q~(s) -- 15 - 4 1 o g 2  = 2.11815 
~--~1/3 3 + 4 log 2 . . . .  

See Figure 3 in the next section for the graph o f  q.. It follows that if  q > 1, 

then there are two stationary solutions: a(1/2)  and a(s) with q.(s) = q (plus the 

degenerate solution corresponding to s = 0). I f q  < q~(1/3), then a(1 /3)  is the only 

non-degenerate solution. The solutions a(s) with s close to 0 are unstable because 

this is essentially the chordal case with q > 1; see Theorem 4. 

T h e o r e m  5. Consider the the radial geodesic o-model with 3 arms. 

(i) The symmetric configuration a(1/3)  is asymptotically s tab le / fq  < qr(1/3),  

and unstable i f  q > q~(1/3). 

(ii) There are no other non-degenerate stable stationary solutions. 
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2 P r e l i m i n a r i e s  

2.1 L o e w n e r ' s  e q u a t i o n  If  {Kt} is a radial chain with d arms, then the 

corresponding Loewner chain ~o(z, t) = ~ot(z) of  Riemann maps (1.1) satisfies the 

Loewner  equation 

d 

(2.1) ~b(z, t) = ~o'(z,t)  . z ~-~ z + r ~ j ( t ) .  
j= l  z - CAt) 

We write ]l#(t)II = ~ #j (t); so the equation for logarithmic capacity c(t)  = cap Kt = 

~p~ (oo)is 

(2.2) ~(t) = II~(t)ll c(t) .  

The chain is n o r m a l i z e d  if  l l~(t)l l  - 1. 

In the opposite direction, we can use the Loewner  equation to define radial 

chains. Given parameter functions #j (t), ~j (t), and given a univalent function ~o~ o, 

the initial value problem (2.1) with ~o(., to) = ~to (') has a unique solution for t > to, 

and all the functions ~t are univalent; see [1]. It is known that if  the parameter 

functions are sufficiently smooth, then the solution is a radial chain with smooth 

a r m s .  

Let us explain how the geodesic model is related to the Loewner equation. The 

tip points a j ( t )  = ~t(~j(t)) move with velocities 

2 n (2.3) Idjl = #j l~ (~j)[, 

as the following computation shows: 

' . 

a~(t) = [~o,(r = r  + ~o,(r162 r :=  CAt) ,  

= lim (or(z) + O, z := r~t,  
r--q, 1 

lim ~o~(z) , = - -  2r ~,~ (t)~0, (~,); r~ l  z -- ~t z [ z  + r : 2 ,, 

this argument can be made rigorous in the case of  smooth parameter functions 

Following [3], we introduce the radial  b e t a - n u m b e r s  

2c(t)  
(2.4) B~(t) = B(fl,; a t ( t ) ,  oo) - i ~ f ( ~ A t ) ) l .  

These numbers characterize the concentration of  harmonic measure at the tip points 

in a scale-invariant way. If  we think of  logarithmic capacity as a function of  the 

arm lengths, c = c ( l l , . . . ,  ld), then 

c 
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and so 

(2.5) 3j = 4 ~ .  

By (2,3) and (2.4), the r/-equation (1.3) can be expressed in the form 

(2.6) ~j + 3~ +' .  

Next we claim that the Loewner chain (2.1) is geodesic if and only if the 

parameter functions satisfy 

Ck +~5 
(2.7) ~k = -r E r -- #5" 

r 5#k 

Set if5 = e i 0 j  ; then the geodesic condition has the form 

Ok 05 
(2.8) 0k = uscot  

5r 

One can derive (2.7) as follows. If we freeze all the arms except k in an infinitesi- 

mally small time interval (t, t + e), then geodesic growth means ~k(t) = 0. Taking 

the contribution of  arms j ~ k into account, we change the curvature of  the external 

ray to ak(t)  infinitesimally. We also get the motion (2.7) of the k-th pole, which 

follows from the inverse Loewner equation 

o--1  where g - {gt} is the inverse chain, 9t = ~o~ . 

The chordal  case  is similar. We consider the maps ~ot : H --+ ~t in a Loewner 

chain 
#5(0 ~,(z) = ~(z)  

xs"(-O -- z '  

with normalization 

qot(z) = z 2 - T ( t )  + o(1) (z ~ oo). 

The quantity T ( t )  = T(~0~) is the Schwarz derivative of ~ot at infinity. It plays 

the same role as logarithmic capacity in the radial case. We have T ( t )  > 0 and 

a~(t) = 211u(t)ll. 
a l+ ,  where flj are the chordal  be ta -numbers ,  The T-equat ion is #s + ~,j , 

2 0T 
(2.9) 3 j ( t ) -  B ( f ~ t ; a j ( t ) , o o ) -  I~"(xj)l  = bT~; 
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see [3]. Note that B = 1 in the one-arm case qo(z) = z 2. 

A chordal chain is geodesic if 

(2.10) a~k = E #-'-J 
j # k  xk  -- x j "  

Selander [12] observed that if all # j ' s  are extuai (which is the case when the 

chain satisfies the ~-equation with ~ = -1 ) ,  then (2.8) and (2.10) are exactly the 

well-known systems of  Sutherland and Calogero-Moser ,  which appear in several 

important applications; see [2], [10], [13]. 

2 .2  S t a t i o n a r y  c h a i n s  a n d  s tar l ike  f u n c t i o n s  A radial chain {~ot} with 

d arms is stationary if it has the form 

(2.11) ~t(z) = ~ ( t ) r  

for some increasing positive function )~(t) and a univalent function r mapping A 

onto the complement of  a needle configuration. In terms of  Loewner 's  equation, 

the chain is stationary if and only if the normalized Loewner  measures are constant: 

r  - Cj,  l , j ( t )  _ '~J- 
II#(t) l l  

The B-numbers are also constant, ~j(t) = ~j, and by (2.5) we have 

~ j t j  
(2.12) aj  = 4c ' 

where t h e / j ' s  and c are the lengths and the capacity o f  a needle configuration 

representing the stationary chain 

We denote by a the normalized Loewner  measure, a = ~ aj6r and by S"  its 

Schwarz integral, 
~ + z  

s'r = Z r 

so the stationary Loewner equation is 

(2.13) (at(z) = A ( t ) ~ ' t ( z ) z S ~  (z) .  

The function r in (2.11) is starlike: 

[zr162 > 0 in A. 

If  a is the corresponding (probability) Herglotz measure 

(2.14) z r 1 6 2  = S '~, 
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then from (2.13) we find 

and therefore 

- - -  -II#,llzS"; ~r ~p' 

(2.15) S~" S ~ = 1. 

d Since a is pure point with d atoms, so is a, a = ~ ,=1  a~ 5~; and integration of 

(2.14) gives the familiar formula 

r  = CZ -1  U ( Z  -- ~y)2o~, ,  

where the points r/~ are preimages of the origin and the numbers 2ra~ are the 

angles between the needles. 

Given Loewner parameters c, a j ,  r of a needle configuration, we can find 

parameters a~. r/. and lj as follows. Set 

P ( z )  = (z - r  (z - -  r 

then (2.15) implies that 

z + ej _ Q(z )  
(2.16) E a j  z - C j  - P ( z ) '  

J 

Q ( z )  = (z  - 7 , )  . . . ( z  - ~d); 

E a~ z + rl. _ P ( z )  
z - ~ .  Q(z)" 

Given aj, (j, we obtain Q ( z )  from the first equation and then find the roots rh,. 

Equating the residues in the second equation, we get 

P ( , . )  
(2.17)  a"- 2 .  , ,, ' zs = c I ] 1 r  ~~ 

, 7 0 ( , 7 )  /2 

C h o r d a l  case .  L e t  r : H ~ C \ ( K  0 R+ ) be  the Riemann map onto the 

complement of a d-needle chordal configuration K, and let r = z 2 - T + ..- at 

co. Then 
d 

v.,(z) = 1 7  (z - t,,) ~o-, ~ , ~ , , t , ,  = 0, 
z,,'=O 

where the points t,, are the preimages of the origin and the numbers 27ra,, are the 

corresponding angles between the needles (including ~ ) .  Consider the parameter 

functions #j(t) =- #j and x3( t )  = v ~ x j  of a stationary Loewner chain 

~pt(z) = t r  

the points xj are the preimages of the tips of K under r Define the probability 

measures 

ol = E eta, St,. and a = ~, : , - j ,~: ,  (o-j :=  v j / l l ~ l l ) .  
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The analogue of  (2.15) is the relation 

