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Abstract. Let f2 be a bounded smooth domain in R 2. Let f :  R --, R be a smooth non-linearity 
behaving like exp{s 2} as s--* ~.  Let F denote the primitive o f f  Consider the functional 
J:H'0(f~)--, R given by 

J(u)=~folVul2dx--fF(u)dx. 
It can be shown that J is the energy functional associated to the following nonlinear problem: 

-Au=f(u)  in f~, 

u = 0 on df~. 

In this paper we consider the global compactness properties of J. We prove that J fails to 
satisfy the Palais-Smale condition at the energy levels {k/2}, k any positive integer. More 
interestingly, we show that J fails to satisfy the Palais-Smale condition at these energy levels 
along two Palais-Smale sequences. These two sequences exhibit different blow-up behaviours. 
This is in sharp contrast to the situation in higher dimensions where there is essentially one 
Palais-Smale sequence for the corresponding energy functional. 

Keywords. Blow-up analysis; critical exponent problem in Rz; Moser functions; Palais- 
Smale sequence; Palais-Smale condition. 

1. Introduction 

1.1 Preliminaries 

Let  f~ be a s m o o t h  b o u n d e d  d o m a i n  in  • ' ,  n i> 2. F o r  n t> 3, let ~r d e n o t e  the  subse t  of  
C1 ( ~  +, ~ + ) cons i s t ing  of  func t ions  #(s) wh ich  satisfy the  fo l lowing  g r o w t h  cond i t ions :  

lira g(s) s ((" + 2 ) / ( n -  2 ) )  = G O ,  
$--. c~ 

lira g (s) s - ((" + 2)/(n - 2 ) )  .~.  0. 
s--.  oo 

W h e n  n = 2, let ~ d e n o t e  the  subse t  of  C I ( R + , ~ +  ) cons i s t ing  of  f unc t i ons  h(s) which  
van i sh  o n l y  at  s = 0 a n d  which  satisfy the  fo l lowing  g r o w t h  cond i t ions :  

F o r  every 6 > 0, 

l im h(s) e x p { r s  2} = GO, 
s ~ o o  

!irn h(s)exp{ - 6s 2} = 0. 
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In view of the Sobolev and the Trudinger [22] imbeddings, we call f a function of 
critical growth in ~", n >t 2, if" 

{s ((n+2)/(n-2))- '~9(S),  g ~ ' ~ n  if n~>3, 

f(s) = h(s) exp {4xs2}, h e ~ if n = 2. 

For questions related to the achievement of the best constant in the Trudinger 
imbedding, see [11, 16, 13, 15]. 

We now consider the following non-linear problem with f having critical growth in 
~", n >~ 2: 

- A u = f ( u )  in ~, 

u > 0 in ~, (P) 

u = 0  on ~ .  

Let F denote the primitive of f .  Then, the energy functional J:H~(f~) --* ~ associated to 
the problem (P) is given by 

J(u)=2flVul2dx-fF(u)dx. (1.1) 

It is not difficult to show that every solution of the non-linear problem (P) is a critical 
point of J and vice-versa. 

1.2 A brief review of past developments 

Since problem (P) lacks compactness, J will not satisfy Palais-Smale condition at all 
energy levels. It is of great interest to characterize the energy levels at which J fails to 
satisfy the Palais-Smale condition. We explain briefly why this characterization is 
important. Using Rellich's identity [8], Pohazaev [19] was able to show that when 
n ~> 3, (P) does not admit a solution if f(s)~-S (n+ 2}/(n- 2) and f~ is star-shaped with 
respect to anyone of its points. In order to reverse this non-existence and obtain some 
existence results for the problem (P) there are therefore two simple prescriptions: 

(i) add a perturbation 9(s) from ~r to the critical non-linearity s t" + 2)/t,-2), or, 
(ii) pose the problem (P) on a domain ~ with 'rich topology'. 

