48, 3384 (1968).

- 68Kru: M.C. Krupko, N.H. Krikorian, and T.C. Wallace, "Polymorphism in Heavy Rare-Earth Dicarbides at High Pressures and Temperatures," Proc. 7th Rare-Earth Research Conference, 28-30 Oct, Coronado, CA, 197 (1968).
- 70Kru: M.C. Krupko and N.H. Krikorian, "High-Pressure Synthesis of New Heavy Rare-Earth Carbides," Proc. 8th Rare-Earth Research Conference, Vol. 2, T.A. Henrie and R.E. Lindstrom, Ed., National Technical Information Service, Springfield, VA, 382 (1970).
 70Yup: V.L. Yupko, G.N. Makarenko, and Yu.B. Paderno,
- 70Yup: V.L. Yupko, G.N. Makarenko, and Yu.B. Paderno, "Physical Properties of Carbides of Rare-Earth Metals," *Tugoplavkie Karbidy*, G.V. Samsonov, Ed., Naukova Dumka, Kiev (1970) in Russian; TR: *Refractory Carbides*, N.B. Vaughn, Translator, Consultants Bureau, New York, 251 (1974).
- 71Kos: T.Ya. Kosolapova, G.N. Makarenko, and L.T. Domasevich, "Characteristics of Chemical Bonding in Rare-Earth Carbides," *Zh. Prikl. Khim.*, 44, 953 (1971) in Russian; TR: *Russ. J. Appl. Chem.*, 44, 965 (1971).
- 73Mcc: I.J. McColm, T.A. Quigley, and N.J. Clark, "The Cubic-Tetragonal Transformation in Metal Dicarbides—II. Lanthanide Dicarbides and Some Mixed Lanthanide Dicarbide Solid Solutions," J. Inorg. Nucl. Chem., 35, 1931 (1973).
- 76Ada: G.-Y.Adachi, Y. Shibata, K. Ueno, and J. Shiokawa, "Heats of the Tetragonal-Cubic Transformation in Rare-Earth

Dicarbides and Mixed Rare-Earth Dicarbide Solid Solutions," J. Inorg. Nucl. Chem., 38, 1023 (1976).

- **76Loe:** I.R. Loe, I.J. McColm, and T.A. Quigley, "Cubic to Tetragonal Transformations in Dicarbides—III. Enthalpies and Strain Energies of HoC₂-NdC₂ and GdC₂-LaC₂ Solid Solutions," J. Less-Common Met., 46, 217 (1976).
- **79Aok:** Y. Aoki and D.E.G. Williams, "Some Properties of Alloys with Compositions Close to DyC_{0.33}," J. Less-Common Met., 65, 35 (1979).
- 80Sak: T. Sakai, G.-Y. Adachi, and J. Shiokawa, "Magnetic Properties of CeC₂ and Its Solid Solutions, Ce_xDy_{1-x}C₂," *Mater. Res. Bull.*, 15, 1001 (1980).
- 81Ato: M. Atoji, "Neutron Diffraction Studies of Tb_2C and Dy_2C in the Temperature Range 4 to 296 K," J. Chem. Phys., 75, 1434 (1981).
- 81Sak: T. Sakai, G.-Y. Adachi, T. Yoshida, and J. Shiokawa, "Magnetic and Electrical Properties of Rare-Earth Dicarbides and Their Solid Solutions," J. Less-Common Met., 81, 91 (1981).
- 86Gsc: K.A. Gschneidner, Jr. and F.W. Calderwood, "Intra Rare Earth Binary Alloys: Phase Relationships, Lattice Parameters and Systematics," in *Handbook on the Physics and Chemistry* of Rare Earths, Vol. 8, K.A. Gschneidner, Jr. and L. Eyring, Ed., North-Holland Physics Publishing, Amsterdam, 1-161 (1986).

C-Dy evaluation contributed by K.A. Gschneidner, Jr., Director, and F.W. Calderwood, Rare-Earth Information Center, Ames Laboratory, Iowa State University, Ames, IA 50011. This program was supported by the Department of Energy through the Joint Program on Critical Compilation of Physical and Chemical Data coordinated through the Office of Standard Reference Data, National Bureau of Standards. Additional support was contributed by: Molycorp, Inc., Union Oil Co. of California, Los Angeles, CA; Reactive Metals & Alloys Corp., West Pittsburg, PA; Ronson Metals Corp., Newark, NJ; and Santoku Metal Industry Co., Ltd., Kobe, Japan. Literature searched through Aug 1984. Professor Gschneidner is the ASM/NBS Data Program Category Editor for binary rare-earth alloys.