(2.18) T C  ~ + (C'~) - 1  + z = O, 

where C ~ and C ~ are the Cauchy integrals of  the respective measures, e.g., 

~2 C'(z)=F-,xi_z 
3 

The equation (2.18) follows by comparing the Loewner  equation 

(at 1 ~.,(t-l/2z) z 
qo~ v~ r 2t 

(at t = 1) and the Herglotz formula 

~ t 

- -  = - 2 C %  r 

Rewriting (2.18) in the form 

z _  T Z aj Q(z) a~, P(z)  
j z z j  P(z ) '  ~`, z---'t,, - " ~ '  

where 

P(z) = (z - Xl)" "" (g - -  Xd) , Q(z) = (z - to ) . . .  (z - td), 

we can determine, as in the radial case, the parameters a`, and lj o f  the needle 

configuration from the Loewner  parameters a j ,  x j,  and T: 

P(t~) and lj = 1-I [xi - t~12~" (2.19) a`, Q'(t`,) 

Let us also mention the formula 

Taj  
(2.20) la~ = 1 + E .  (t~ - xj)  2' 

3 

which follows by differentiating (2.18) and setting z = t`,, and the formula for the 

beta-numbers 

(2.21) /~f13 = Taj ,  

which follows from (2.9) 
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2.3 S t a t i o n a r y  s o l u t i o n s  We want to describe stationary solutions in the 

simplest non-trivial cases of  the radial and the chordal geodesic 0-models.  Even in 

these simplest examples,  some computations involve analysis o f  rather complicated 

elementary and algebraic functions. It seems reasonable to us to accept  standard 

computer  calculations as proofs, though with a reasonable effort one could certainly 

find formal proofs of  the general properties mentioned below. 

Recall that a stationary solution is a needle configuration satisfying (i) the 

ri-equation 

I + ~  . (2.22) lj =- a j ,  

see (2,6) and (2.12), (2.21), and (ii) the stationary geodesic condit ion (1.5) in the 

radial case or its chordal counterpart 

(2.23) Vk, Xk = T E ~" 
jCk xk - xj" 

Let us denote 
ai li 

~i j  = log - - ,  Lij = log 7-" 
aj ~j 

Three radial needles. Given a = (al, Or2, 0"3), we first find the poles r = ei~ 

f f l = e  -iD, f f 2 = e  ic~, f f 3 = - I  ( 0 < a , / ~ < T r ) ,  

from the stationary geodesic condition (1.5): 

E a j  cot Ok -- Oj 
2 

jCk 
- 0 .  

Considering this as a linear system for a j ' s  with the matrix 

A = c 0 

- b  a 

where 
a ~ a + / 3  1 - a b  a=ta  , b=tan , a+-----'g-' 

we observe that A has rank two and that the vector (a, b, c) belongs to the kernel of  

A. Therefore [al : a2 : a3] = [a : b: c], so 

a al  
(2.24) tan -- = tan - ---- 

2 ~/ala2 + (1 - a3)a3 ' 2 

0" 2 

JOr lO"  2 -~- (1  - -  0"3)0" 3 
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I f  a is  an  97-solution f o r  s o m e  97 r - 1 ,  t hen  L 1 2 E 1 3  - LlaE~2  = 0. C o m p u t e r  

c a l c u l a t i o n  s h o w s  tha t  th i s  is  p o s s i b l e  o n l y  i f  a l  = a2 ,  o r  a l  = a3 ,  o r  a2 = aa .  

I t  r e m a i n s  to  c o n s i d e r  t he  c a s e  

a = a ( s )  = (s,  s ,  1 - 2s)  e G3, s �9 (0, 1 /2 ) ;  

cf .  [12] ,  S e c t i o n  4 .7 .  I f  s r 1 /3 ,  t hen  a ( s )  is a s t a t i o n a r y  s o l u t i o n  f o r  t he  97-model  

w i t h  
L13(o ' )  

9 7 : 97r(S) = ~13(Or ) __ Z13(o . )  , o" : O'(S); 

see  (2 .22 ) .  I t  is n o t  d i f f i cu l t  to  f ind  an  e x p l i c i t  f o r m u l a :  

(1 - 2s)  l o g 8  - (4 - 6s)  log(1 - 2s )  + (5 - 6s )  log  s - log(1 - s ) ,  
( 2 . 2 5 )  97~(s) 

L e t  

- ( 1  - 2 s ) l o g 8  - l o g ( 1  - 2s)  + log(1 - s)  

P r o o f .  W e  w r i t e  ( f o r  (1 a n d  p u t  

T h e n  w e  h a v e  

1 - 2s 
x = ~ (  = 

1 - - s  

971 = 1, 972 = 97, 973 = r/; ot I = or, ot 2 ----- ot 3 = ~.  

( 2 . 2 6 )  1~ - 9711r - 01 2s  a =  2 - x 
11+9712 1 - 2 s '  4 + x "  

I n d e e d ,  e q u a t i n g  the  r e s i d u e s  a t  z = (3 = - 1  in t h e  f i r s t  e q u a t i o n  (2 .16) ,  w e  g e t  

a n d  t h e r e f o r e  

Q ( - 1 )  - 2 1 1  +97l  2.  
- 2 a 3  - l1 + CI 2 - 11 -t- ~[ 2 ' 

[1 + 9712 : o'311 + ~[2. 

From the second equation (2.16), we similarly have 

I1 - r ~ = a l l  - 9712. 

I t  f o l l o w s  t h a t  

4 = [1 + 97[2 + [1 - 971 u = a311 + ~[2 + a - l [ 1  _ ~[u, 

a n d  s o  

O~ 
2 - 2x 2 - x 

4 - a3 (2  + 2x)  4 + x 
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Finally, we equate the residues at z = ~ in the first equation (2.16) and obtain 

Q(r 
- 2 ~ a ,  

(1 + ( ) ( ~  - ~) 

so (4 - rl)(~ - f/) = 2a(1 + ~)2. This proves (2.26). Using the expression (2.17) for 

the lengths, we derive 

1/13 : (1 - x)x-2f~22#-a, 

and 

r/~ (s) = (4 + x)log(1 - x) - (2 + 2x) logx + 3xlog 2 
(x - 2) logx - 3x log 2 

X = 
1 - 2s 
1 -  s [] 

The analysis of  the elementary function (2.25) gives the following result. 

P r o p o s i t i o n  1. The function ~Tr(s) extends to a smooth, strictly decreasing 

function on (0, 1/2) with ~k(0) = oo, yr(1/2) = 1, and with y~(1/3) given by (1.8). 

0.2 0.3 0.4 0.5 

Figure 3 

In addition to r/w(.), we also need the function 4('), which is defined in 

Proposition 2 below. For a 6 ~z, let (cf. (2.22)) 

L 1 2 ( o )  
= - 

Proposition 2. There exists a limit 

@(s) = lim 7712(8 "t- e ,  8 - -  C, 1 - 2s) (0 < s < 1/2). 
~--rO 

Wehave@(s) < yr(s)forO < s < 1/3, and@(s) > y r ( s ) fo r l /3  < s < 1/2. 
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This can be explained as follows. I f s  is small, then ~7~(8) is large by Proposition 

1. We also have 13 >> 11 = 12, which is essentially a chordal situation, so f/(s) ,.~ 

~c(1/2) < 1 by Proposition 3 below. On the other hand, if  s is close to 1/2, then we 

have essentially a two-needle radial case, and r is large. It is possible to express 

r) in terms of  elementary functions, but we used a computer  for the verification of  

the statement. 

Two chordal needles. With the normalization T = 1, the poles of  the geodesic 

needle configuration 

0,(8) = (s, 1 - s) E g2, s �9 (0, 1/2 ), 

are xl = 1 - s and xz = - s ;  see (2.23). We determine the points t~ by solving the 

cubic equation 

Q(z) = z 3 - (1 - 2s)z 2 -  (1 + s -  s2)z + (1 - 2s) = 0, 

and find the angles a~ and the lengths l,, of  the needles from the equations (2.19). 

For instance, in the symmetric case s = 1/2, we have P(z )  = z: - 1/4, Q(z)  = 

z a - (5/4)z; and so the middle angle (corresponding to t,, = 0) is 27r/5. For s # 1/2, 

the function rk(s) is given by the formula 

= E,z(Cr) - L , z ( a ) '  a = 

Proposition 3. The funct ion rlc(. ) extends to a smooth function, which strictly 

decreases on (0, 1/2) and strictly increases on (1/2, 1). We have ~c(O) = ~c(1) = 1, 

and the value o f  rk(1/2) is given by (1.7). 

The graph of  r/r(.) is shown in Figure 4 (the lower curve) together with the 

graph of  the function 

a(s) = ~ (0 < s < 1), 
1 -- O~max(8) 

where 2~'am~,,(s) is the maximal angle between the needles (including R+) in the 

configuration a(s). We have rl~(s) < a(s) for all s. 
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0.2 0.4 0.6 0.8 1 

Figure 4 

3 Needle dynamics 

In this section, we study the needle rkmodel. The evolution of  a d-needle 

configuration with given fixed angles 27ray is described by the differential equation 

9 = p(y), 

where y = {yj} is the vector of lengths, f~(y) the vector of E-numbers, and 

(3.1)  pj(y) = ~ , ( y )  + - . .  + ~ ( y ) .  