When n >1 3, the first program was carried out in Brezis-Nirenberg [10] where they 
prove existence results for (P) provided the perturbation g is large enough. They also 
show that if the perturbation is small, the Pohazaev-type non-existence persists. In 
order to carry out the second program, it is necessary to know precisely the energy 
levels at which J fails to satisfy the Palais-Smale condition. Such a characterization 
was obtained by Struwe [21] who showed that Palais-Smale fails only at a discrete (but 
infinite) set of equally spaced energy levels. Using this characterization and tools from 
algebraic topology, Bahri-Coron [7] were able to prove that if n >/3 and at least one of 
the homology groups of f~ (with coefficients in Z2) is non-trivial, (P) admits a solution 
even when f (s )= s (n+ 2)[(n- 2). These developments underline the fact that one can 
exploit the topology of ~ to prove existence results to problem (P) once the energy 
levels at which Palais-Smale condition fails are known. 

In the case n = 2 corresponding questions have been considered in [1-5], but the 
picture remains far from complete. One of the difficulties is that an effective Pohazaev- 
type identity does not seem to exist when n = 2. Hence non-existence results become 



Critical exponent problem in ~2 285 

harder to obtain for general star-shaped domains. Nevertheless, in the radial situation, 
non-existence results for a large class of convex non-linearities have been obtained in 
[4] and [5]. We briefly describe these results. The critical non-linearity when n = 2 is 
f(s)=h(s)exp{4ns 2} with heM. In analogy with the results for n/>3, one expects 
non-existence if the perturbation h is 'small'. This is indeed so if h is 'small' in the sense 
that 

lim sup h(s)s < oe. 
s ~ o O  

We refer to [4] and [5] for a precise statement of these non-existence results. Therefore, 
to reverse this non-existence either one can consider large perturbations h, or one can 
pose the problem on a domain f~ in N2 with 'holes'. The former option was considered 
by Adimurthi in [1] where he proved that if the perturbation is 'large', more precisely, if 
lira sups,ooh(s)s = 0% then (P) admits a solution on any bounded smooth domain f~ in 
N2 (also see remark 1.1 below). Further, he showed in the same paper that Palais-Smale 
holds in the infinite energy range ( -  0% �89 As we saw earlier for the case n >t 3, we need 
to characterize the energy levels at which J fails to satisfy the Palais-Smale condition if 
we want to consider the latter option of exploiting the topology of f~ for proving 
existence results. 

1.3 Contents of the paper 

This paper deals with the two dimensional case. In w and w 3 we exhibit two 
Palais-Smale sequences along which J fails to satisfy the Palais-Smale condition at the 
energy levels k/2, k any positive integer. The first Palais-Smale sequence (w is the 
sequence of 'Moser  functions' whereas the second sequence (w 3) consists of solutions to 
the problem (ref. [1]), 

-Au=h(u)exp{4nu 2} in B(R), 

u > 0 in B(R), 

u = O  on OB(R), 

where B(R) c ~2 denotes the disc of radius R centered at the origin and h(s)s ~ oe as 
S---* oO. 

A very surprising consequence that comes out of the analysis here is that these two 
Palais-Smale sequences exhibit different blow-up behaviours. This is in sharp contrast 
to the situation in higher dimensions where there is essentially only one type of 
Palais-Smale sequence for J (ref. [21]). The blow-up limit of the first Palais-Smale 
sequence solves the following equation in ~2, for some compactly supported measure p: 

- A u = p .  

The blow-up limit of the second Palais-Smale sequence solves the equation: 

1 
- A u = ~ - ~ e x p { u }  in ~2. 

Here we recall that any solution u of the above equation corresponds to a conformal 
change of metric on R 2 from the standard metric to a metric of constant Gaussian 
curvature K = 1. Results on these blow-ups are contained in w and w We 
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strongly believe that the existence of two distinct types of Palais-Smale sequences has 
important implications regarding the global compactness properties of J. 