The C-Er (Carbon-Erbium) System

12.011

167.26

By K.A. Gschneidner, Jr. and F.W. Calderwood lowa State University

No phase diagram is available for the Er-C system, although some information has been reported for the compounds and their structures. Tri-erbium carbide, ErC_x (where 0.25 < x < 0.65) forms a cubic Fe₄N-type structure in which the anion sites are partially occupied by C atoms. This structure exists immediately below the melting point, but if x is close to 0.5, the structure transforms at lower temperatures to a trigonal CdCl₂-type structure (see "The Carbon-Rare Earth Systems," in this issue). [81Ato] stated that if x is much different from 0.5, the cubic structure is retained at all temperatures. Lattice parameters for cubic Er₃C are presented in Table 1, but no values were given for trigonal Er₂C. No melting point or transformation temperature data are available for these compositions.

An intermediate compound of Er having a lower than cubic symmetry can be obtained by arc melting. [58Spe] stated that erbium sesquicarbide is isostructural with Y_2C_3 . The structure of the latter compound was eventually determined by [71Bau] to be tetragonal $Sc_{15}C_{19}$ type and the composition to be $Y_{15}C_{19}$ instead of Y_2C_3 . [74Bau] determined the equilibrium concentration of erbium "sesquicarbide" to be $\text{Er}_{15}\text{C}_{19}$ and reported pseudocubic tetragonal lattice parameters for this structure (Table 1). It was shown by [70Kru1], [70Kru2], and [80Nov] that Er_2C_3 can be obtained with the cubic Pu_2C_3 -type structure by a solid-state synthesis at elevated temperatures and pressures (30 to 90 kbar, 1200 to 1400 °C). The lattice parameter is included in Table 1. No melting information is available for these Er intermediate compounds.

In the region between 55 and 60 at.% C, the phase relationships in the Er-C phase diagram may be quite similar to those observed in the Y-C system (see "The C-Y (Carbon-Yttrium) System," to be published).

The dicarbide, ErC_2 , was reported by [58Spe] to have the bct CaC_2 -type structure. The average value of lattice parameters from several sources is listed in Table 1. An $\alpha \rightleftharpoons \beta$ transformation from the tetragonal to a cubic form occurs at a temperature above 1300 °C; the lowest of four values is 1275 °C reported by [73Mcc], and the average of these values is 1310 ± 25 °C. This is in good agreement with the systematic trends of the $\alpha \rightleftharpoons \beta$ transformation of REC₂ compounds. In view of the $\alpha \rightleftharpoons \beta$ transformation,

	Composition range, at.% C	Pearson symbol	Space group	Struktur- bericht designation	Prototype	Lattice parameters, nm			Density,	
Phase						а	b	С	g/cm ³	Reference
(Er)	0	hP2	$P6_3/mmc$	A3	Mg	0.35592		0.55850	9.066	[86Gsc]
Er ₃ C	$\dots \sim 25$ to ~ 33	cF5	Fm3m	L_1'	Fe₄N	0.5034(1)	•••		9.022	[58Spe]
$Er_{15}C_{19}$.		<i>t</i> P68	$P\overline{4}2_1c$		$Sc_{15}C_{19}$	0.7989(1)	•••	1.579	9.018	[74Bau]
αErC_2		<i>t</i> I 6	I4/mmm	$C11_a$	CaC_2	0.3619(1)	•••	0.6097(1)	7.958	[58Spe, 67Kri,
										72Ato, 76Ada, 81Sak]
$\beta \text{ErC}_2(a)$	66.7	cF12	Fm3m	C1	CaF_2			•••		[67Kri, 73Mcc, 76Ada, 76Loe]
$\alpha' \text{ErC}_2(b)$) 66.7	o??			LuC	1.328	2.724	0.7020		[68Kru]
(C)	100	hP4	$P6_3/mmc$	A9	C (graphite)	0.24612	• • •	0.67090	2.266	[Pearson2]
$\frac{Metasta}{Er_2C_3(c)}$	ble phase ∼60	<i>cI</i> 40	$I\overline{4}3d$	$D5_c$	Pu_2C_3	0.8137			9.138	[70Kru1, 70Kru2, 80Nov

