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Abstract. Let Q be a bounded smooth domain in R2. Let f: R — R be a smooth non-linearity
behaving like exp{s®} as s— c0. Let F denote the primitive of f. Consider the functional
J:H,(Q) - R given by

1
J(u) = —J jVui?dx — J F(u)dx.
2J)a a
It can be shown that J is the energy functional associated to the following nonlinear problem:
—Au=f(u) in Q,

u=0 on 0Q.

In this paper we consider the global compactness properties of J. We prove that J fails to
satisfy the Palais—Smale condition at the energy levels {k/2}, k any positive integer. More
interestingly, we show that J fails to satisfy the Palais—Smale condition at these energy levels
along two Palais—Smale sequences. These two sequences exhibit different blow-up behaviours.
This is in sharp contrast to the situation in higher dimensions where there is essentially one
Palais—Smale sequence for the corresponding energy functional.

Keywords. Blow-up analysis; critical exponent problem in R? Moser functions; Palais—
Smale sequence; Palais—Smale condition.

1. Introduction

1.1 Preliminaries

Let S_) be a smooth bounded domain in R", n = 2. For n > 3, let &, denote the subset of
CYR ,,R.) consisting of functions g(s) which satisfy the following growth conditions:

}EE, g(s)s«"”)/"‘"z» = o0,

lim g(s)s ~ W+ 220 = (,
When n = 2, let # denote the subset of C*(R, ,R., ) consisting of functions h(s) which
vanish only at s = 0 and which satisfy the following growth conditions:
For every 6 >0,
lim h(s) exp{ds*} = o0,
lim h(s) exp{—ds*} =0.
283



284 Adimurthi and S Prashanth

In view of the Sobolev and the Trudinger [22] imbeddings, we call f a function of
critical growth in R", n > 2, if -

oy [SOIE g, gest, i n33,
| h(s)exp {4ns?}, he# if n=2

For questions related to the achievement of the best constant in the Trudinger
imbedding, see [11,16,13,15].

We now consider the following non-linear problem with f having critical growth in
R n=2:

—Au=f(u) in Q,
u>0 in Q, (P)
u=0 on 0Q.

Let F denote the primitive of f. Then, the energy functional J: H}(Q) — R associated to
the problem (P) is given by

J(u)=%LIVu|2dx—LF(u)dx. (1.1)

It is not difficult to show that every solution of the non-linear problem (P) is a critical
point of J and vice-versa.

1.2 A brief review of past developments

Since problem (P) lacks compactness, J will not satisfy Palais—Smale condition at all
energy levels. It is of great interest to characterize the energy levels at which J fails to
satisfy the Palais—Smale condition. We explain briefly why this characterization is
important. Using Rellich’s identity [8], Pohazaev [19] was able to show that when
n>3, (P) does not admit a solution if f(s)=s"*2/®~2 and Q is star-shaped with
respect to anyone of its points. In order to reverse this non-existence and obtain some
existence results for the problem (P) there are therefore two simple prescriptions:

(i) add a perturbation g(s) from .o/, to the critical non-linearity s®*2/~2 or,
(ii) pose the problem (P) on a domain Q with ‘rich topology’.

When n > 3, the first program was carried out in Brezis—Nirenberg [10] where they
prove existence results for (P) provided the perturbation g is large enough. They also
show that if the perturbation is small, the Pohazaev-type non-existence persists. In
order to carry out the second program, it is necessary to know precisely the energy
levels at which J fails to satisfy the Palais—Smale condition. Such a characterization
was obtained by Struwe [21] who showed that Palais—Smale fails only at a discrete (but
infinite) set of equally spaced energy levels. Using this characterization and tools from
algebraic topology, Bahri~Coron [7] were able to prove that if n > 3 and at least one of
the homology groups of Q (with coefficients in Z,) is non-trivial, (P) admits a solution
even when f(s)=s®*2/""2 These developments underline the fact that one can
exploit the topology of Q to prove existence results to problem (P) once the energy
levels at which Palais—Smale condition fails are known.

In the case n =2 corresponding questions have been considered in [1-5], but the
picture remains far from complete. One of the difficulties is that an effective Pohazaev-
type identity does not seem to exist when n = 2. Hence non-existence results become
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harder to obtain for general star-shaped domains. Nevertheless, in the radial situation,
non-existence results for a large class of convex non-linearities have been obtained in
[4] and [5]. We briefly describe these results. The critical non-linearity when n =2 is
f(s) = h(s)exp {4ns*} with he . In analogy with the results for n> 3, one expects
non-existence if the perturbation h is ‘small’. This is indeed so if & is ‘small’ in the sense
that

lim sup A(s)s < o0.

Werefer to [4] and [ 5] for a precise statement of these non-existence results. Therefore,
to reverse this non-existence either one can consider large perturbations h, or one can
pose the problem on a domain Q in R? with ‘holes’. The former option was considered
by Adimurthiin [ 1] where he proved that if the perturbation is ‘large’, more precisely, if
limsup, _,  k(s)s = oo, then (P) admits a solution on any bounded smooth domain Q in
R? (dlso see remark 1.1 below). Further, he showed in the same paper that Palais—Smale
holds in the infinite energy range (— o0, ). As we saw earlier for the case n > 3, we need
to characterize the energy levels at which J fails to satisfy the Palais—Smale condition if
we want to consider the latter option of exploiting the topology of Q for proving
existence results.

1.3 Contents of the paper

This paper deals with the two dimensional case. In §2 and §3 we exhibit two
Palais—Smale sequences along which J fails to satisfy the Palais—Smale condition at the
energy levels k/2, k any positive integer. The first Palais—Smale sequence (§2) is the
sequence of ‘Moser functions’ whereas the second sequence (§3) consists of solutions to
the problem (ref. [1]),

—Au=h(u)exp {4nu*} in B(R),
u>0 in  B(R),
u=0 on 0B(R),

where B(R) < R? denotes the disc of radius R centered at the origin and h(s)s — oo as
55— 00,

A very surprising consequence that comes out of the analysis here is that these two
Palais—Smale sequences exhibit different blow-up behaviours. This is in sharp contrast
to the situation in higher dimensions where there is essentially only one type of
Palais—Smale sequence for J (ref. [21]). The blow-up limit of the first Palais—Smale
sequence solves the following equation in R, for some compactly supported measure u:

—Au=p.

The blow-up limit of the second Palais—Smale sequence solves the equation:

1 .
—Au=z—exp {u} in R

Here we recall that any solution u of the above equation corresponds to a conformal
change of metric on R* from the standard metric to a metric of constant Gaussian
curvature K = 1. Results on these blow-ups are contained in §4(1) and §4(2). We
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strongly believe that the existence of two distinct types of Palais—Smale sequences has
important implications regarding the global compactness properties of J.
For generalizations of theorems A and B to the case of the n-Laplacian in R", see §5.

Statement of the theorems. For convenience, we list the statements of all the four
theorems we will prove:
Let 0 <[ < R. Define the Moser functions

[log(R/HT?  0<x|<],

1] lopR/1x)
"ot =5 | Tog R/

0 |x|=R.

I<|x|<R, (1.2)

Let Q be a bounded smooth domain in R? Let x,eQ and R <d(x,,dQ). Define
My g o (%) = My g (X — X,).

Theorem A. Let f(5) = h(s)exp {4ns*}, s >0, he B. Assume that h satisfies the hypo-
thesis:

(K@) <ch(®t*™ and F@)<cf(@)e!™"

for some n€(0, 1], for some ¢ >0 and all large t.
Let R depend on [ so that lim, _ , (log(2/R)/log(R/I)) = 0. Then there exists a sequence
p,— 1 as 10 such that

(@) {pim g ,xo}1>0 is a Palais—Smale sequence for J as 1 -0,
(b) J fails to satisfy the Palais—Smale condition along the above sequence at the energy
levels k /2, k any positive integer.