It is convenient to identify similar configurations and consider the flow 

(3.2) l = p(l) - l, 

on the (d - 1)-dimensional manifold of equivalence classes 

s = { I E ~ d :  E / , = I , / j > 0 } .  

(If  IlYll = Ya + " "  + Yd and I = Ilyll-Xy, then  p(l)  = p(y) and i = I lYl l -ap-  I. 
Changing the time scale, we get (3.2).) The flow extends in a natural way to the 

boundary of s in ~ ,  which we identify with the set of  degenerate configurations 

(certain needles become extinct). Critical points of  the flow (3.2) on clos s are 

configurations satisfying 

p(l) = l, i.e., t~ + ~, 

where some of the lj's and/3j's can be zero. 



122 L. CARLESON AND N. MAKAROV 

3.1 L y a p u n o v  f u n c t i o n  A remarkable property o f  the needle y-model is 

the existence of  a global Lyapunov function. To establish this fact, we write 

O~j for j # k. 
7jk  = "  Oyk 

Since 3(Ay) = fl(y) for all A > O, we have 

O~k = ~ 7~k ~ 
(3.3) Oyk Yk ' 

j#k 

It is important that the matrix 7jk is symmetric. As usual, x i E R or (i  E OA is the 

notation for the preimages of  the tips of  the needles. In the radial case, we denote 

by Ojk the angle between (j and (k- 

P r o p o s i t i o n .  For j # k, we have 

]~k]~J in the chordal case, (3.4) 7jk = (X k __ X.j) 2 

cot2(Sjk/2) 
(3.5) 7jk = 4c flj~k, in the radial case. 

P r o o f .  Let us explain the first formula. Consider configurations with the same 

angles and with lengths {yj} and {~j}, where Yk = Vk + 5  and ~j = yj f o r j  # k. We 

assume 5 > 0 to be infinitesimally small. Let 9 and ~ be the normalized Riemann 

maps. We have ~ = ~ o z, where r maps H onto a slit halfplane, the slit being 

an almost vertical line segment with an endpoint at Xk. Let  e be the length of  the 

slit. Without loss of  generality, we can assume xk = 0. Then v(z) ~ x / ~  - E 2, 

and so e 2 ~ 3k5. I f j  # k, then xj = v(~:~); and since the inverse o f ' r  is the map 

Z ~ ~ + e 2, w e  have 

It follows that 

,b, = fljll + 

which proves the statement. The proof in the radial case is similar. [] 

An alternative (and more accurate) argument is indicated in Remark 1 below. 

1 + t  I Lyapunov function of  the flow The function ~(l) = E ~k (l) is a T h e o r e m .  

(3.2) on dos s  

( Pk Pj 
~b=( l+~7)  E ~ :  Z E j r  Tjkljlk Tkk 

i 
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where the sum is taken over all pairs (j, k) with lj ~ O, lk ~ O. In particular, every 
orbit of  the flow tends to a stationary solution (maybe degenerate). 

Proof. By (3.1), we have 

~b= (1 + rl) E/3~/~k = (1 + rl) E / ~ 7  Zpk~, : ;  
k i k 

and by (3.2) and (3.3), 

o5~ i- oZk i. 
j~k 

jCk 
1 

---- ~k ~ 7jk(ljPk -- pjlk). 

Using the symmetry of  the matrix 7jk, we get 

~"~Pk~k---- 1 Pk 
k 

( [ ]  

R e m a r k  1. The formulas (3.4) and (3.5) are valid for general configura- 

tions with rectifiable, not necessarily straight arms. This is a consequence of 

the following fact concerning Loewner chains of several time variables. The 

chordal case is mentioned in [8]; we state the radial version. Suppose the arms 

are parametrized by real variables s l , . . . ,  sd. Consider logarithmic capacity as a 

function c = c(s l , . . . ,  sd). Then 

(3.6) OkOjC 1 (r162 ( k r  

If the arms are rectifiable, then we can use the arclength parametrization. In this 

case, Ojc = 4-1/3j by (2.5), so (3.6) implies (3.5). 

P roo f ,  To prove (3.6), we repeat the computation in [8]. Let T = log c. Then 

O~T = #j. The inverse Loewner chain g satisfies the system of equations 

(3.7) Ojg = - g g  + ~J OjT. 
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Applying the j-th equation to the tip of  the k-th needle, we get 

(3.8) Oj(k = --~k ~.~_ ~ aj~. 

Let us write ~ for (j and r/for Ck, and note that 

0 ( z Z + f f ~  : 1  2r z 0 ( z Z + ~  2z 2 
\ ~ - r  (z  - r  o ~  \ ~ - r  = (z - r 

Differentiating (3.7) and using (3.8), we have 

(3.9) g_lOkOjg=_xg+ (g_(+Y [g+r/ (1 L9 - ( a - r  + - ~ ( a - r  ~ ' 

where X = OkOjT and Y = OkTOjT. Equating (3.9) to a similar expression for 

g-lOjOkg (just interchange ( and r/), we find X = 4Q/(( - r/)-2Y, which is exactly 

(3.6). [] 

Finally, we want to emphasize the fact that for general Loewner chains with 

several growth points, there are no simple formulas like (3.4), (3.5) describing the 

"diagonal" term OBk/OVk. 

R e m a r k  2. Here is a simple application of the Lyapunov function constructed 

in the theorem. 

C la im.  For any radial needle configuration, we have ~ Bj < 4. 

P r o o f .  Starting with a given configuration, we run the needle 0-process with 

r/ = 0 until we reach an equilibrium. The sum of B-numbers only increases 

during the process. Ai equilibrium all lengths are equal, let's say to 1. By (2.5), 

Bj = 4c < 4 because the capacity of  the unit disc is 1. 

It is tempting to apply similar considerations to establish that ~ ~ < 1 for an 

arbitrary chordal needle configuration (this is a special case of  Brennan's conjec- 

ture; cf. [3]). According to the theorem, it is enough to verify the inequality only 

for stable stationary solutions of  the rpmodel with r /=  1. See Corollary 3.3 for the 

case of  geodesic solutions. 

3.2 S tab i l i ty  By definition, a stationary solution of  the needle r/-model is 

(asymptotically) stable if it is (asymptotically) stable in the sense of  the differential 

equation (3.2). We apply the standard linearization method. It is interesting that 
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the trace o f  the linearized vector field has a simple expression in terms o f  Loewner ' s  

parameters. Let us write 

1 �9 2 Oak 
- -  cot - - ,  in the radial case, 

Tjk = 4c 1 2 
(x---~" --- xj)'-'2' in the chordal case. 

P r o p o s i t i o n .  Let l E [. be a critical point of(3.2)  with parameter r I. Then 

~ (l 
(3.10) -0-1" ) = riM, 

where the matrix M = IIm~kll is given by 

m3k=-l:kTjk-t~)-]~(#~-#~)l~T~k (j#k); m~ = - ) ' - ~ m ~ .  
,,#k j~k 

In particular, we have (in the radial and chordal cases respectively) 

OP(l { n E E  (aj+ak) cot' ~ ,  

(3.11) trace -~-. ) = T 

v E E  (~ +~k) (~k - ~ ) ~ "  

P r o o f .  Let m = ~ ~ .  Then 

0 ~  rim ~klj Tjk (at 1). (3.12) Olk -- 

Indeed, 
_ _  t " 1 - - 1  

Olk 
because #~ = mlj at the critical point. Similarly, we show 

(3.13) 0t~ -- rimy~' #~l~ rjk. 
j~k 

It follows from (3.12) and (3.13) that 

Om 
(3.14) Olk = rim y'~ (l~j- ~k)lj Tj~. 

jCk 
By (3.12) and (3.14), we have the following expression at l: 

m Om] OPt = 1 [ O l ~ - l j ~  k 
Olk m [ Olk 

= - r i l j  [ # t : T j k + Z  (#~-- ~k)l~T~k], 
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and similarly, 

LJgk j#k 
[] 

E x a m p l e  1. Symmetr i c  conf igurat ions .  Consider d radial needles of  

equal length with equal angles. Clearly, such configurations satisfy the geodesic 

condition and are stationary solutions for all q-models. 

Theorem.  
stable if 

The d-fold symmetric needle configuration is asymptotically ,- 

2(d - 2) -1 , i fd  is even, 

O < 2d(d 2 - 2d - 1) -1 , i fd  is odd. 

It is not ,-stable if o is greater than the number to the right. 