Table 1 Er-C Crystal Structure and Lattice Parameter Data

(a) Structure for βErC_2 has not been determined, but its existence and structure are assumed on the basis of the reported $\alpha \rightleftharpoons \beta$ transformation temperature and the known βREC_2 data. (b) Forms from long anneals of αErC_2 at temperatures above 1150 °C. (c) Produced under high pressure and high temperature.

we assume that βErC_2 has the CaF₂-type structure, similar to that reported for the βREC_2 phase for RE = La, Ce, Eu, Tb, and Lu.

[68Kru] reported that a third form of ErC_2 exists, forming during long anneals at 1305 ± 10 °C (100 to 270 h) from CaC_2 -type αErC_2 . This form ($\alpha' ErC_2$) has the LuC₂type orthorhombic structure (Table 1).

[67Kri] reported 2255 \pm 35 °C as the eutectic temperature for the ErC₂-C eutectic. Russian investigators reported melting temperatures for ErC₂ both above (2270 °C [71Kos]) and below (2230 °C [70Yup]) the reported eutectic. If these reported melting temperatures are considered actually to be eutectic temperatures, the average value of this eutectic is 2260 \pm 25 °C (rounding off the last significant figure to 0). This value for the eutectic temperature is in excellent agreement with the systematic trends of the REC₂-C eutectic. No reliable data are available for the ErC₂ melting point, the ErC₂-C eutectic composition, or the solid solubility of Er in (C).

Cited References

- 58Spe: F.H. Spedding, K.A. Gschneidner, Jr., and A.H. Daane, "The Crystal Structures of Some of the Rare-Earth Carbides," J. Am. Chem. Soc., 80, 4499 (1958).
- 67Kri: N.H. Krikorian, T.C. Wallace, and M.G. Bowman, "Phase Relationships of the High-Carbon Portion of Lanthanide-Carbon Systems," *Propriétés Thermodynamiques Physiques et Structurales des Dérivés Semi-Metalliques*, Centre National Recherche Scientifique, Paris, 489 (1967).
- 68Kru: M.C. Krupka, N.H. Krikorian, and T.C. Wallace, "Polymorphism in Heavy Rare-Earth Dicarbides at High Pressures and Temperatures," Proc. 7th Rare-Earth Research Conference, 28-30 Oct, Coronado, CA, 197 (1968).
- 70Krul: M.C. Krupka and N.H. Krikorian, "High-Pressure Synthesis of New Heavy Rare-Earth Carbides," Proc. 8th Rare-Earth Research Conference, Vol. 2, T.A. Henrie and R.E. Lindstrom, Ed., National Technical Information Service, Springfield, VA, 382 (1970).
- **70Kru2:** M.C. Krupka and M.G. Bowman, "New High-Pressure Phase Transformations in Rare-Earth and Actinide Carbide Systems," Les Propriétés Physiques des Solides sous Pression,

Centre National de la Recherche Scientifique, Paris, 409 (1970).