Remark 1.1. Examples of non-linearities satisfying the hypotheses in theorem A are:
any he % such that h(s) = exp { + s*}, for all large s and some $€(0,2); any he % such
that A(s) = s for all large s and some G R.

Let ug denote the solution obtained in [1] for the problem (1.1) posed on B(x,, R).
Let i denote the extension of u, obtained by setting iig =0 in Q\ B(xq, R).

Theorem B. Let x,€Q and R > 0 be small enough so that B(xy, R) = {x:|x — x4| <R} = Q.
Let he # and f (s) = h(s) exp {4ns*}, s = 0, satisfy the following hypotheses: There exists
S > 0 such that

(i) h(s)s— o0 as s— o0,
(i) g(s)=1log f(s) is C* and convex for all s > s,
(iii) f(s) is strictly increasing for all s = s,
(iv) g(s) —3isg'(s) +log(g'(s)/2) = (1 + 6) log s for all s = 5, and some 0> —1,
(v) limsup, ., (g(s) 4 sg'(s))s~# = O(1) for some Be[0,2),
(vi) lim,_  (sg®**V(s)/g™(s)) k = 0,1 exists and is different from O (here g* denotes
the k-th derivative of g).

Then,

(@) {iig}g>oas R—0 are Palais—Smale sequences for J,
(b) J does not satisfy Palais-Smale condition at the energy levels k/2, k =1,2,3,....
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Remark 1.2. Let g(s)=1log f(s). Then the following are simple consequences of the
assumptions (i}-(vi):

g'(s)=8ns+ 0<§>,
g'(s)=8n+0 <;13>,

1
ro-o(3)

Hence we may choose s, large so that g is a convex increasing C* function in [s,, o).

Remark 1.3. Examples of non-linearities satisfying the hypotheses in theorem D are:
any he 2 such that h(s) = exp {s”},0 < 8 < 2,for all large 5; any h € # such that h(s) = s’
for all large s and some § > — 1.

Theorem C. Let p €(0, 1] be a parameter depending continuously on I such that p — 1 #0
for all 1 >0 and p(0) = 0. We also assume that the following limits ( possibly o0} exist:

a=lim —,
10 P
-0 logl
It follows that
5 logp
loga-llljlglogl<1~@>. (1.3)

Extending eachm, | by zero outside B(1) we may consider m,, to be members of H' (R?).
Let ye dB(1) be arbitrary and x € R*. Then,

(i) Ifa= co, uniformiy on compact subsets of R?,
limm, ,(px)* —m,,(py)* = 0.

(i) Ifa< oo and p <l for all 1> 0, uniformly on compact subsets of R?,

0 0<|x|<aq,

b a’
—~logl— 1} |x|>a
i (x|

(i) If a>0 and p > I for all | > 0, uniformly on compact subsets of R?,

1
210g<—) x| <a,
a

lli_l}g {m“(px)z - m1,1(PY)2} = 1
2log (———) |x| > a.
x|
(iv) If a=0, for x # 0, uniformly on compact subsets of R*\ {0},

111—{1;)1 {m,‘](px)z - m1.1(py)2} = J

. b (1
tim {m,, (px)* —m,,(py)*} = —log (l—x_l>
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Theorem D. Let he # and f(s) = h(s)exp {4ns?}, s > 0, satisfy the hypotheses listed in
the statement of theorem B. Let ug be any solution of (P) posed on Q = B(R) with the above
choice of f. Then,

(1) | Vugl2pry—1as R0,
(i) There exists a parameter p depending continuously on R, p— 0 as R — 0, such that
for any ze 0B(1) and x € R?,

2
ul(px) —u (-’02—Z> —2log (W)

as p — 0, uniformly on compact subsets of RZ.

Remark 1.4. Statement (ii) of the theorem implies that the ‘limiting equation’ to our
problem is

1
~Au= 75 XP {u} inR?

u=0 on 0B(1).

Remark 1.5. (1) In fact, for existence of solution to (P) when n =2, it is sufficient if
limsup, ,  h(s)s > ¢, where c is a positive constant depending only on Q and f; refer to
remark 4.2 in [1].

(2) In [12], a partial result on non-existence in the case n =2 is obtained, which
however, happens to be a special case of theorem B in [5].

2. Proof of Theorem A: Palais—Smale fails along ‘Moser functions’

We first prove a few preliminary lemmas from which the theorem will follow readily. In
what follows we assume without loss of generality that 0€Q, x, =0 and B(0,3) = Q.
also we equip H ((Q) with gradient norm || u|fg.q = | Vue|| L@y

Lemma 2.1. Let ue Hy(B(O,R,)) < H}(Q) be a function radial about the origin. Then
there exists a positive constant w depending only on Q such that for Ry €(R,,d(0,0Q)),

s ) Rolou
o< g2, |5

1 r 2
ar+;J0f(u)tdt rdr). 2.1
Proof. For ¢ € H}(Q), define the 0-average é of ¢ to be

2

~ 1 )
é(r) =%L ¢(rcosf, rsinf)do.
Then,

<J'(u),¢>=J Vu‘Vd)dx—Jf(u)d)dx
Q Q

R, g R,
=27I<JA0 %%?rdr—fo f(u)d?rdr).

Let ne C(B(0,Ry)) be such that 5 is radial about the origin, =1 on B(0O,R,),
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|on/or| <4/(R, — R,). Let ¢, = n¢. Then,

R, ' R,
- f f(u)ardr=—f S $,rdr
0 0
= ::Df(u)<‘[Ro%ds)rdr
= m( jf(u)tdt) 4’1
JOo

< ff( )tdt> ¢1rdr
<2n<Log—u rdr)(J\:o 2rdr).

Since 3¢, /or = n(d¢/0r) + (On/dr) $, we get, for some positive constants, w,, » depend-
ing only on Q,

Re (0 2 1
L (%) rdr swl{fnlv¢|2dx+__——(R —R1)2J9|¢|2dx}

J |Vo|*dx.

Therefore,

<" (u), @17 =2

94,

r

+1frf(u)tdt
rlo

(R R)2

Therefore, the last two inequalities imply that

, w ou 1 (7
' (W)|* < (_R—R_)Z_[ = ;Jof(u)tdt

This proves the lemma. [ |

2

rdr.

For simplicity of notation, we let m, (x)=m, ((x). For peR, using the facts
[m, gl =1and f has exponential growth, we have

2

J(pm ) =%— —J‘QF(pm,,R)dx

— — oo as|p|— 0.