In particular, three symmetric needles are ,-stable for all 0 < 3, but they are 

G-stable only for 0 < 2.11 .... as we claimed in Theorem 5. 

ProoL We have 

and so 

The configuration is ,-stable if  0 < 

eigenvalue of  the matrix 

tj=l, 4c=a l, 

1 Oja (j # k). mjk = --~ cot 2 -~- 

d/Am~,(A), where Am~,,(A) is the largest 

a ~ k = - c o t  2 1 k - j l ~  ( k # j ) ;  
d akk :- -- E ajk" 

j#k 

It remains to show that 

~ 2-1d(d - 2), 
Amax(A) = [ 2-1(d2 2 d -  1), 

i f d  is even, 

i f  d is odd. 

This must be well-known in elementary algebra. For the convenience of  the reader, 

we include a proof. Let w = e 2~i/d, and 

d-1  
1 + ~w~' (1 < y < d - 1 ) ,  ao=y~a~, .  av 
1 - ~ w" 
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Since A is a circulant matrix, A = Circ {a0, - a l ,  - a 2 , .  �9 - a a - 1  }, the eigenvalues 

are the numbers 
d - 1  

~-~a~,(1-~w k~) ( O < k < d - 1 ) .  
v = l  

Note that 

with 

therefore, 

k 

1 + ~ ~ (1 - ~ r = ~ atfft (ICI = 1), 
1 - ~ "  

l= - -k  

a 0 = 2 k - 1  a n d  

k 

~-'~ czt = 2k2; 
l = - k  

d - 1  

a ~ ( 1 - ~ R w  k ~ ' ) = ( 2 k - 1 ) d - 2 k  2 ( l < k < d - 1 ) .  
v = l  

The maximal eigenvalue corresponds to k = d/2 i f  d is even and to k = d + 1/2 if 

d is odd. [] 

E x a m p l e .  T w o  a n d  t h r e e  n e e d l e s .  (i) A two needle chordal configuration 

satisfying the rkequation is ,-stable or unstable depending on whether  

(X 2 - -  X l )  2 (X 2 --  X l )  2 
~ <  or ~ > 

T T 

This is immediate f rom the trace formula (3.11), since one of  the eigenvalues of  

M is zero. For configurations which also satisfy the geodesic condition, we have 

T = (x2 - xl)2, so the criterion for ,-stability is ~? < 1. Comparing this criterion 

with the statement of  Theorem 4, we see that asymmetric stationary solutions of  

the geodesic model  are simultaneously , -  and G-stable, but the symmetr ic  solution 

can be ,-stable and G-unstable. 

(ii) Consider a radial three needle configuration such that needles 1 and 2 are 

symmetric with respect to the line of  needle 3. We can choose the Riemann map 

so that the Loewner  parameters are 

(1 = e - i a ,  ~2 = e i'~, (a = -1 ;  a l  = o"2 = s, or a = 1 - 2s. 

Let  
_ (1 - A) 2 

A = tan 2 a B : cot 2 o~ - 
2 ' 4A 

Simple computations show that the set of  eigenvalues of  the matrix M in (3.10), 

M =  a + c  ( a : = - m 1 2 = - m 2 1 ,  etc.), 

~ C  
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is {0, 2b + c, 2a + c} = {0, A, a3A + 2sB}. If  the configuration also satisfies the 

geodesic  condition, then by (2.24), A = s/(2 - 3s); so cr3A + 2sB = a3, and the 

.-stabili ty criterion is 

{ A  1 } = m i n { 2 - 3 s  1 } 
r I < m i n  ' a3 s ' 1 - 2 s  " 

Comparing the function to the right with the function r/~(s), see Section 2.3, we 

conclude that for some values of  ~ (namely for 1 < rl < 2.43...) the geodesic 

configurations a = (s,s,  1 - 2s) with r/~(s) = r/ are ,-stable. We claimed in 

Theorem 5 that such configurations are not G-stable. 

3 .3  Fin i teness  T h e o r e m  We estimate, in terms oft/ ,  the number of  needles 

in a , -s table stationary solution of  the geodesic rl-model and prove Theorem 2. As 

we have just  seen, G-stability implied ,-stability in all our examples, I f  this is true 

in general, then Theorem 2 would give the same bounds for the number  of  arms in 

a stable stationary solution of  the geodesic model. 

Let us consider the chordal case. The computation is based on the trace formula 

(3.11), which implies that a stationary solution with d needles is , -unstable if 

T(aj + ak) d - 1 
(3.15) ~ ~ ix j _ xkl2 > 

k j<k 

P r o o f  o f  T h e o r e m  2. (in the chordal case). Assume T = 1, and denote 

Tjk = Ixj -- Xk1-2. I f j  + 1 < k, then from the stationary geodesic condition (223), 

we find 

(O'j "1- drk )Tjk 
j - 1  k -1  d 

= l + ~ a i ~ -  ~ a i ~ +  ~ aiV/-~zjTik 
i=1 i=3-1-1 i = k + l  
3 -1  k -1  d 

1 
> 1 + ~ aiTik - ~ ~ ai(Tij + Tik)+ ~ a, Tij. 

i = l  i = j + l  i = k + l  

I f  j = k + 1, the negative terms are missing. Denote 

)-]1 ~-~ (0"1 "~ O'2)~12 -~ (0"2 + o'3)T23 -~- " " " "~ (O'd-1 -~ O'd)Td-l,d, 

)"]2 ~ (O"1 q- o'3)T13 -~ (0"2 -I- o'4)T24 --I- �9 �9 �9 + (O'd-2 --~ ffd)Td-2,d, 
. ~  

~"]d-1 ~'~ (O"1 "1-O'd)~ld. 
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Then we have 

E 1 ~_~ (d - 1) + E2 + " "  + E d - 1 ,  

E2 > ( d -  2 ) -  1 _ 7E~ + E3 + - " +  Ed-1, 

~ 1 7 6  

E3 > ( d -  3) - 1 1 E __ ~ E 1 - -  ~ 2 + ) " , 4 + ' " + E d _ l ,  

~ 1 7 6 1 7 6  

E d _  1 > 1 - � 8 9  1 - . -  lye, _ " -  ~ d - 2 .  

Fix v = v(d) < d to be specified later, and consider only the first v inequalities: 

E1 --  )"~'2 . . . . .  E v __) d -  1, 

� 8 9  E2 . . . . .  E , _ ) d - 2 ,  

~ 1 7 6 1 7 6  

1 ~  1 + 1~;]2 -1- " " " -'1- ~'] v )_ d - v. 

Multiplying the first equation by 1, the second by 4, the third by 4 2 . . . . .  the last by 

4 ~'-1, we obtain 

- 3 9 '  

where E = E1 + . . -  + E,,. In this computation, we have used the formulas 

1_4,, 1 +  1 ( 4 + ' "  +4L'- l )  = �89 + 6 , 

and 

( d -  1) + 4 ( d -  2) + 4 2 ( d -  3) + . . .  + 4 " - a ( d -  v) = - -  

Thus 

d4 V - d (3v - 1)4" + 1 

3 9 
(3d - 3v + 1)4 ~ - (3d + 1) 

E > 2  ( 3 d - 3 v + 1 ) 4  ~ ' - ( 3 d + l ) .  
- 3 2 + 4 "  ' 

and according to (3.15), the configuration is ,-unstable if 

(3.16) 
3 (2+4~) (d  - 1) 

y > y ( d , v ) : = ~  ( 3 d _ 3 v + l ) 4 ~ _ ( 3 d + l )  

Observe that if d >> v >> 1, then 

o(d,.)~ 3 4*'d 1 

2 3o[4 ~ 2" 

for some v < d. 
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Thus, given 0 > 1/2, for all sufficiently large d we can find v < d such that the 

inequality (3.16) holds. [] 

The expression for r/(d, v) in the proof of the theorem provides an explicit bound 

for the number of  needles in a .-stable stationary solution of  the geodesic q-model. 

Let N~(r/) denote the maximal number of  needles in the chordal case. Applying 

(3.16) with r/(d, 1) = 1, we get 

C o r o l l a r y .  No(0) = l for  o > 1. 

As we mentioned, this statement somewhat supports Brennan's conjecture. From 

(3.16), we also find 

N o ( 0 ) = 3  for 9 / 1 1 < 0 < 1 ,  

Nc(O)<4 f o r 0 > 3 / 4 ,  

N(0) < 5 for 0 > 5/7, etc., 

because r/(4, 2) = 9/11, 7(5, 2) = 3/4, 0(6, 2) = 5 / 7 , . . . .  

Similar estimates can be conducted in the radial case. For example, one can 

show that radial stationary solutions with three more needles are .-unstable if  

0 > 3. As in the chordal case, the finiteness result holds for 0 > 1/2. We do not 

know whether it holds for all 0 > 0. 