For generalizations of theorems A and B to the case of the n-Laplacian in ~", see w 5. 

Statement o f  the theorems. For convenience, we list the statements of all the four 
theorems we will prove: 

Let 0 < l < R. Define the Moser functions 

[ log(R/ l )]  1/2 0~<lxl</ ,  

log(R/ Ix] )  l <~ Ixl ~< R, (1.2) mt,R(x) 
x/2n [-log (R / l ) ]  1/2 

0 Ixl>~R. 

Let fl be a bounded smooth domain in R 2. Let xoef~ and R <d(xo,  aD). Define 
m,.R~o(X) = m, .R(x - Xo).  

Theorem A. Let  f (s )= h(s)exp {47zs2}, s >>. O, h e 8 .  Assume that h satisfies the hypo- 
thesis: 

[h'(t){ <~ ch(t)t I -~ and F(t) <<. c f ( t ) t  1 -~ 

for  some tie(O, 1], for some c > 0 and all large t. 
Let  R depend on I so that l im~ o (log(2/R ) / log(R/l)  ) = O. Then there exists a sequence 

Pl ~ 1 as l ~ 0 such that 

(a) { Plml R.~o }l> 0 iS a Palais-Smale sequence for  J as l ~ O, 
(b) J fails to satisfy the Palais-Smale  condition along the above sequence at the energy 

levels k /2 ,  k any positive integer. 

Remark 1.1. Examples of non-linearities satisfying the hypotheses in theorem A are: 
any h e ~ such that h(s) = exp { + s a ), for all large s and some fle  (0, 2); any h e ~ such 
that h(s) = s o for all large s and some 0e  R. 

Let u R denote the solution obtained in [-1] for the problem (1.1) posed on B(x  o, R). 
Let fir denote the extension of ug obtained by setting fig = 0 in f l \ B ( x o ,  R). 

Theorem B. Let  x o e t'l and R > 0 be small enough so that B(x  o, R) = {x :l x - Xo[ < R } c fl. 
Let  h e ~ and f (s) = h(s) exp {4rose}, s >~ O, satisfy the following hypotheses: There exists 
s o > 0 such that 

(i) h(s)s--* oo as s--* oo, 
(ii) g(s) = logf(s)  is C a and convex for  all s >~ s o, 

(iii) f ( s )  is strictly increasing for all s >1 So, 
(iv) g(s) - �89 + log (g'(s)/2) 1> (1 + 0) log s for  all s >1 s o and some 0 > - 1, 
(v) lim s u p ~  ~ (g(s) - �89 sg'(s)) s -a = O(1) for  some [3 e [-0, 2), 

(vi) lim~oo (sg tk+ l~(S)/g~k)(S)) k = O, 1 exists and is different f i o m  0 (here g~k~ denotes 
the k-th derivative of  g). 

Then, 

(a) {fig }R >o as R--* 0 are Palais-Smale  sequences for  J, 
(b) J does not satisfy Palais-Smale condition at the energy levels k/2, k = 1, 2, 3 . . . . .  
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Remark 1.2. Let #(s) = log f(s). Then the following are simple consequences of the 
assumptions (i)-(vi): 

g'(s)=8rcs + O ( ~ ) ,  

Hence we may choose s o large so that 9 is a convex increasing C a function in [s o, oo). 

Remark 1.3. Examples of non-linearities satisfying the hypotheses in theorem D are: 
any h �9 ~ such that h(s) = exp {s~}, 0 < fl < 2, for all large s; any h �9 ~ such that h(s) = s o 
for all large s and some 0 > - 1. 