Hence, we can find p, , > 0 such that

J(ppmz) = SuRPJ(pml.R)-
pe

Therefore, the derivative of the function p+— J(pm, ;) vanishes at p = p, , which gives,
denoting u, = p, g Mz,

| Vg I il(n) = J;f (“I,R) Ur dx. (22
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That is, since || Vu, g |l 120y = P1&s

pIZ,R = J‘ Sup)updx. (2.3)
Q

We note that the integrands in equations (2.2), (2.3) and (2.4) are radial functions
supported in B(0,2). Therefore, we can transform the integrals in these equations to
integrals on (0, c0) via the transformation

|x|=r =2exp{—1t/2}. (24

Let =(t) =2exp { — t/2}. For any ue H}(Q), u radial about the origin denote v=uo1.
Let wp=m, 01 and v, = p,,w, . Then it can be checked that

: 0 0<t<ty,
w(t) = :/T (t—tp)t;—tg)"M* tp<t<yy, (2.5)
(t,—tg)'? t=t,

where t; = 21og(2/R) and ¢, = 2log(2/]).
Now, under the transformation (2.5), the equations (2.2), (2.3} and (2.4) will become
respectively

dn  ||dv [ 2
(PACIEES ——J f()exp{—s}ds , (2.6)
R,—R, ||dt t { } LX(0,00)
o dle 2 @ '
3 dt=| flvg)vgexp{—t}dt, 2.7
0 0]
and
p2 o
—4’4‘ = j f@ ) v exp{—t}de. (2.8)
T 0
Also, if ue H(Q) is radial about the origin, J(u) is transformed under (2.5) as
] dU 2 o¢]
Juw) =2n —| dt—4n | F(v)exp{—t}dt 2.9
o (dt 0

Let {I,} and {R,} be two sequences of positive numbers with [, < R, for all n,

' ~ . log(2/R,) _
liml, =0 and Eﬂm— '

By abuse of notation, let u, =w, g ,0, =0, g, M,=m, g t,=1t L, =lg , pp=p, Ry
We prove that {u,} is a Palais—Smale sequence for J, and also that J does not satisfy the
Palais-Smale condition at the energy level 4. This we do by showing that

J(u,)—3 asn—oo and,
1J'(u,) | =0 asn— oo,

Hereatfter, we work only with the transformed equations (2.6)—(2.10)
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Lemma 2.2.
pp—1 asn—oo.

Proof. We prove the lemma by showing
limsupp,<1 and liminfp,>1.

limsup p, < 1: We argue by contradiction. Suppose there exists a subsequence of p,,
which we again denote by p,, and ¢ > 0, such that p? > 1 + ¢ for all n. Then (2.8) gives,

denoting s, = (\/4n)"* (t,— £,)"/%,

2 ("o

—= f(vn)vnexp{_t}dt

LY t"

("

= | h(v,)v,exp {4nv’ —t}dt

Jitn

= | h(puS,) Pusiexp {p3(t, — E,) —t} dt

vin

= h(0,5,) PuSs€Xp { (02 — D)t, — p2F,}. (2.10)

By the growth assumption on h, for any é € (0, 1) we may find ¢; > 0 such that for all
large t,

h(t)t™* = csexp { — 4ndt*}.
Therefore, the inequality (2.10) gives, for all large n,

1 a _
1> Peas) (0n8,) ™" sexp {(p7 = 1)t — o1, }
> csstexp {—dpl(t, —1,) + (p} — Dt, — pit,}
= ¢;s2exp {p3(1 — 8)(t,— £,) — 1, }. (2.11)
Now, the assumption
log(2/R,)
nmw log(R,/L,)

implies that

=0

lim ~

n— tn —t,
and hence in particular that #, = o(t,). Therefore we may choose positive numbers
d, v and  small enough so that f, < #t, for all largenand (1 +&)(1 -8} —n) > 1+ v.
Therefore, the inequality (2.11) together with the assumption p? > 1 + ¢ for all n implies
that for all large n,

1
> c;siexp {vt,}

which is a contradiction. This contradiction shows that lim sup, p? < 1.
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hminfp, > 1: Again, suppose there is a subsequence of p,, denoted still by p,,and ¢ >0
such that p? < 1 — ¢ for all n. From (2.8),

o0

Il— = J‘t" P f (v, exp{— 1t} dt + 'f . f(v,)v,exp{—t}dt
g 0

tn

="+ 11, 2.12)
We have,

I'= J::p;zh(v,,)v,,exp{pﬁ ((t )) t}dt

— _____1____ - -1y __F1)2 2( )
= G =7) ). h{v,)v, ' (t —1,) exp{pn( =i t}dt
1 tn

< 1 _F )2 2 e 2
ant, =) ), Moo =t e (o — D= pl, pdo

tn
1 Ptn

< e Cl(tF Y exp ! — st — o L dt.
a1 ) Peau - B exp{~ et — pif, dt

Jin

By the growth assumption on 4 and the assumption h(0) = 0, there exists for any § >0
a positive constant C(J) such that,

h(t)t~ ! < C(S)exp {4ndt*} forallt>0Q.

We now choose é < min {e, (¢(1 —¢&)~*)/2}. For all large n, since § <e,

1 tn . '
mﬁn h(v,)o; \(t— ) exp{ — et — p2f,} dt

C(é) In
D 47T(tn - fn) tn

=0 ).

(t~E,)exp{(6—e)t}de

Hence, I = O(; '). Similarly, for all n large

1 o0
I;=—‘ J h(vn)v;l(ta——f,,)exp {pi(tn— fn)—t} dt
4n J,.

s%?(t,,— i, )exp{(1 +8)p’t,} r exp{—t}dt

= il(z ~E)exp {((1 +8)p>— )t }.

Since 8 < (¢(1 — &)™ ')/2, the above inequality gives that I = O(exp { — (¢/2)¢, }). Hence
It + I =0(t; ") which contradicts (2.12). This contradlctlon shows that lim inf p, > 1
and thls proves the lemma. ||
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Let o, =v,(t,). From (2.8) one gets

Pn_ J’nf(vn)un exp{—t}dt+f(©,)v,exp{—1t,}. (2.13)
4n o

In the following lemma we compute the limit, as n — oo, of the two terms on the right of
equation (2.13). These limits will enable us to show that [{J'(s,)|| >0 as n— co.

Lemma 2.3.

lim J‘t"f(v,,)u,l exp{—t}dr= 1
0

n—© 8715’
lim f(3,)0,exp{—t,} = i
n—ro 8n
Since the proof is technical, we prove Lemma 2.3 in the appendix (§8).

Lemma 2.4.

J(u,) -5 as n— oo,

Proof. Since
@ d 2
27:f0 %dt=%~»§ as n— oo,

(2.9) implies that the lemma is proved if we show that

‘[ F(v,)exp{—t}dt—>0 as n—oo.
]

Let N be a large fixed positive number. Noting that F(t) < Mf(t)t* " for some
M positive, n€(0, 1] and all large ¢, we have

on F(v,)exp{—t}dt

0

=J F(v")exp{—t}dt+J F(v,)exp{—t}dt
{1, <N} fon>N}

Sf F(v,)exp{—t}dt+ M fw,)vl"exp{—t}dt
{r. <N}

{0, >N}
Using the dominated convergence theorem, the first integral on the right tends to zero
as n— 0. Also, since [ f(v,)v, exp { — t} dt is bounded,

N
=O(N").

Since N was an arbitrarily large positive number, it follows that

1
f f(vn)vi‘”exp{—t}dtS—,,f f@,)v,exp{—t}de
{v,> N} {v. >N}

)

J F(v,)exp{—t}dt—>0 as n-o0.
0

This proves the lemma. [ ]
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Lemma 2.5.
1V (u)| =0 as n—oo.
Since the proof is again technical, we prove Lemma 2.5 in the appendix.

Proof of Theorem A. Lemmas 2.4 and 2.5 show that {u,} is a Palais—Smale sequence
for J thereby yielding (a) of the theorem. Since u, -0 in H}(Q) (up to a subsequence),
and J(u,)—1, it follows that {u,} does not contain any subsequence that converges
strongly in H{(Q). Hence J does not satisfy the Palais—Smale condition at the energy
level L. By a standard procedure, for any positive integer k, we can construct a sequence
of functions £,, each of them being sum of k Moser functions with mutually disjoint
supports, to get as n — o0, J(¢,)—>k/2 and

I (€)1 =0

This shows that J does not satisfy Palais~Smale condition at the energy levels k/2,
k any positive integer. This proves (b) and hence the theorem.