4 S u r v i v a l  a n d  d i s a p p e a r a n c e  o f  a r m s  

4.1 T h e  m a x i m a l  a n g l e  c r i t e r i o n  Suppose a E Ca, see (1.6), is a stable 

stationary solution for the geodesic r/-process with d arms. Considering ~a as a 

boundary set of  ~d+l, one can ask whether a is stable with respect to the process 

with d + 1 arms. In particular, if we add a small additional arm to a, will this arm 

survive or disappear as a result of  the q-process? 

It seems clear that the answer should be the following. Let 27to/max be the 

maximal angle between the needles (including R+ in the chordal case). Then the 

configuration a is "stable" (i.e., any small additional arm disappears) if  

O/max 
(4.1) O > 

1 - -  O/max ' 

and "unstable" if we have " < "  in (4.1). 

Here is a non-rigorous argument for the chordal version. In the first approxi- 

mation, let us assume that the new arm is a straight line segment; and let us replace 

the geodesic evolution with the needle dynamics, keeping the original angles O/~ 
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constant as well as the angles a '  and a" which the new needle makes inside some 

a~, a' + a" = aj,. Normalize the needle process so that the sum of  lengths o f  all 

needles is one at any time and consider the flow (3.2). Instead of  time, we can take 

the Loewner parameter a ,  = e << 1 of  the new needle for an independent variable 

and consider the functions xj = zj(e), x ,  = x,(e) ,  etc. We use the star index for 

the functions corresponding to the new needle. The preimages of  the origin are 

t~(e) for v ~ #, and t~,(e), t",(e). As e --+ O, we recover the parameiers xj(O) and 

t.(O) of  the original configuration, and we also have 

t , ( O ) = t ~ ( O ) = t ~ ( O ) = x , ( O ) .  

According to (3.2), the length l, = l, (e) of  the new needle satisfies the differential 

equation 

i ,  = p ,  - z , ,  P*(~)  : =  ~," + E ~ '  

so the new needle will disappear if  

p,<<:l ,  a s e - ~ 0 .  

By (2.19), we have 

l ,  x Ix,  - t ' , l ~ ' l x ,  - ,,,12~" 

and from (2.20) we conclude 

1 1 Te 
t~' a .  - I x , -  t~,[ 2 + o(1). 

It follows that Ix, - t~,[ 2 • e, Ix, - t" l  2 x e, and l, ~ e ~..  On the other hand, we 

have 

p, • ~0, • ( l : le)"  • eO-~, ) , .  

Thus the new needle will disappear if  (1 - a~,)r~ > a,, and will survive if  

(1 - a t , ) r / <  at , .  

As already mentioned, the needle dynamics is not a faithful approximation 

of  the geodesic mode, but the fact that the functions p,(e) and l ,(e) scale with 

different exponents should be the same in both models (in contrast to the situation 

of  Section 5). The goal of  this section is to provide a rigorous proof  of  the maximal 

angle criterion in the simplest (two arm chordal) case. We prove only the survival 

part of  Theorem 1. The reasoning for the second part is completely similar. 
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4.2 Inve r se  L o e w n e r ' s  e q u a t i o n  Let ~t be a chordal Loewner chain with 
two arms. Our first step is to express the numbers ~j (t) in terms of the parameter 
functions xj (t) and #~(t). As usual, this is done by means of the inverse equation 

re(s) + l,~(s) 
hs = -A(hs ,  s) - h~ -Xl(S ) hs - x2(s) 

for the transition maps h8 = ~~  (0 < s < t). From now on, t is fixed and dot 
means the s-derivative. Denote 

wj(s) := h,(xj(t)), 

so h8 maps H onto the halfplane minus slits joining xj(s) and wj(s). Clearly, 
~,(w~(s)) = aj(t), the tips at time t, and 

~_______~ + ~.___L_2 , w ~ ( t )  = z ~ ( t ) ,  
( 1 3 1 ( 8 )  - -  W l  - -  Z l  W l  - -  Z 2  

~____2__~ + ~___2___~ w2(t) = x 2 ( t ) .  I132(8) = W2 - -  Z l  W2 - - Z 2 '  

L e m m a .  Suppose the chain starts with ~o(Z) = z 2 and satisfies the geodesic 
condition. Then 

~ 2 ( t ) = e x p { _ f o t  ~ [.(w2 1 1 ds} 
- X l ) 2  "3t- (W 2 - -  X l ) ( Z  2 --  X l )  ] f l l ( 8 )  �9 

P r o o f .  Let 

to(s) = h:'(x2(t)). 

Differentiating the inverse equation twice, we get 

/~ = _ A t ( w 2  ) __ /Zl 

Since 

# 2  

(W 2 - -  X2)  2 " 

we have 

w2 - -  x2 = 
p l  P2  P l  + - -  

W2 -- Xl  W2 -- X2 X2 --  Xl  

~2  ~1 (W2 - -  X2)  

W2 --  X2 (W2 --  X l ) ( X 2  --  X l ) '  

k 
t~ 

?J)2 --  X2 + - -  
W 2 -- X 2 (~o: - x l )  2 (~0~ - x l ) ( ~ : ~  - ~ 1 ) "  

Integrating from 0 to t, we obtain 

/ :  ( 1 
(4.2) log [tc(O)w2(O)] --- (w2 - xl)2 

1 ) 
"3t- (I/32 --  X l ) ( X 2  --  X l )  ~ l ( S )  d s .  
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Here we have used the fact that x=(0) = 0 and that 

lim [n(s)(w2(s) - x2(s))] = 1. 
s---+t 

To see the latter, we  note that for s close to t, the map h8 is essentially z ~ ~ - e 2 

in the coordinates with x2 (t) = 0, where r is the length of  the corresponding slit. 

Then Wz(S) ,,~ is and h"(0) = 1/(ie). Since ~t = h0 2, we  have ~o~'(x2(t)) = 

2w2(0)n(0), and 
2 1 

8 2 - -  
I~'(z2(t))l Iw=(0)ll,~(0)l 

The statement now follows from (4.2) [] 

The same argument shows that in the d-arm case, we have 

{ f o t  [ 1 1 ] } (4.3) ~ j ( t )=exp  - ~  Z #k ( w j - - x k )  z + ( w j - x ~ ) ( x j - x k )  ds . 
kgj 

The rest o f  the section is devoted to the proof  of  the fol lowing fact, which 

corresponds to the "survival" part of  Theorem 3. 

T h e o r e m .  Suppose that for  all t > to, a geodesic Loewner chain satisfies the 

equations 

~l(t)" ~2(t)" 
re(t)  = ~l(t)~ + ~2(t)~' re(t)  = ~l(t)~ + ~ ( t ) ~ '  

where 7 is some fixed constant. Then "r > 2 if  #5 -~ 0 as t -~ oo. 

In the proof, we assume for simplicity that xl(0) = xz(0) = 0, so A(s) := 

x2(s) - xl(s) = ~ by the geodesic condition. We only need to study Wz; 

therefore, write w2 = w (and in general delete the index 2) and set 

Z ~ u + i v : - . ~ v ~  2 - x 2 .  

The function z satisfies 

I) / : = ( 1 - # )  z + A  +--'z 

Taking the real and imaginary parts, we have 

1 = #  
(4.4) 6 = [z + AI2 

and 

(4.5) ~= (1-.)lzl 2 ( 1 - #  z~2) 
AIz+AI~ I ; ~ Z I  ~ I ~" 

z ( t )  = o. 
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Let us mention some basic properties: 

�9 v(s) % o on (0,t); 

�9 v ( s )  ~ ~ 2 f :  u ( ~ ) d ~  as  s -~  t; 

�9 6(t) = 0 and/ i ( t )  > O; 

�9 u > 0 on (0, t). (This is true because u > 0 for  s --+ t and, by (4.5), we have 

6(s) < 0 if u(s) = 0.) 

4 . 3  M a i n  l e m m a  D e n o t e  

t 1/2 

M(s) = s-X (f~ #(r)2rdr) 

We repeatedly use the fact that the functions M(s) and sM(s) are decreasing. Also 

observe that 

(4.6) v(s) < vfsM(s). 

Indeed, writing V = v 2 we have, by (4.4), 

1 ~ 1 2  2#V V 
(4.7) ~" - [ 2V - [z[---- T _> - - -s  - 2#; 

and so (sV)" > -2#s, V(t) = 0, which gives (4.6). 

L e m m a .  If M(s) << 1, then u(s) << v(s) ,~ vqM(s). 

The precise meaning o f  this statement is that given E > 0, there is g > 0 such 

that i f  M < & then u <_ ev, and v <_ v/'SM <_ (1 + r A different way to state the 

lemma is to say that u << v as long as v << A. In this form,  the statement is almost  

obvious f rom the geodesic nature o f  the growth; but a r igorous proof  still requires 

some effort. 