Theorem C. Let p �9 (0, 1] be a parameter dependin9 continuously on I such that p - l r 0 
for all l > 0 and p(O) = 0. We also assume that the followin9 limits ( possibly oo) exist: 

l 
a = lim - ,  

1~0 p 

b = lira logp 
i~0 log l" 

It  follows that 

( loga = l imlogl  1 - l--@g / j .  (1.3) 

Extendin9 each mr. 1 by zero outside B(1) we may consider mr, 1 to be members of H 1 (N2). 
Let y �9 3B(1) be arbitrary and x �9 N z. Then, 

(i) I f  a = o% uniformly on compact subsets of N 2, 

lira ml.,(px) 2 -- mt.,(py) 2 = O. 

(ii) I f  a < oe and p <. l for all l > O, uniformly on compact subsets ofl~ z, 

0 O~<]x]~<a, 

l im { m , , ( p x )  2 --  m , , ( p y ) 2 }  = 
b log ( ~ [ )  [xl>a. 
g 

(iii) I f  a > 0 and p > l for all l > O, uniformly on compact subsets of  N 2, 

~im{m"(PX)2-m'l(Py'2}+ ' " = (  21og2 !og (~)(l@l), [xl>a.lX[<'a' 

(iv) / f  a = 0, for x • O, uniformly on compact subsets of N 2 \ {0}, 

lim{mt, l (PX)2-m, , , (PY)2}=blog(~xf  ) ,  
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Theorem D. Let hE ~ and f (s)--h(s) exp {47zS2}, S/> 0, satisfy the hypotheses listed in 
the statement of theorem B. Let u R be any solution of(P) posed on ~ = B(R) with the above 
choice o f f .  Then, 

(i) tlVuRIIL21~t~))--,1 as R ~O, 
(ii) There exists a parameter p dependin9 continuously on R, p --* 0 as R --* O, such that 

for any z et3B(1) and xe  R 2, 

as p ~ O, uniformly on compact subsets of ~2. 

Remark 1.4. Statement (ii) of the theorem implies that the 'limiting equation' to our 
problem is 

- A u  = l e x p { u }  in ~2 

u = 0 on aB(1). 

Remark 1.5. (1) In fact, for existence of solution to (P) when n = 2, it is sufficient if 
lim s u p ~  h(sls > c, where c is a positive constant depending only on fl and f ;  refer to 
remark 4.2 in [1]. 
(2) In [12], a partial result on non-existence in the case n = 2 is obtained, which 
however, happens to be a special case of theorem B in [5]. 

2. Proof of Theorem A: Palais-Smale fails along 'Moser functions' 

We first prove a few preliminary lemmas from which the theorem will follow readily. In 
what follows we assume without loss of generality that 0 efL Xo = 0 and B(0, 3) c f~. 
also we equip H~(f~) with gradient norm 1[ u [[~r;~al = It Vu [l L2(nl- 

Lemma 2.1. Let u e Hlo(B(O, Rt) ) c H~(f~) be a function radial about the orioin. Then 
there exists a positive constant o) dependin9 only on f~ such that for R o ~ (R 1, d(O, Of~)), 

IIj,(u)[[2<~ (Ro_R1)2(  tRo ~' 1 ~" 12 "~ o) +rJof(U)tdt  rdr ) .  (2.1) 

Proof. For ~b e H01(f~), define the 0-average ~ of q~ to be 

Then, 

1 12- 
q~(r)=~-~jo ~(rcos0,  rsinO)dO. 

(J ' (u) ,~)= f Vu.V~pdx- f j (u )~pdx  

= 2 . (  - .1 'o ~r ~ r r d r -  fo f ( u , ~ r d r ) .  

Let tleC2(B(O, Ro) ) be such that t/ is radial about the origin, q - 1  on B(O, R1), 
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]Otl/Or] <<. 4/(Ro - R~). Let ~b 1 = ~/~. Then, 

- ~ l f  (u) ~,: dr = - f ~o ~ (u) 4~ , rdr 

J, -gs ~ r~ 

= j 2 ~ 1 6 3  rat .  