3. Proof of theorem B: Palais—Smale fails along solutions to (P) on a disc

We prove a few preliminary lemmas from which the theorem will follow easily. But
first we transform the problem to an ODE (ordinary differential equation). We are
considering solutions ug, obtained in [1] and [6], of the problem

—Au=f(u) in B(R),
u>0 in  B(R),
u=0 on JB(R). (Pr)

By regularity (see Remark 4.11in [1]), uis in C**(B(R)) for some « > 0. We note that, by
Gidas-Ni~Nirenberg [14], u is radial about the origin. Defining y(t) = u(x) for any
x such that |x| = 2exp { — #/2}, we see that y solves the problem, with y = u(0),

=y =exp{~-t}f(),
y(©)=17y>0,
y'(0)=0. ®,)
Let T,(y) denote the first zero of y. Let g(y) =log f(y).
Lemma 3.1.
Y(ToT() >0 as y-co.

Proof. Let T,(y) be the point at which y(T,(y))=s, for all y>s, (s, as in the
hypotheses of theorem). We will require the following asymptotics:

Tol) > (g(v)—”—%@) +1og(@>+ o),

7. =252+ (g0)- 21 10 “2) + 010,

, 2 logz(v)ﬂ
T,() =— )
y(T20) g (y)[1 +O( g@) .
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(For the proof of the first asymptotic we refer to lemma 2 in [6]. The second and third
asymptotics have been proved in lemma 4.4 in the next section.) Define d(y) = g(y) —
1vg'(y) + log(g'(7)). Let y — oo be a given sequence. To prove the lemma we distinguish
two cases:

Case (i). For some subsequence y,— oo, 6(y,) =logy,: In this case Ty(y,) =logy, +
O(1). Hence,

T,

Y(To() =y (To(n)) + S(exp{—t}dt

Tolv)

= O(%—) + O(CXp{—’ To(?k)})

o)

Case (ii). 6(y) < logy for all large y: Define T4(y) =4logy. Then,
YT3() = Y(To) = Y (ToINT ) — T5() + O exp { — T5()})

.2 (1082 | 509’ ®) B ] (i)
o g’(v)[HO( gt >][ 7 OO [+0(
=o(loﬂ).

Y

T,
V(T30 =y (T(») + j f(y)exp{—t}de

Ts(y)

Therefore,

-0 (%) + O(exp{— T5(y)})

of)

Hence, with @ as in the hypothesis of the theorem,

Ts(v)

Y(To) = y(T5(n) + J f(yyexp{—t}dt

Toly)
/1
= Ok—) +0 J y(t)exp {—1t} dt
To(¥)

(
( >+0 <logvexp{ To(/)}>
of;)+ol
-o(;)

logyexp {— (1 + 0)10g(v)})

1
v
1
7
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Thus in both the cases y'(T,(y)) = O(1/y). Hence, noting that g(y) —1yg'(y) = 0(*) for
some f€[0,2), and T,(y) < T,(y) we get

1
V(To()T§* () =0 (; [maX{VUZ,VWZ}]>

-0 as yp-—oo.

This proves the lemma. |
Lemma 3.2.

|J'(@@g)| =0 as R-O0.
Proof. We assume without loss of generality that x; =0 and MCQ. Also we
consider R to be much smaller than 1. Let y € C(Q) be such that

Support(y) < B(0,2),

=1 on B(0,1),

0<yx<lL
For ¢ € Hy(Q) set

¢ =19,

2n
l//(r)=if ¢ (rcos 0, rsin 6)d6.
2n Jo

We note that for some ¢ > 0 (independent of ¢), it holds that

ol <cllgl.
Now,
2
(R = j l//’(r)dr!
R

< ( i |¢'(r>‘|2rdr)‘/2< j i d_’)”z
R R T
2 1/2
< ﬁllqh [ <1°g(§>)
c 23\\/2
<=1l <log<§)> -

Letting do denote the surface measure on dB(R), we have

J'(ig)d> = (J'(fir) ¢y >

= | VigV¢,dx - f Sflig)¢,dx

~

= Vugp-Vé,dx — flug)¢,dx

J B(R) B(R)

——

~

= %qS,da—f . [Aug +f(ug)1¢, dx
B(R)

Jon) Or
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-=f % deo
o) OF

=uR) | ¢.do
JB(R)

—Ru\(R) | ¢,(Rcosf, Rsin0)dd
0

= 2nRu (R (R).

Hence, for some ¢ >0,

1/2
|<J'(aR>,¢>|<cn¢||R|u;(R)|<1og(%)> _

Therefore ||J'(fig)|] will tend to zero as R—0 if we can show that R|ug(R)|
(log(2/R))'/?> -0 as R — 0. Since ug(R) = 0, if we define T, by R =2exp { — T,/2} and
set y(t) = ug(2exp {—1t/2}), we see that y solves (P,) with y = ug(0) and T, is the first
zero of y. Hence by lemma 3.1,

2 1/2
|u;(R)1R<log<§>> =V (T)TY

-0
as ux(0) =y — c0. Since ug(0) — co if and only if R— 0, it follows that
| J'(fig)| -0 as R—O0.

This proves the lemma. ]

Lemma 3.3.

J(lig)—3 as R-O0.

Proof. Since

|[Vug|?dx—>1 as R-0,
o B(R}

by (i) of theorem D in §4 it is sufficient to show that

F(iig)dx—>0 as R-0.

JQ

Let N be a large positive number. We have, using the fact F(t) < Mf(¢)t' " for some
M >0,1e(0,1] and all large ¢,

r

J F(ig)dx = F(ug)dx

Q JB®)

r

= Flug)dx + J Fug)dx.
N

Jug< ug>N

M
< F(uR)dx+ﬁ Sug)ugdx.
N ug>N
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Now, since ug solves (Pg), we have

Sf(ug)ugdx = j {Vug|?dx.

B(R) B(R)

Therefore, the second integral on the right in the last inequality is of the order 1/N". By
the dominated convergence theorem, it follows that the first integral in the same
inequality tends to zero as R tends to 0. Therefore,

J‘F(ﬁR)dx—>O as R-0.
Q

Hence J(ug) — 1/2 as R —0 which proves the lemma. |

Proof of theorem B. Putting lemmas 3.2 and 3.3 together, we get that {iiy} as R—0 s
a Palais—Smale sequence for J. Since iix —0 in Hy(Q) and J (fig) -1 as R~ 0, it follows
that {#i} has no strongly convergent subsequence. Thus J does not satisfy the
Palais—Smale condition at the energy level 1. By a standard construction, for each
positive integer , instead of u, we may consider sum of k such solutions with mutually
disjoint supports. Then, we will have that J does not satisfy the Palais—Smale condition
at the energy levels k/2, k = 1,2,3,.... This proves the theorem. |

4(1). Proof of theorem C: Blow-up behaviour of the Moser functions m,, (x)
Define 4, ,(x) = 2n(m,,(px)* —m, , (py)?).
Case (i). p <1 for all 1 = 0: In this case | py| < I. Therefore
m, (py)? = ——!—lo I
It py - 27r g >

and hence

0 0<|xi<

i

A
1) —(log p + log|x|)* + (log 1)?

log!

logp 1

= =L - .
<logl+ >log <p>’ @
2

(oglx|? 1\

log 1
logl »p o

p
-2 @>log|x(—-

Also, since p <1,
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If a = oo, it easily follows from (4.1) that 4, (x)—0 as /-0, the convergence being
uniform on compact subsets of R

Suppose a < co. Then, (4.1) immediately implies (since b =lim, ,(log p/log!)) that
b =1. Therefore,

1
ig£=1+o(l) as -0

log!