P r o o f .  Consider the decreasing function 

e(s) = sup 
._>, v(o') 
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We first show that 

(4.8) if M < 1/2 on (s,t), then e(s) < 2M(s). 

To see this, rewrite (4.5) with obvious notation as/~ = - F ( a )  - g(a)u. Then we 

have 

{/; } u(s) = F(a) exp g(r)dr da, 

where 

g(r)dr <_ A--~ = 2 log s 

and 
F(a) < (1 + e(a)2)v(a) 2 

- (2a)3/2 ' 

so that 

fs 
t ( l+e(a)2)v(a)2  al/2 

U(S) < (2a)3/2 Sl/2 do" 

< * da. 
-- 2(2S)1/2 J~ a 

Since 

ff f f  aM(a) da s - l /2  V(O') dg 7 < 3-1/2 
a - a 3 / 2  - ~  

ff ' <_ ~,/~M(s) aa/2 - 

by (4.6) 

2M(s), 

it follows that i fe(s)  < 1, then u(s)/v(s) < 2M(s), which also shows that e(s) < 1 
if M < 1/2 on (s, t) 

Next we claim that there is an absolute constant c > 0 such that 

(4.9) M(s) < c ~ v(s) > �89 

and also that 

(4.10) M(s) << 1 ::V v ,-- v~M(s).  

The lemma clearly follows from (4.8), (4.9), and (4.10). 

To prove (4.9), we rewrite the equation in (4.7) in the form 

(4 .11 )  ? _  v 2 ~ + f  
8 
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with 

< [z 2V 2V[ 2#V 2pV _ 2# I lYl - +At2 ~ , + l z + ~ l  - - - - - - -~+  z~ 
I 

v 2 -.< v2 + uA #v 2 
- A------T-- + - ~ T  + # z2 

__ M 4 + sM 3 + #M 2 + #t  2 by (4.6) 

---<_ M 4 + / ~ M  2, 

where we use the symbol 
that i fc  is small enough, then f < M 3 + #. Integrating (4.11), we have 

sv2(s)=2 f f  #(r)~'dr- ftrf(~')dT 

> fstp(r)rdT- fstrM3(r)dr 

>_ ls2M2(s)-sSM3(S) ~ssCC.r-2d.r 

>__ 182M2(8). 

We prove (4.10) by a similar argument. 

_-_< for inequalities with absolute constants. It follows 

[] 

4.4 P r o o f  o f  T h e o r e m  Suppose #2 -~ 0 and that 7 < 2. We want to get a 
contradiction. Take a small constant c > 0 and define a function a = a(t) by the 
equation M(a) = c. Then we have 

< a ~ v(~) > ~(~) ~ cv~ > ~v~, 
s > a =~ v ( s )  ,,, v / - s M ( s )  < cv / s .  

Note that in the latter case, we also have [zl << A according to the main lemma. 
Recall that 

for [ 1 1](1-#(s))ds. -logZ2(t) = ~ ( ~ : ~ ) ~  + A(~q-A) 

We first observe 

f0a [ l ( z  + ) A(z 1 ] +  A) f o a d S f o  a d s ) (  v/'~v(s) , -  -A,2 + d~ _~ v2"s----: + 

l ~oa l ~o~ dS < - d s  + ~ = 0 ( c - 2 ) .  
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On the other hand, for s > a we have 

it follows that 

1 

(z + ~,)---------- ~ + 
1 )q J 2 1 

A(z + A A 2 s 

/~2(t) >'- const a(t) 

with the constant depending on c. In the same way, we prove that/~1 (t) _ 1 because 

/zl ~ 1. It now follows that 

,~(t) ~ 

and so a(t) = o(t). To finish the proof, we show that if a(t) = o(t) and 7 < 2, then 

the following two inequalities are contradictory: 

[' 
a(t) 2 > const #(s)sds, 

Ja(t) 

#(s) _> const 

We can o f  course combine  them to get 

[' 
a(t) 2 > const a(s)'rsl-'rds. 

J~(t) 

Set 

An = min{a(t) : 2 "-1 < t < 2"}, 

and let tn be the min imum point, An = a(tn). Since An << 2 '~ (by assumption),  we 

have 2n-1 
f2 ~ 2n(2-7)" A~ _> const a( s )'r sl-'r ds >_ const An_ 1 

2 > const e "r > 2 Let  e ,  := 2-nA,~, so that e,, --+ 0, Since 3' < 2, we have e,, n-1 2e,,-1, 

which is a contradiction. [] 

5 S t a b i l i t y  a n a l y s i s  

In this section, we study stability properties o f  stationary solutions o f  the 

geodesic model and prove Theorems 4 and 5. Let  a E ~d be a stationary solution 

of  the ~?-model. Consider  a small perturbation o f  the Loewner  parameters  in the 

t ime interval [0, 1]: 

~jCt) = o~ + e a t )  (0 < t < 1). 
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Together with the geodesic condition, the functions # j ( t )  determine a d-arm 

Loewner chain ~t for t E [0, 1]. Let us take the configuration cpl as an initial 

condition to run the (normalized) r/-process for t > 1; and let #,/(t), t > 1, be the 

corresponding parameter functions of  the process, so the functions ej (t) = #j ( t ) - a j  

are also defined for t > 1. We write lieN(0,,) for the L~176 By definition, 

a stationary solution a is stable if given c > 0, there exists a 5 > 0 such that 

IIEIl(0,1) < ~ 

a is asymptotically stable i f ,  in  add i t ion ,  

II~IIr < c; 

Ilell(o,i) < J ~ lim e(t) = O. 
t--~oo 

5.1 Linear izat ion  o f  L o e w n e r ' s  e q u a t i o n  Consider a general geodesic 

Loewner chain {~t }t>0 with/~j (t) -- aj  + ej (t). Denote the fl-numbers by ~j (t) and 

write fl~ for the/~-numbers of  the stationary chain. We want to linearize formula 

(4.3) for the E-numbers and to estimate the kernels (at s = 0 in particular). 

L e m m a .  Given cr E ~a, there are cont inuous  f unc t ions  

such that  

hjk = hj~k : (0, 1] ~ R, Ihjk(s)l ~ l / v / s  as s --~ O, 

rio' (io l~j(t) = b p  + hjk(S)Sk(St)ds + 0 le(st)l 2 , 

where the O - b o u n d  depends only  on a. 

We occasionally use vector notation and write h ,  e for the multiplicative 

convolution operation. 

P r o o f .  It is enough to prove the statement for t = 1, for it then follows for 

arbitrary t by the scaling properties of  stationary chains. Namely, let us fix t and 

observe that in the chordal case, the chain 

~s(z)  = t - i~s t (x /~z ) ,  0 < s < 1, 

is driven by the functions 

D~(s)=~(st), ~cj(s) = t - l l ~ x j ( s t ) .  

Indeed, 

~'.(z) = t - ' / ~ ' . ( v ' 7 : ) ,  
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so the poles 5:j(s) of  ~s are as stated. We also have 

o~(o~(z) = ~h(vqz); 

and by the Loewner equation, 

v~ m(~t) 
F_, ;~j(') - Z x j ( , t )  - v z z '  J 5 c j ~ ) - z  J 

so/2j (s) = #j(st). The chain ~8 satisfies the geodesic condition: 

lzk(st) ~ ftk(S) 
O,~Cj(S) = x/tgcj(tS) = ~ t_l/2Xj(St ) _ t_l/2Xk(St ) = ~,j(~----'~k(t)" 

kr 

~ I f  I t  Finally, observe /2(s) = cr + e(st). Applying the identity ~8 (z) = ~Pst(v~z) at 

z = ~j(s), we get 

fo I (fo 1 " ~ )  fl(t) = ~(1) = /3"  + h(s)s(st)ds + 0 [r ds , 

provided that the estimate for t --- 1 is known. 

Let us now prove the statement for t = 1. For simplicity, we indicate the 

argument in the two arms chordal case. (If there are more than two arms, we also 

have to consider the variation in the geodesic condition.) Changing time, 

di  = (#1(0 + #2(t)) dt, 

we can consider a normalized geodesic chain with 

#l( t)  : 0rl -~- 8(t), #2(t) : 0"2 -- ~(t). 

By Lemma 4.2, we have 

f01[ 1 (5.1) -log/31(1) = N (z + A) 2 
1 

- -  + A( z q - A) ]  #2(s)ds, 

where A(s) = v ~  and z = z(s) satisfies the inverse equation 

_ # 1  #2z 
z Zx(z + ~ ) '  z(1) = 0. 