- 70Yup: V.L. Yupko, G.N. Makarenko, and Yu.B. Paderno, "Physical Properties of Carbides of Rare-Earth Metals," *Tugoplavkie Karbidy*, G.V. Samsonov, Ed., Naukova Dumka, Kiev (1970) in Russian; TR: *Refractory Carbides*, N.B. Vaughn, Translator, Consultants Bureau, New York, 251 (1974).
- 71Bau: J. Bauer and H. Nowotny, "The Ternary System Yttrium-Boron-Carbon," "Der Dreistoff Yttrium-Bor-Kohlenstoff," Monatsh. Chem., 102, 1129 (1971).
- 71Kos: T.Ya. Kosolapova, G.N. Makarenko, and L.T. Domasevich, "Characteristics of Chemical Bonding in Rare-Earth Carbides," *Zh. Prikl. Khim.*, 44, 953 (1971) in Russian; TR: *Russ. J. Appl. Chem.*, 44, 965 (1971).
- **72Ato:** M. Atoji, "Magnetic and Crystal Structures of ErC_2 at 297 to 2 K," J. Chem. Phys., 57, 2410 (1972).
- 73Mcc: I.J. McColm, T.A. Quigley, and N.J. Clark, "The Cubic-Tetragonal Transformation in Metal Dicarbides II. Lanthanide Dicarbides and Some Mixed Lanthanide Dicarbide Solid Solutions," J. Inorg. Nucl. Chem., 35, 1931 (1973).
 74Bau: J. Bauer, "Contribution to a Study of the Crystal Struc-
- **74Bau:** J. Bauer, "Contribution to a Study of the Crystal Structure of the Phase $\text{Er}_{15}\text{C}_{19}$," J. Less-Common Met., 37, 161 (1974).
- 76Ada: G.-Y. Adachi, Y. Shibata, K. Ueno, and J. Shiokawa, "Heats of the Tetragonal-Cubic Transformation in Rare-Earth Dicarbides and Mixed Rare-Earth Dicarbide Solid Solutions," J. Inorg. Nucl. Chem., 38, 1023 (1976).
- **76Loe:** I.R. Loe, I.J. McColm, and T.A. Quigley, "Cubic to Tetragonal Transformations in Dicarbides—III. Enthalpies and Strain Energies of HoC₂-NdC₂ and GdC₂-LaC₂ Solid Solutions," J. Less-Common Met., 46, 217 (1976).
- 80Nov: V.I. Novokshonov, "Synthesis of the Sesquicarbides of the Heavy Lanthanides and Yttrium at High Pressures and Temperatures," *Zh. Neorg. Khim.*, 25, 684 (1980) in Russian; TR: *Russ. J. Inorg. Chem.*, 25, 375 (1980).
- 81Ato: M. Atoji, "Neutron Diffraction Study of Cubic ErC_{0.6} in the Temperature Range 1.6 to 296 K," J. Chem. Phys., 74, 1898 (1981).
- 81Sak: T. Sakai, G.-Y. Adachi, T. Yoshida, and J. Shiokawa, "Magnetic and Electrical Properties of Rare Earth Dicarbides and Their Solid Solutions," J. Less-Common Met., 81, 91 (1981).
- 86Gsc: K.A. Gschneidner, Jr. and F.W. Calderwood, "Intra Rare Earth Binary Alloys: Phase Relationships, Lattice Parameters and Systematics," in *Handbook on the Physics and Chemistry* of Rare Earths, Vol. 8, K.A. Gschneidner, Jr. and L. Eyring, Ed., North-Holland Physics Publishing, Amsterdam, 1-161 (1986).

C-Er evaluation contributed by K.A. Gschneidner, Jr., Director, and F.W. Calderwood, Rare-Earth Information Center, Ames Laboratory, Iowa State University, Ames, IA 50011. This program was supported by the Department of Energy through the Joint Program on Critical Compilation of Physical and Chemical Data coordinated through the Office of Standard Reference Data, National Bureau of Standards. Additional support was contributed by: Molycorp, Inc., Union Oil Co. of California, Los Angeles, CA; Reactive Metals & Alloys Corp., West Pittsburg, PA; Ronson Metals Corp., Newark, NJ; and Santoku Metal Industry Co., Ltd., Kobe, Japan. Literature searched through Aug 1984. Professor Gschneidner is the ASM/NBS Data Program Category Editor for binary rare-earth alloys.

The C-Eu (Carbon-Europium) System

12.011

By K.A. Gschneidner, Jr. and F.W. Calderwood lowa State University

151.96

No phase diagram is available for the Eu-C system, although some data are available on compounds that are formed in the Eu-C system. [58Spe] did not include Eu in their investigation of the crystal structure of RE-C compounds, but later investigators reported structure data for several Eu-C compounds. [70Lap] reported the preparation of a monocarbide which they designated EuC_{1-x} , where *x* represents the amount of C that is missing in the compound. They claimed a cubic NaCl-type structure and reported lattice parameters of 0.5145 ± 3 nm in the presence of excess metal and 0.5141 ± 1.1 nm in the presence of excess C. These lattice parameters (Table 1) appear to fit well with those of the cubic Fe₄N-type RE₃C structures.