Hence,

log p l
—=F logf — 1 — -0,
(]og? +1) og<p> 2loga as [-0

Therefore, from (4.1), as I >0,

0 0<|x|< a,

N\
2log<l 1) a<|x|,

uniformly on compact subsets of R?.

lll_r};)l Al,p (x) =

Case (ii). I < p < 1 for all 1 > 0: In this case, |py| > I. Therefore

1 (logp)*
2
m, (py)* = 3 Togl
and hence,
2_ 2
(log p)? — (log ) o<ix<
logl p
A, p(x) = , X “4.2)
(logp)® —(log p +log|x]) 1<|x|<
log!

Alsc, we have
a<l and b<1.

If b< 1, by (4.1) we get a =0. Hence I/p —0 as | -0 and (4.2) gives

%1_{1(} A, ,(x)=2blog <| ]>
uniformly on compact subsets of R?\{0}.

If b = 1, there are two cases: a = 0 and a > 0. In the former case, again l/p —+0as -0
and as before

llm A,p(x) 2log (I ’>

uniformly on compact subsets of R*\{0}.
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In the latter case, for | x| > a, from (4.2) it follows that uniformiy on compact subsets
of {x:|x|>a},

lim A,,,(x) = 2log (l)lcﬂl)

For x| < a, we have from (4.2)

()2

1
—2log (5) as -0 4.3)

uniformly on | x| < a. That is

1
210g<a> 0<|x|< a,

210g(—1—) |x| > a,
[x]

uniformly on compact subsets of R2. This proves the theorem. |

im 4,9=

4(2). Proof of theorem D: Blow-up behaviour of the solutions u,

Here we consider a more general situation where uy is any solution of the problem (P)
posed on Q= B(R) and with f(s) = h(s)exp {4ns?}, he B, satisfying the hypotheses
listed in the statement of theorem B. The theorem shows that u; concentrates to the
Dirac mass at the origin as R — 0. Also, the blow-up behaviour of ug helps us to find the
‘limiting equation’ associated to the problem under consideration. The asymptotics
developed in [6] will be crucial to the proof of the theorem.

We will find it convenient to prove the ODE version of theorem D. This ODE
version is stated as theorem D’ below. First we indicate how the statements in theorem
D transform to corresponding statements in theorem D’. We are considering the
problem

—Au=h(u)exp{4nu®} in B(R),
u>0 in B(R),
u=0 on JB(R). Pg)

By Gidas-Ni—Nirenberg {14], every solution uy, of (Pg) is radial about the origin.
Define for e [0, R], and any x € 0B(r),

Wg(r) = ug(x).

Clearly, wy solves the following ODE:
1
—w — " w' = h(w)exp {4nw?} in (O,R),

w>0 in (O,R),
w'(0) =w(R) =0. (Pg)
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Let y = wg(0). Define y, (1) = wg(2exp { — t/2}), te R. Then, T,(y) = 21og (2/R) will be
the first zero of y,. Also, y, solves the following ODE:

—y" =exp{—t}h(y)exp{4ny’} in (To(y), ),

y > 0 in (TO(Y), OO)’
y(0)=7,y'(c0) =0. (P,)
Assuming that a parameter p as in statement (i) of the theorem exists, we let
u=2log(2/p). Now, y - oo if and only if R -0 and we have assumed that p >0 as
R —0. Therefore, we get that 4 — oo as y — oo, Henceforth, we shall denote simply by
y the solution y, of (P)). Due to the above reduction arguments, it is clear that

statements (i) and (ii) in the theorem concerning the behaviour of u, can be rewritten as
the following statements concerning the behaviour of y.

Theorem D',

®© 1
() J y(yYdt—>— as y-oo,

T 4
(b) There exists a parameter 1 depending continuously on y, jt — 00 as y — o0, such that,

1 2
2
t —_——
yu+t) =y (w- o g(l +exp{_t}>

uniformly (with respect to t) on compact subsets of R.

Therefore, it is-sufficient to prove theorem D’ in order to prove the theorem D. We
prove few simple lemmas from which theorem D' will follow readily. Before doing so we
make some preliminary observations.

Let T,(y) denote the first zero of the solution y of (P,). Let k be large, but fixed,
positive integer. Define

o=klogy,

T,(y)= g(v)+log<g (y)) d.

For easy notation, in the sequel we let g =g(y), g =9'(y), " =9"(7), 9" =9g"' (),
To=Toy), T, = T,{y) etc. Define

, 2 g
=y—log(1+% —t} )
z(t) =7y g,,log( +5exp g }>

The analysis in [6] gives the following relations:

yoy<z(),t 2Ty, (4.4)

yn=z@,t=2Ty, (4.5)

wTy)= v~—+0<%) (4.6)
2

gAT))=g—26+ 0< > 4.7)

(T 2 1+0 & 4.8
rav=gli+o(5)) 0
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Equations (4.4) to (4.8) appear respectively as equations (4.4), (5.1), (7.8), (7.9) and (7.17)
in [6].

Lemma 4.1.

%WJAQ—KMAO as y-—» .
teTy,c0

Proof. Let
)= !—f;log(l + %exp {g —t}).

Then, from lemma 1 in [6], for ¢t > T,

giy(t)) =g —g'l@).

Applying g~ * on either side of the above inequality and using Taylor’s expansion of
order two, we get, for some e[g — g'l(z), 9],

(67'©)
2

y®O=g (P-(g" Y (9l + (¢ P(). (4.9)

Differentiating the identity g ~*(g(s)) = s successively twice, we get
1
( “ly S)=—"—>
9700 =
_=9'6
)

The above equations together with the facts g’ ~ y and g” = O(1) imply that
(IHWGWVVm_O<b§7>
2 Ty

Hence, from (4.9) we get

2 ! log?
y(t)?y——;log(l +(%>exp{g—t})+0( 053 y)

2
=An+o<b;y>

uniformly with respect to t > T,. Thus the lemma is proved. |

(g7 Y"(g(s))

Lemma 4.2
sup (Y1)~ (/)| >0 as y—oo.
te[T),0)

Proof. Clearly z(c0) = y. Also, it can be checked easily that z(¢) satisfies the differential
equation

2'()= —exp{g+¢'(z(t) ) —t}. (4.10)
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Now we have

exp {g —t}

‘0= T Genig—1)

which implies

2 1
(T)==|1 =11 .
Z(Ty) g,[ +0<yk)] (4.11)

From (4.4) we have, forallt > T,
y®y < z(o).
Let

3(t)=§log(l+gz—,exp{g—t}>. (4.12)

Then for all large y and ¢t = T, we have
gz(@) =gy — (1))

— gt —g i+ L),

for some £e[y —I(t),7]. Since g” is bounded for large y,

giz)=g— g’[z,log(l +£exr> {g— t}ﬂ
g 2
40 (log2(1 +(g9'/2)exp{g — t}))_

; 4.13
(9)? )
Since g’ ~y and for t > T, log (1 +(¢'/2)exp {g — t}) = O(log y), the above equation
becomes

1 2
gz(t) =g + g () ) + 0( "ygz y). (4.14)

Since y(t) < z(f)fort = T, and gisincreasing in [ T, o0}, it follows from (4.14) and (4.10)

y(H= J " exp{g(y) s} ds
< on exp {g(z) — s} ds

1 2 @©
= exp {0( Of'z V)}J exp {g+9'(z(s) —y)—s}ds

= Z/(t) [1 +0 <1°;°’22y>].