We write Z(s) for the solution of the corresponding inverse equation with 

r - 0; note that IZ(s)l • v f f -  ~. Define the function ff = z - Z. From (5.1), we 

find 

(5.2) log fll!J ) f01 f01 /31 = e A +  ~ B + . . .  , 
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where 

1 
(5.3) A = ~  ( Z + A ) 2  

1 ] a 
+ A ( Z + A )  = s + b d d '  a = ~tz(o) -~ > o, 

20-2 
B = N t(zTh)3 + 

0-2 ] const 
A ( Z + A ) 2  -- ~ + b d d  

("bdd" means "a bounded function"), and the error term in (5.2) is 

(5.4) 

with 

(5.5) 

and 

(5.6) 

O (f01a-'(lel2 + 1r 

Next we notice that ~ satisfies the equation 

= -f(~ + g, (~(1) = O, 

(�89 ) (Hill 
g =  + A ( Z + A )  e + O  + , k IZl 2 ~-I ~1 

ffl 0"2 Z 0"2 0"2 
/ = ~ + ( z  + a)~ - z + a ( z  + a )  + (z  + a)~" 

Solving (5.4) for if, we have 

f s  
(5.7) ~(s) = - g('r)e J2/dr .  

From (5.6), we derive the estimate 

e g  1d,- x Iz( , ) /z(s) l ,  

which we use together with (5.5) and (5.7) to show that 

1 j~l le I 

Returning to (5.2), we see that 

fo x fo 1 r = eC + . . .  
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with a bounded  kernel C and an error term 

O (f01 A-a([e[2 + [ff[2)+ [Z1-11~[2): O (fo I A-l ,e [2)  . 
[] 

R e m a r k .  It follows from the proof (namely, from the inequality a > 0 in (5.3) 

and from the boundedness of  the kernel C) that hjk (0) = - o o  for j # k. The values 

hjk(1) are also negative: if we use the notation 7jk = --cg/~j/Olk of  Section 3.1, 

then 
TTjk (3.4) T f~  

k (z~ - xk)  2" 

Thus one can expect h~k(s) < 0 for all s i f j  # k. This seems to be intuitively clear: 

the increase in/zk results in the decrease of  ~j. We require this fact in connection 

with the stability criterion which we discuss next. 

P r o p o s i t i o n .  l f  d = 2 in the chordal  case, or  i f  d = 3 and  al  = a2 in the radial  

case, then the kernels  h~k(s ), j # k, are negative.  

The computer-assisted verification is based on the following approach. Let 

~t (z )  = t~o(t-1/2z) be the stationary solution, and let ~t be the normalized geodesic 

chain with #1 = al  + e, where e(t) =- a2 for t E (1, 1 + a) and 0 otherwise. The 

statement follows if we can show that for an infinitesimally small a > 0 we have 

for all t 
It X l!  I~t ( t)t < I~, ( S t ) l ,  

where Xt = X l ( t )  and x t  = x l ( t )  are the poles. Representing the chains in the 

f o r m  

o--1 ~,  = ~ o [ ~ - 1  o ~1+~]  o [~1+~ o ~ , ]  - ~ o h o r  ~ ,  = ~ + ~  o ~ ,  

I! we observe that I!b t (xt)[ = I ~ ' ( X t ) l ,  so the inequality to verify is 

(5 .8 )  1 - I~0 ' (h(pt ) ) l .  Ih '(p~)l  > 0, 
I ~ i + ~ ( P t ) l  

where pt = r  and Pt = ~(Xt) .  Since a is small, we can use the approximation 

h(z)  ~ V'(z  - Xl)2 _ 2 a  + x l  

to express the main term (as a --+ 0) in the left hand side of  (5.8) in terms of  

elementary functions and the explicit function t ~ Pt. 
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5.2 A s t a b i l i t y  c r i t e r i o n  Let us return to the situation described at the 

beginning of  this section. Denote 

qj(t) = ~+"( t )  + . . .  + ~]+'7(t)' 

so p(t) = q(t) for t > 1 by the definition of  a (normalized) r/-process. By the last 

lemma, we have 

(/01 (5.9) q(t) = q" + (k  * e ) ( t )  + 0 le(st)l 2 , 

where k is some kernel depending on 7/and a, namely, 

(5.10) kj~, = (1 + rl) E qkqj ( ~ hk~, 

Since q(t) - q~ = Iz(t) - a = e(t) for t > 1, the function e(t) satisfies the equation 

(f01 --'~8 ) (5.11)  e( t )  = (k  * s ) ( t )  + 0 le(st) l  2 , t >_ 1. 

We use this equation only in a scalar case. We use the following lemma to establish 

asymptotic stability of stationary solutions. 

L e m m a .  Suppose s( t ) is a real-valued funct ion satisfying 

fO 1 fo 1 e2(st) ds (t > 1), with la(t)l < (5.12) e(t) = k(s)e(st)ds + a(t) A. 

Suppose also 

o 1 Ik ( s ) lds  < 1, 

Then i f  So > 0 is small enough and Ilell(o,1) < so, then le(t)l < so fo r  all t > O, and 
s( t )  ~ o. 

P r o o f .  Choose e0 so that fo ~ Ikl + 2As0 < 1. I f  there is a point t > 1 such that 

so -- le(t)l > le(r)l (for all 7- < t), then 

so -- le(t)l < so Ikl + As ~ = So( Ikl + 2Aeo) < So, 

a contradiction. Thus s(t) < So for all t. 

Let  us show that s(t) --+ 0. We derive this from the inequality 

/01 (5.13) le(t)l < K(s)s(s t )ds  (t > 1), 
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where K(s )  = k(s) + s-I/2AEo . Note that p := fo  K < 1. Define 

cn  -- max{ le ( t ) [ ,  2 '~-1 < t < 2n},  

and choose t,~ with 

I ~ ( t . ) ]  = ~ . .  

Choose also some slowly growing function N = N(n) ,  e.g., N(n)  = [v@- By 

(5.13), we have 

1 2 n - l # .  [2~ F.-'-,#. 
K + e . _ ,  [ K + ' " + e n - N  K +  K 

En <_ ~n n-1/ t~ d2"~-2/tn d 2 n - x - a / t ,  dO 

:= + . - .  + + o (2 -N/=) .  
\ / 

Since 

we have 

and hence 

a o + . . . + a N  <_p< l, 

al + . . .  + a N  p--  ao < - - < p ,  
l - - a 0  - l - - a 0  

en < p max 6n-N q- C2 -N/2. 
-- I<_j<_N 

Let  the m a x i m u m  be assumed for  j = j l .  Writ ing N1 for N(n) ,  N2 for  N ( n - j i ) ,  

etc., we have 

s = P~n-j~ + 0 ( 2 - N ~ / 2 )  , 

~n--jl  = P~n--j~ + 0 ( 2 - - N ' / 2 ) ,  

and 
P 

en <_ pPeo + C Z 2-N"/2PV 
v :  1 

with p = p(n) -+ oo as n --+ c~. It follows that e ,  --+ 0. [] 

The next l e m m a  is used to establish instability of  stationary solutions. 

L e m m a ,  Suppose e (. ) satisfies the relation (5.12). Suppose also that the kernel 

k(s) is positive, continuous on (0, 1], k(s) • s -1/2 as s ~ O, and 

fo k(s)ds > 1. 

Then there is a constant c > 0 such that no matter how small the norm II~ll(o,x) is, 

we have e(t) > c f o r  some t provided that e(.) is non-negative on [0, 1]. 
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P r o o f .  Let us choose c > 0 such that the function 

K(s)  = k(s) - A c / v G  

is positive on (0, 1) and f01 K > 1. This can be done because r i sK(s )  > const > 0 

by assumption. Suppose E(.) is non-negative on (0, 1). Assuming e(t) < c for all t, 

we shall arrive at a contradiction. 

Note that e(.) > 0 on [1, oo), for if t _> 1 is the first zero, then 

fo fo 1 e(st)ds 0 = r > k(s)s(s t )ds  - Ac v ~  

It follows that the inequality 

(5.14) 

fo - K(s)r  > O. 

f0 
1 

r > K(s )e ( s t )ds  

holds for all t > 0. Fix A E (0, 1) such that Q := f~ K > 1. Then by (5.14), 

r > Q min r 
- [ ~ , t ]  

Let tl E [At, t] be the minimum point. Let t2 be the minimum point o f  e(.) on 

[At1, tl], etc. Then 

>_ >_ Q2c(t ) > . . . ,  

and so for large t, we have e(t) > c. [] 

R e m a r k .  The linear part e = k �9 e of  equation (5.9) has the form 

r - (Vr = g(t) (t > 1), 

where the operator V is defined by the formula 

(w)( t )  = 7  (s)k 

and g(t) = t -1 f~ e ( s ) k ( t - l s ) d s  is a given function. We get a traditional form of  

the Wiener-Hopf  equation after we change variables t = e =, s = eY. It may be 

interesting to take a look at the stability problem from the point of  view of  the 

general theory of  Wiener-Hopf  equations. 