Therefore, 

289 

J ( pt,Rmt.R) = sup J (pmt.R). 
p~R 

Therefore, the derivative of the function p w-~ J(pmt, R) vanishes at p = Pt,R which gives, 
denoting ut. e = pt.gmi.R, 

It VU/,R l] 2L2(fl ) =fnf(u,~)u, Rdx.. , (2.2) 

Jo IWI rdr). 
Since 8~b 1/Or = tl (8~p/Or) + (Stl/Or) ~a, we get, for some positive constants, tnl, ~o depend- 
ing only on D, 

k Or J ( R o - R 1 )  2 

~ (Ro~R,)2 folV4'I 2dx. 

Therefore, the last two inequalities imply that 

I[J'(u)[I 2 ~<(Ro_R1)2Jo I N  + 

This proves the lemma. [] 

For  simplicity of notation, we let mt, R,o(X ) = m~,R(X). For p c  •, using the facts 
I[ mr, R 11 = 1 and f has exponential growth, we have 

p2 r 
J(Pml'R) = -2  -- Jn F(pm"R) dx 

-- oo a s l p [ ~  ~ .  

Hence, we can find P~,R >t 0 such that 



290 Adimurthi and S Prashanth 

Tha t  is, since I1Vu~,R II L, tn~ = Pt,~, 

flZl,R ~- for(u,,.) ut, . dx. (2.3) 

We note that  the integrands in equat ions  (2.2), (2.3) and (2.4) are radial functions 
suppor ted  in B(0, 2). Therefore,  we can t rans form the integrals in these equat ions to 
integrals on (0, ~ )  via the t rans format ion  

Ix[ = r = 2 exp { - t/Z}. (2.4) 

Let z(t) = 2 exp { - t/2}. F o r  any u e HA(k)), u radial abou t  the origin denote  v = u o z. 
Let w~, R = m~, R o z and  v~,~ = pt,RWt, R. Then  it can be checked tha t  

0 O<~t<tR, 
1 

wt, R(t) = ~ ( t -  tR)(t l -  tR)- t/2 tR <<. t < tl, (2.5) 

(t I - -  t R )  1/2 t >t tl, 

where t s = 2 log(2/R) and t ; - - 2  log(2//). 
Now,  under  the t rans format ion  (2.5), the equat ions  (2.2), (2.3) and  (2.4) will become 

respectively 

2 <~ 4~o~ dv (~ f ( v )  ds 2 2 
I[J'(u)][ .~.R--~--_R 1 - d i - j ,  e x p { - s }  , (2.6) 

L (0,oo) 

f ~ ] Z d t = f : f ( v , , R ) v t . R e x p { - t } d t ,  (2.7) 

and 

p2 ~o 4~ f(vt'g) vl'" exp { - t} dt. (2.8) 

Also, if u e H~(f~) is radial a b o u t  the origin, J(u) is t ransformed under  (2.5) as 

;o fo J(u)=2n dt d t - 4 n  F(v )exp{ - t }d t .  (2.9) 

Let  {/.} and {R.} be two sequences of  posit ive numbers  with I. ~< R.  for all n, 

,. log(2/R.)  . 
l im I. = 0 and llm ~ = o. 
. . . . . .  log(R./l.) 

By abuse of nota t ion,  let u. -- ut.,R ., v. = v,.,R., m. = m~..R ., t. = t~., t-. -- tR., p .  = P,. R.- 
We prove  that  {u.} is a Pa l a i s -Smale  sequence for J,  and also tha t  J does not  satisfy the 
Palais-Smale condi t ion at the energy level �89 This we do by showing tha t  

J(u.)~�89 a s n - , o o  and,  

II J '(u.)l l  ~ 0  as n ~ .  

Hereafter,  we work  only with the t rans formed equat ions (2.6)-(2.10) 
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L e m m a  2.2. 

pn ~ l as n ~ oo. 