Since from (4.5), y'(£) = 2'(t) for all t > T, we get

2 <y () <2 [1 +0 (1"522 ”)]
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and hence foraillt > T,
] 2
PO <O <0 [1 +0 ( sz y)]

which proves the lemma. |

Lemma 4.3.

(* o0
) (@®)dt—0 as y-—o0.

vT,

Proof. By the previous lemma, it is enough to show

f* oo

() ()dt-0 as y- 0.

T,

We have

yn_ explg—t}
=T gD exp g =1}

which implies z'(t) < 1 for all te [ T,, o0), for all large y. Hence

r @R di< r 2 () dt

T,

= z(o0) —z(T})
—310 1+
- g/ g y

-0 as y— 0. |

Define T, < T, by y(T,) = s,, where s, as in the hypotheses of the theorem is chosen as
large as required.

Lemma 4.4.
T 1
f 0@ dt—>-— as y-oo0.
T 4n
Proof. From lemma 2 in [6], we have for all te[T,, T, ],
giy®)—t<g(y(®)—g + ~g; (v —y(®) —log <‘%) =y ().

Then ¢ (s)=g"(s) > 0 for all se[y(T,),y(T,)]. Thus, Y is convex in [ y(T,), y(T,)]
and hence for all te{T,, T, ],

g(y(®) — t < max {Y (y(T,)), ¥ (N(T,))}-
We have by the hypothesis (iv), for some n > 0 and all large y,

1 1 '
VO(T;) =g(s0)— g +§vg'—5sog'—log<>"2—)

< —ny.
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Also, using the asymptotics (4.7) and (4.8) we get

VOT) =90(T) ~g +3 0~ ¥(T)g ~log (%)

< -56+0(1). 4.15)
Therefore, for all te[T,, T, ],
gly@) —t<max{—ny,— o+ 0(1)} = -+ O(1).

Hence, for all te[T,, T, ] we have, if k is large enough

T

y(e)=y(T)+ J lexp {g(y(s)) —s}ds

!

sy’(71)+0(T‘yf‘)
— '(T )+O<L)
=y, EE

8 2
=2iv0(2))
g9 L g

Since y'(t} 2 y'(T,) for any te[T,, T, ], we get, for any ¢ in this range,

yo=2[1+0 al
gL g

Therefore, for some £€[T,, T, ],

1 .
T,=T, F‘y_'(?) W(T) = y(T,))

(0 E)] (wreZro(8))

79 | Sod’ g 0?
—g-'L 470 Z ol— | 4.16
g > + > +log<2>+ <g’) (4.16)

f " redi= [1 +0 (5—2)}@1 ~T,)
T, (g,)z g

2
=_):+0<1>
g Y

1
-— as Q0.
- 4n =

Thus,

This proves the lemma. ]
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Lemma 4.5.
T,
J ()2 ()dt—0 as y-—o0.
To

Proof. Let T, =max {T,4logy}. Note that T, depends on y. Also, since

sup {f(1):0 <y < y(T;) =54} =0(1),

we get, upon integrating the ODE — y” = exp { — t} f(y) successively twice between the
limits t = T, and t = T, and using the concavity of y together with the fact T, > 4logy,

1
WT3)=y(T;) =y (T (T, —T3)+ 0 (F) (4.17)

1
Y(T3)=y(T)+0 (;z) (4.18)
We now distinguish two cases regarding the behaviour of T (y) as y — co.

Case (i). For some subsequence y, — o0, T(y,) > 4logy,: Clearly in this case, Ty = T,
and hence from (4.18) and the fact that y is decreasing on [T,, o) we get,
Y (©)=2/g)[1+ 0(6*/g)]for all te[T,, T,]. Hence

T2 4 (52
jn VY@ de = G,)—z l:l +0 (;) :l (T, —T,)

-o(3)

Since g —(yg'/2) = O(y*) for some Be[0,2), (4.16) implies that T, = O(y¥). Therefore,
the last inequality implies that

T;
f 0?0 dt -0 as y,—o0

To

and so the lemma is true in this case.

Case (ii). To(y) < 4logy for all large y: In this case, Ty =4logy for all large y. Hence
(4.17) gives

2 9 79 Sod' g
=s5,——11 — 20 Z
WT3)=s, g,[ +0<g):|<g 5t tlogl 3
2
—4logy+0<5—))
g
_ 2 gy g logy
-l r(3))+o(F)

Since by assumption (iv) in theorem B, g —(g'y/2) + log(g'/2) = (1 + 6) log y for some
60> —1 and all large y, the above equation gives

y(t) =0 (-]o—fz> forall te [To, T3]
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Now, for any te[T,, T 1,
Ts
y’(t)=y'(T3)+f f)exp{—s}ds.

Since f(0) =0, for any se [Ty, T5], f(¥(s)) = O(y(s)) = O (log y/y). Therefore, the last
equation implies that for all te [Ty, T3],

1
Y(®)=y(T3)+0 (%gl>

=0 (@)
7

Therefore, since T, = 0 for all large y (in fact, T, — 00 as y — c0),

2 2
)*(@0)dt <O <1°fz ”) T,.

T

JTo
Since T, = O(y?) for some S [0,2), the above inequaliy implies

T

(V)@®)dt-0 as y—-o0

JTo
and so the lemma is true in this case also. This proves the lemma. ]

Proofof theoremD'. (a)follows from lemmas 4.3—4.5. In view oflemma 4.1, (b)is proved
if we show that there exists a parameter x4 depending continuously on vy, u— 0 as
y - oo, such that as y— oo

1 2
2(u+ t)—zz(,u)—>2~7;10g <m)

uniformly (with respect to ) on compact subsets of R.
We take u =g + log(g'/2). Then,

2 2 2 2 2 2
2 u+t)— 22 ()= v—EIOg(HCXP{—t}) - v—;log2

4 2 1
7o) o)

Liog(——2
2 ¢ 1+exp{—t}

uniformly (with respect to t) on compact subsets of R as u— oo, This proves (b) and
hence the theorem. n

5. Generalizations

In this section we generalize theorems A and B by replacing — A in problem (P) by the
n-Laplacian — A, in R", n > 2. Let 4, denote the subset of C! (R, R, ) consisting of
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functions h(s) which vanish only at s=0 and which satisfy the following growth
conditions:
For every 6 > 0,

lim h(s)exp {ds"*" 1} = oo,

lim h(s)exp { — 65"V} =0.

We call a function f € C!(R,, R, ) a function of critical growth in R" if f (s) = h(s)s" 2
exp {a, s~ M with he B, and a, = nw!" =, w, = volume (S"~!). Consider the follow-
ing problem with f having critical growth in R” and Q a smooth bounded domain in R”:

—Au=fu) in Q
u>0 in Q,
u=0 on dQ. P,)
The associated energy functional J,: W}"(Q) - R is given by

J, () =1 J |Vul"dx — J F(u)dx,
nJa Q
where F denotes the primitive of 1.
5.1 Generalization of theorem A
Let 0 << R. Define the Moser functions
[log(R/DT " 0<Ix|<],

1 log(R/x])
m p(x) = o™ Tlog(R/)]™

I<|x|<R,

0 jx|=R.

Let x,€Q and R <d(xg, Q). Define m , (x)=m,z(x —x,). We can now state the
following.

Theorem A'. Let f(s)=h(s)s" *exp {a,s"/*" DV} s>0, heB, and h satisfies the
following  hypothesis: W (£)] < ch())t W=D and  F(t) < cf ()t V-0 for
ne,1/(n— 1))], for some ¢ >0 and all large t.