Now we turn to the proof of  Theorems 4 and 5. We use the notation and results 

of  Section 2.3. We first consider the case of  two chordal  arms. 
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5,3 P r o o f  o f  T h e o r e m  4 Consider the family 

( r ( s ) - - ( s , l - s ) e ~ 2 ,  0 < s <  1, 

of  stationary geodesic chains with two arms in the chordal case. Write 

Q = 0(8, r/) = ~i+,,(s) + f~+n(s)" 

By the definition of  the function r/~(.), we have the identity 

( 5 . 1 5 )  - s ,  

which holds for all s including s = 1/2 provided that r/~(1/2) is defined as a limit. 

Differentiating (5.15), we get 

O~Q(s, rl~(s)) + rf~(s). OnQ(s, rl~(s)) -- 1. (5.16) 

Note that 

and therefore 

(5.17) 

HI P - (1 + r/)B, B :-- log fl'22' log 1 - P 

+ OsQ=( l+r l )B '>O ( 0 <  s <  1), 

(5.18) [Q+I--~---Q]~ = B {<> O' i f s >  1/2. 

Suppose o-(s) is a solution of  the ~7-model, i.e., Q(s, rl) = s. We want to apply 

the criterion of  the previous section. Consider some perturbation ej(t) of  ~rj as 

described in the definition of  stability. In the normalized case, we have just one 

unknown function: 

el = e(t), e2 = -e( t) ;  

and so equation (5.11) reduces to the scalar equation 

E---- m * ~ - ] - - . .  

with a positive kernel m = m s''~ = k l l  - k12 > 0, see (5.10) and Proposition 5.1. 
�9 1 

Thus the stability criterion Is f0 m < 1. Observe now that 

fo 1 m = asQ(s,,7). 
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This follows if we apply (5.9) to constant functions ej(t) and use the definition of  

Q. We now consider two cases. 

I f  s ~ 1/2, then r /=  r/c(s); and by (5.16), the stability condition is 

'fA*)" > o. 

This inequality is always true because of  (5.18) and the properties of  rio('); see 

Section 2.3. Hence all asymmetric stationary solutions are asymptotically stable. 

If  s = 1/2, then rl can be arbitrary; but in any case, Q = 1/2. Using (5.16) and 

(5.17), we see that the condition for stability is 

1 + riB,(1/2) = OsQ(1/2,rl) < 1. 
4 

Applying (5.17) again, we have 

1 + ~/c(s) 8 ' (1 /2)  = O,Q(1/2, r/~(1/2)) = 1, 
4 

so r /has to be less than rk.(1/2 ) for the solution a(1/2) to be stable. [] 

Finally, we turn to the case of  three radial arms. 

5.4 P r o o f  o f  T h e o r e m  5 Consider the family 

a(s) = (s,s, 1 - 2s) E C3, 0 < s < 1/2, 

of  stationary geodesic chains. Suppose or(s) is a solution of  the geodesic 0-model. 

Linearizing the 0-equation in a neighborhood of  a(s),  we get the system (5.11): 

e = e , k + . . . ,  k = k  s'~. 

By symmetry, we have 

k l l  • k22 ,  k12  = k21 ,  k13 = k 2 3 ,  k31 = k32 ;  

and so the system is 

(5.19) / e l  - -  e2  = ( e l  - -  e 2 )  * ( k l l  - k 1 2 )  --1- �9 �9 �9 , 

( e3 = (61 + e 2 )  * k31 + e3  * k a a  + ' "  �9 

In the normalized case (61 +e2 +ca = 0), we can take el - e 2  and e3 for unknown 

functions and separate the variables in the linear part of  the system: 

6 1  - = ( e l  - * a + . . .  , 

e3  = e 3 * b + . . -  , 
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where the scalar kernels a = kll - k 1 2  and b = k 3 3 -  k31 are posit ive by 

Proposit ion 5.1. F rom the argument  o f  Section 5.2, it follows that the stability 

criterion is 

f01 f0' (5.20) a < 1 and b < 1. 

Note  that if  s = 1/3, then there is an additional symmetry,  and we have a = b. 

The next step is to express the integrals in terms of  the function 

~l+r /  
1 

Q(sl ,s2;rl)  -- ql(Sl ,S2,1 - Sl - s2;  r]) - /--,1Al+rl § f41q-rl--2 § ~ q - r / ,  

where the ~ j ' s  are the beta-numbers  of  the geodesic  stationary chain 

( s l , s 2 , 1 -  sl  - s2) E ~3. 

We cla im 

f0' f0' (5.21) a = 01Q - 02Q, b = 01Q + OzQ, 

where the derivatives are computed  at (s, s; r/). Indeed, for any constant  5, we have 

(5.22) q3(s + 5, s + (f, 1 - 2s - 2(f; rl) = 1 - 2Q(s + 5, s + 5). 

From the second equat ion in (5.19) with cl = e2 = 5 and Ea = - 2 5 ,  we  see that the 

left hand side in (5.22) is equal to 

1 - 2s + 5(K31 + K32 - 2K33) + ' . .  , Kij := kij. 

Since the right hand side is 1 - 2s - 2(f(01Q + 02Q) + . - .  , we get 

11 
01Q + 02Q = Kaa - K31 -- b.  

The proof  of  the formula  for f~ a is similar. 

Differentiating the identity Q(s, s; ~ (s)) = s, which holds for  all s including 

s = 1 / 3 ,  we get 

(5.23) 

in particular, 

(5.24) 

(O,Q + 02Q)(s, s,~?~(s)) § rl'~(s)O,~Q(s, s, rlr(s)) = 1; 

(alQ + a2Q)(I/3, I/3;~7~(I/3)) = I. 
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Let us analyze the condition f01 b < 1. I f  s # 1/3, then o-(s) is a solution for the 

geodesic model with 0 = r/~(s); and by (5.21), (5.23) we have 

~o ' = - ,7~(s )O,Q(s ,  s , ,7~(s)) .  b (O,Q + O : Q ) ( s , s ; n ~ ( 8 ) )  = 1 ' 

This is less than one if and only ifrl~(s)OnQ(8 , s; rk (s)) > 0; and since rT~(s ) < 0 for 

all s, we have 

f01 ,~1 (5.25) b < 1 ~ B13 = log ~33 < 0, i.e. s < 1/3. 

Here we have used the identity 

0,TQ = Q(1 - 2Q)B13, 

which is obtained by differentiating the identity 

Q ( s ,  s; ,7) 
(5.26) (1 + ~/)Bla(s, s, 1 - 28) = log 

1 - 2Q(s, s; '7) 

with respect to ~/. If  s = 1/3, then ~/can be arbitrary; and J'o ~ b < 1 iff 

(01Q + 02Q)(1/3,1/3; 7) < 1 = (01Q + 02Q)(1/3,1/3;rk(1/3)) ,  

which holds if  and only i f , / <  ~/~(1/3). To see the latter, we use the formula 

(OxQ + 02Q)(1/3,1/3; r/) - 1 +____~ dsBl3(8 , s, 1 -- 2S)[s=1/3, 
9 

which is obtained by differentiating (5.26) with respect to s, and note that the 

derivative in the right hand side is positive. This completes the proof  of  the 

theorem in the symmetric case (8 = 1/3), since then a = b, as already mentioned. 

To finish the proof in the non-symmetric case, it is enough by (5.25) to show 

s (5.27) a > 1 if  0 < s < 1/3. 

The proof of  (5.27) is based on a fact stated in Section 2.3. Fix s < 1/3 and write 

,7 for rl~(s). Consider the functions 

B(6) = 1312(s + 6, s - 6), E(6) = log 

and for 6 # 0 define E(5) by the equation 

(5.28) 

s + g  
s - 6  (6 ~ ~), 

(1 + E(tJ))B(g) = 12(J). 
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By Proposition 2 in Section 2.3, 

E(0) = lim E(<f) = @(s) < ~/. 
6---~0 

Note also that E(.)  is a positive even smooth function; in particular E'(0) = 0. 

Differentiating (5.28) and taking the limit as 5 --+ 0, we get 

(5.29) (1 + E(0))B'(0)  = E'(0). 

The computation o f  f01 a goes as follows. If we  differentiate the identity 

l o g Q ( S + 5 ' s - 5 ;  r/) = ( l + r / ) B ( 5 )  
Q ( s -  5, 5; 7) 

with respect to 5 and set 5 = 0, then we obtain 

2 
- ( O l Q - O 2 Q ) ( s , s ; r l )  = (1 + 7 )  B'(O) 
8 

Since 2 / s  = Z'(O), we conclude 

fo  (5.20) (1 + r/)B'(0) (5.2_9) 1 + r/ 
a - E'(0) 1 + S ( 0 )  > 1. [] 
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