After unsuccessful attempts to prepare Eu₃C, Eu₂C₃, and EuC₂ from the elements, [72Col] reacted >99.9% pure Eu with HCN and (CN)₂ at elevated temperatures and obtained the compounds Eu₂C₃, EuC₂, and EuN_xC_y. X-ray data were obtained with Fe-filtered CoK_a radiation using a 114.6 mm Debye-Scherrer camera. Eu₂C₃ was found to crystallize with the cubic Pu₂C₃-type structure, in good agreement with the structure of neighboring sesquicarbides. Their data for Eu₂C₃ are listed in Table 1.

Other investigators reported some lattice parameter data for EuC₂, but a complete structure analysis has not been reported. [68Fai] synthesized EuC₂ from the elements in sealed Mo bombs in an argon-filled C tube furnace. EuC₂ gave anomalous X-ray patterns, more complex than those of LaC₂, CeC₂, or NdC₂, but reproducible with four different samples. This pattern was indexed tentatively as a bct with a = 1.215 and c = 0.7290 nm, accounting for all but two low index lines. [64Geb] produced EuC₂ by two methods: (1) reduction of Eu₂O₃ (99.9% pure, weight?) with spectrographic grade C (graphite) placed in a graphite crucible; and (2) melting of 2-to-1 mol mixture of C and Eu in a stainless steel bomb in a resistance tube furnace. X-ray powder diffraction patterns of the product using CuK_a radiation in both a 114.59-mm powder camera and a Siemens diffractometer showed the bct CaC₂type structure, along with a second phase with a different type of structure. The second phase could be obtained in larger quantities in samples containing a lower C-to-Eu ratio and heated to a somewhat lower temperature.

The low-angle lines of this impurity could be indexed on the basis of an orthorhombic cell with a = 0.876, b = 1.123, and c = 0.719 nm, but the high-angle lines were not indexed satisfactorily [66Geb].

[82Sak] synthesized EuC₂ by two methods: (1) 99% pure Eu and spectrographic grade C (graphite) were sealed under vacuum in a silica capsule and heated at 1000 °C for 30 h; and (2) 99.999% Eu₂O₃ was mixed with C (graphite), pelletized, and heated in Mo under a flow of argon at 1800 °C for 5 h. An excess of 5 at.% C (graphite) was used to remove all of the oxygen. Powder X-ray diffraction patterns were taken using Ni-filtered CuK_{a1} radiation with an internal standard of Si. Phase transformation was examined by differential thermal analysis in the temperature range 27 to 727 °C. The dicarbides obtained by each method had bct CaC₂-type structure, but each contained a second phase that could not be removed

Table 1 Eu-C Crystal Structure and Lattice Parameter Data	Table 1	Eu-C Cry	ystal Structure	and Lattice	Parameter Data
---	---------	----------	-----------------	-------------	----------------

	Composition range, at.% C	Pearson symbol		Strukturbericht designation		Lattice parameters, nm		Density,	
Phase					Prototype	а	с	\mathbf{g}/\mathbf{cm}^3	Reference
(Eu)	0	cI2	Im3m	A2	W	0.45827		5.244	[86Gsc]
$Eu_3C \ldots$	$\sim \! 25$ to $\sim \! 33$	cF5	Fm3m	L_1'	Fe_4N	0.5145(3) (a)		7.646(a)	[70Lap]
						0.5141(3) (b)		7.722(b)	[70Lap]
$Eu_2C_3\ldots$	~ 60	cI40	$I\overline{4}3d$	$D5_c$	Pu_2C_3	0.8368		7.530	[72Col]
$\alpha EuC_2 \dots$	66.7	tI6	I4/mmm	$C11_{a}$	CaC_2	0.4082(36)	0.6701(56)	5.236	[64Geb, 82Sak]
βEuC_2	66.7	cF12	Fm3m	C1	CaF_{2}	0.5961(1)		5.519	[68Mat]
EuC ₆	85.7	hP14	$P6_3/mmc$		EuC_6	0.4314(3)	0.9745(8)	4.737	[75Gue, 80Elm]
(C)	100	hP4	$P6_3/mmc$	A9	C (graphite)	0.24612	0.67090	2.266	[Pearson2]
(a) Eu-rich.	(b) C-rich.								