Let R depend on so that lim, _ ,(log (2/R)/log(R/1)) = 0. Then there exists a sequence
p;— 1 as I—0 such that

(@) {PM g1} 150 IS @ Palais—Smale sequence for J, as 1 -0,
(b) J, fails to satisfy the Palais—Smale condition along the above sequence at the energy
levels k/n, k any positive integer.

Proof. Except for some technical modifications, same as that of theorem A.

5.2 Generalization of Theorem B

Let x,€Q and R > 0 be small enough so that B(x, R) = {x:|x — x| < R} = Q. We now
state the following generalization of theorem B.
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Theorem B'. Let he B, and f(s) = h(s)s"~ 2 exp {a,s /"~ N}, 5 > 0, satisfies the follow-
ing hypothesis: There exists s, > 0 such that

() h(s)s" !> o0 ass— o0,
(i) g(s)=1log f(s) is C* and convex for s = s,,
(iii) f(s) is strictly increasing for s = s,

(iv) (g(s) — (n; 1)sg’(s)) +(n—1)log ((n_;l) g’(s)> =2n—1+0)logs for all

s=s,and some 8§ >1—n,

) lim supm(g(s) - (" ;

) . sg (k+ 1)(s)
(vi) limsup
= go()

derivative of g).

)sg’(s))s‘ﬂ = O(1) for some Be[0,(n/(n — 1)),

.k =0,1, exist and are different from O (here g® denotes the k-th

Let ug denote the solution to problem (P,) with the above choice of f which is
obtained in [1]. Let iiy denote the extension of uy obtained by setting iip =0 in
Q\B(xg, R). Then

(a) {fig}z~o as R—0 are Palais-Smale sequences for J,,
(b) J, does not satisfy the Palais—Smale condition at the energy levels k/n, k any positive
integer.

Proof. Except for some technical modifications, same as that of theorem B.

6. The Neumann case

If we consider the problem (P,) with the Dirichlet boundary condition replaced by the
homogeneous Neumann condition, the associated energy functional J,: W"(Q)— R
will be given again by

J,,(u):%f |Vu|”dx—f F(u)dx.
Q o

If f satisfies the assumptions of either theorem A’ or theorem B, it can be shown that J,
fails to satisfy the Palais—Smale condition at the energy levels k/2n, k any positive
integer. The proof is done first for the case of half-space R}, where one uses the results
from Dirichlet case to show that the associated energy functional fails to satisfy the
Palais—Smale condition at the energy levels k/2n, k any positive integer. The proof
for a general domain Q with smooth boundary is accompolished by the standard
localization argument involving partition of unity.

7. Concluding remarks

1. Analogues of theorems A and B can be shown to hold even when the Palais—Smale
sequences considered in §2 and § 3 approach a boundary point of Q and/or there are
multiple concentrations at a single point in Q or boundary of Q. In each of these cases
Palais—Smale still fails at the energy levels k/2, k any positive integer.

2. If the non-linearity f grows like exp {bs*} for some b >0 as s— oo similar argu-
ments as in theorems A and B will show that the corresponding energy functional
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will fail to satisfy the Palais—Smale condition at the energy levels 2kn/b, k any
positive integer.

3. Blow-up result similar to the one presented in part (ii) of theorem D were first
obtained in [20] for the maximizing sequence for the Trudinger imbedding.

4. The blow-up result in part (ii) of theorem D extends the results of [17, 18], where his
assumed to have atmost polynomial growth. Also, we have greatly simplified the proof
given in these references.

5. In fact, the blow-up analysis given here can be easily seen to hold even when the
non-linearity f grows like exp {s*} as s— oo for any a > 1.

6. Lemmas 4.1 and 4.2 are generalizations of the corresponding results in Volkmer

[23].
8. Appendix
Proof of Lemma2.3. Let e€(0,1) be fixed. For >0 denote &=4/4n. Define
T(e,n) =(1 —¢)t, + &f,. Then, for any é > 0, and all large n,
Tie,n)

f(,)v,exp{—t}dt

0

T(e,n) 52
= J h(v,)v,exp {pﬁ(tt—t"_)——t}dt

0 2 ln

AN

‘fﬂeyn) h(vn)vn exp {pi(l - 8)(t - Zn) - t} ds

0o

{* T(e,n)
= | hiv,) exp {p2(1 — )t —£,) — £ — 802 + o7} it
JO
* T(e,n) R
< h(v,) exp{ — vl }v,exp {p>(1 —e)(1 + o)t —f,) —t}dt
vOo
f* T(e,n) -
< h(v,) exp { — 6v2}v,exp {p*(1 —&)(1 + 0) — )¢} dt. (8.1)
JO

Let M be an upper bound for h(v,)exp { — 6v}.
We choose é > 0 small enough so that for some # > 0 and all large n,

(1—e(1+8)p—1<—n.

Now (8.1) implies, with  and M chosen as above,

f "t (oayopexp {— i dt

0

M T(e,n)
<———p-"———j texp{—nt}dt

- \ 47(.(t,, - fn)l/z ,

= 0(t;'?). (8.2)



Critical exponent problem in R? 311

Integrating by parts, we obtain for some v > 0,

tn 2
f h(v,,)v,,exp{ t( _; ) }dt
T(e,n) n n
(" 203 —F) _ \ (. [ple—F)
= J‘T(e)”)h(v,,)v,,< E =T, -—1) a—;(exp{ - —t})dt
2p5(t — 1) )‘1 {pﬁ(t—t‘,,)z }]=
=|h n)Vn —— -1 e 1
[ )2 < L, — 1, P L—1, = Teen)
In 2(t ) -2 2,02
- h A | _ZFn
fT(e,n){ ( ) ( t,,—t" ) (t _f)
bty (LR 1) e [ gy

2(2) 1exp{p t,—t,)— }+0(exp{—vt,,})

" pult—£,)’
<o [ et E =)

+0 < J " (h(v,,)v,,)’exp{M—t}dt). 8.3)
T{e,n) tn - tn

By the hypothesis on h we get, for some 7 e(0, 1], for some ¢ >0 and all large ¢,

|K (v,)|0, < ch(v,)v} "0,

5 \1—-m/2
<c<‘" ’") h(o,)o

47

Therefore, for some positive numbers c,, ¢, and c;,

r |A(v,)v,) |exp {M - t} dt

T{e,n) tn - tn

oo , prL—T)
<J {|h(u")un|v,,+h(v,.)lvn|}exp{ P }d‘

T(e,n) n

tn 2
=<T‘—C‘ET/‘J {lh(v)lv+h(u")}exp{”"‘ ot L) t}dt

T(e,nm) tn
2! . { palt—1, )2 }
€ —— h(v,)v,exps —— de
(tn - tn)"/z J‘T(s,n) ( ) p - t
C3 tn 2( )
8.4
+ - J ren h(v,)v,exp { 2 dr. 8.4

Since by lemma 2.2, p2— 1 as n— o0, (2.13) implies

f " f(an)exp{—t} dr = O(1)
0
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Therefore (8.4) gives

Ptn 2 72
Ith(v,)o,) lexp {p—(t—_t”)— —t}dt =0(t;").
JTien) t,—t,

Hence, (8.3) implies

't

f(ﬁn)ﬁn exp { — tn}

" fw)v,exp{— ) dt = 0. 8.5)
JTien) Pr—
Combining (8.2) with the last equation, we get
Mtn =y = _
f@)v,exp{~1}dr= f(v")vz"sf f{l ) 8.6)
JO n
The lemma now follows from (2.13) and the fact that p? — 1 as n— oo. |

Proof of Lemma 2.5. From (2.6), it is sufficient to show that
= j
0

Using the explicit form of v,, we find that

2

o d
j fv,)exp{—s} ds——EUti' dr—0
t

asn— oo,

q 0. 0<t<i,
v p . -
= ¢ (t,— L)V L,<t<1,

d
! \/‘G 0 t,<t.

We split
In=An+Bn+C,,
with
ri,] o P
Ay = flv,)exp{—s}ds| dt,
JO Vi
Cftn | oo P 5
B,= f@,)exp {—s}ds ———=(r, —£,)" 2| dt,
JIn | Wt t } \//i;
(* o ro 2
Cu= fv,)exp{—s}ds| dt.
Vi i

Weshow that 4,, B, and C,, tend to zero as n — co. This we do in the following series of
claims. Let ¢ > 0 be arbitrary. Define T(e,n) =(1 —¢)t, + &f,,.

Claim 1. There exists an # > 0 such that for any te[Z,, T(e,n)], as n — o0,
T(eg,n)
J S )exp{—stds=0((t,— &) *(1 + )exp{—1})
t

+0 (exp{—n(t, —£,)"*}). (8.7
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Proof of claim.

Since h(0) =0 and v,(s) <1 in [0,(t, — £,)*/*], we have h(v,(s)) =O(v,(s)) as n— oo,
uniformly for se [0, (t, — ,)*/*]. Let & > 0 and ¢, > 0 be such that h(t) < ¢, exp {4ndt*}
for all t > 0. Also, we may choose d small enough so that the following inequality holds
for all s < T(e,n) and some > 0:

(1 + 5)p5(s - fn)z(tn - fn)-l -5 s

Therefore, for te[1,, T(e,n)], all large n and some positive constant c,

T(e,n) (tn—In)'?

Fo,)exp{— s} ds = f f(o,)exp{—s}ds

t t

+ fﬂm fw,)exp{—s}ds
(

tn— En)*/?

(tn—En)?
< cf v,(s)exp { —s}ds
t

' Tie,n) 5 — t‘ 2
+ céf exp{(1+5)pﬁ ((t ;))—s}ds
(tn—tn)*? n" ‘n
(t,— )"
<LJ‘ sexp{—s}ds

= San(e, )2 .

T(e,n)
+ c(;J exp{—ns}ds
(

tn—in)1/?

= 0((t,— ) "*(1 +t)exp{—t})
+ O(CXp { _ﬂ(l’" - fn)l/z})'
This proves the claim.

Claim 2. For all large enough n,
[ [(1—e)(t,—5)" ' (1 +8)(tn_fn)_1/2:|

f(v,)exp{—s}dse

Jrtem L 4, T (1—e)d4 Sy,

Proof of claim. From lemma 2.3, we may obtain the following two relations for all large n:

ftn [1—¢ 1+4¢
Jo f(v,)v,exp{—s} dSE_V’W]’ (8.8)
o 1—¢ 1+e¢
f(vn)vnexp{—tn}e[E—U 87'C ] (89)
We have, for all large n,
n 1 tn
v)exp{—sjds< ——— v,)v,exp{—s}ds
e e e e
1+¢
S -_
8mv,(T(e, 1))
1 _FY~1/2
=( +6)(tn tn) . (810)

4./n(1 - &)p,



314 Adimurthi and S Prashanth

Now,

T(e,n) (th—In)'"?

f@)v,exp{—s}ds= j f(o,)vpexp{—s}ds

In

in

T(e,n)
[ semen(-sas
(tn—n)'?

Since by (2.13) f (v,)v,exp { — t} € L'((0,0)) and f (v,)v, —~0 as n— co pointwise in [7,,
(t, —,)'/*], by dominated convergence theorem

(tn—Ea)17?
J f,)v,exp{—s}ds—>0 as n-—co.
f’l

By the reasoning that led to the second ‘order term’ in claim 1, we can find an > O such
that

f* T(e,n)

fw,)v,exp{—s}ds=O0(exp{—n(t,—,)"*}).

V tn—tn)'?

Therefore,
(" T(e,n)
f(,)v,exp{—s}ds—0 asn— o0.
LY {'I
Now, since
V"n 1
f,)v,exp{—s}ds—— asn— o0,
Ji 8n

we obtain for all large n,

N f(v,)v,exp{ s}ds>E
»)Un €XP = 87'5‘

o T(e,n)
Therefore,

" faperp(—spasy LR p s

T(e,n) n T(e,n)

S 1=90-5)""

(8.11)
4/np,
Combining (8.10) and (8.11) we prove the claim. |
Claim 3.
limA,=0.

Proof of Claim. Since f(0) =0, it follows that

4,<t,

rf(v,.)exx){—s}ds 2-
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Claims 1 and 2 imply that

e,

f)exp{~shds=0((t,~E,) '),

Since by lemma 2.3,

{* o0

fw,)exp{—s}ds=f(,)exp{—1t,} =0((t,—i,) '),

Jin

it follows that

A,,<0< t”_ >
t,—I,

Since (£,/(t, — ,)) = O by assumption, the claim follows. ]
Claim 4.
lim B, =0.

Proof of claim. We split
B,=B!+ B?

T(e.n)
1_
m—f
fn

rf(v,,)exp{—s}ds— ﬁ(zn )2

with
2

J‘taof(v,,) exp{—s}ds— \/_p4=n(t" —£)"12| dr.

Now,

= f"f(v..)exp{—s}ds +f(@,)exp{—t,} —ﬁ(t..—f..)‘”z- (8.12)
From (8.9) we obtain,
f@)exp{—t,} —"ﬁ(t,. ~£)71

([l
4./p,

Therefore, using claims 1 and 2 we get from (8.12)

(tn _ t_n)_ 12

l—e—2p2),2 " (1+e—2p2) | (8.1
(1—e—2p}) 4\/;[p" (1+¢ p,,)] (8.13)

rf(v,,)eXp{—S} ds‘j;—n(t,. — )72

(tn - fn)—llz (tn - fn)ml/z (1 +é )}
n ) (1—g—p? 2
e[ Janp, (I—e—py) Janp, \1=: Pa
+ O((t,—1,) " '*(1 + t)exp{—t})
+ O (exp{—n(t,—£,)"?}).
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Therefore,

Ten) (, _ 73-1 1 2
B'< 2[ (t'—thax{u—a—pﬁ)Z,(—ﬁ—pﬁ) }dt
fn 4. /np? 1—¢

+ 0 < J‘T(w (¢, —L,) " '(1+t)*exp{—2t} dt)

+0 ( Jnm) exp{—2n(t,—,)'*} dt)

fn

- O max {(1 e g2V, (g—pi)z} FO((t, 1))

— 2¢ \2
limsup B) < %—n—a)max {32, (1 _88) }

_ 2¢?
T a(l—e)

From claim 2 and the fact f(7,)exp{—t,} =0((t,—F,) /%), it follows that for
te[T(en)t,],

Hence,

(8.14)

2

=0((t,—£)7").

t

wa(vn)eXp{—S}dS*\;;Tn(tn—f,,)_”z

Therefore,

Bﬁ=0<j" (t,,~t',,)"dz>
T(e,n)

=0 (g). (8.15)
Since ¢ > 0 was arbitrary, combining (8.14) and (8.15) we obtain the claim. ]
Claim 5.
lim C,=0.

Proof of claim. We have

C,=1(@,) rexp{— 2t} dt

tn

=S U@ e i~}

= O((zn - fn)— 1)
which proves the claim. [ |

Claims 3, 4 and 5 imply that lim,_, _ I, =0, which proves the lemma. |
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