Proof .  We prove the lemma by showing 

lim sup pn ~< 1 and lim infp,  t> 1. 

lim sup p~ ~< 1: We argue by contradiction.  Suppose there exists a subsequence of p~, 
which we again denote  by p~, and e > 0, such that  p~ ~> 1 + e for all n. Then  (2.8) gives, 

denoting s. = ( x / ~ )  -1 (t, - ~- )1/2, 

-~>~ f ( v . ) v ,  e x p { - t } d t  
n 

= h(v.)  v. exp {4~v~ - t} dt  
n 

= {p~(t~ -- t~) -- t} d t  h (p~s~)p , s~exp  2 - 
n 

= h(p~s~)p~s, exp  {(p2 _ 1)t~ - p~ f~}. (2.10) 

By the growth assumption on h, for any 6 e (0, 1) we may find c~ > 0 such that  for all 
large t, 

h(t) t -  1 ~ c6 exp { - 47z6t 2 }. 

Therefore,  the inequali ty (2.10) gives, for all large n, 

1 
>1 h(p~s~)(p~sn)- ,  s2nexp {(p2 _ 1)t~ - p2f~} 

>/c~s2 exp { _ 6p2n(t~ _ ~-) + (p2 _ 1)t, -- p2~-} 

= c~s 2 exp {p2.(1 - 6)( t .  - f.) - t. }. (2.11) 

Now, the assumption 

Iim log(2/R.)  _ 0 
, ~  log (RJ l~ )  

implies that 

lim fn = 0 
. ~ o o  tn - -  f n 

and hence in part icular  that  f~ = o(t~). Therefore  we may choose positive numbers  
6, v and r/small enough so that  f, ~< ~/t. for all large n and (1 + e)(1 - 6)(1 - ~/) > 1 + v. 
Therefore,  the inequality (2.11) together with the assumption p~ I> 1 + e for all n implies 
that  for all large n, 

1 
4-~ >~ c6s~ exp {vt.} 

which is a contradict ion.  This contradict ion shows that lim sup, p2 ~ t. 
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t iminfp .  ~> 1: Again, suppose there is a subsequence ofp , ,  denoted still by p., and e > 0 
such that/92, ~< 1 - e for all n. F rom (2.8), 

4---~ = p2~f(v.)v, exp { - t} dt p 2 2 f ( v . ) v ,  exp { - t} dt 
n 

= I~ + I~. (2.12) 

We have, 

I I =  p ; 2 h ( v , ) v ,  e xp  p] ( t - [ ~ ) 2  ( t . -  f~) t d t  

t n  

1 h (v . ) v2 , ( t  _ f~)2 exp {(p2 _ 1)t - p2~-} dt 

1 f t .  h(v . ) v2 , ( t  _ f.)2 exp { - et - p2~ f. } dt. 

By the growth assumption on h and the assumption h(0) = 0, there exists for any & > 0 
a positive constant C(&) such that, 

h(t)t -1 <~ C(6)exp {4~&t 2} for all t>~0. 

We now choose & < rain {e, (e(1 - e)- 1)/2}. For  all large n, since & < e, 

4~( t . - -  F.) h(v~)v.-l(t  _ f~)2 exp { - et - p2g~} dt  
n 

~< 4rc(-~. --- ~.) (t - f.)2 exp {60~(t - f~) - et - 02nf.}dt 
n 

c(~) '~_~ 
~< 4 ~ r ~ / -  ) ( t - -  f . ) 2 e x p { ( 6 - e ) t } d t  

= O(t;l). 
Hence, I~ = O(tg~).  Similarly, for all n large 

I~ = h(v . )v21( t .  - f~) exp {p2.(t. - f~) - t} dt 
n 

<~ ( t . - f . ) e x p { ( l  + ~ ) p 2 / . }  e x p { - t } d t  
n 

= C ~ )  (t, - ~'~)exp {((1 + ~)0~ - l)t.}. 

Since ~ < (~(1 - ~)- ~)/2, the above inequality gives that I~ = O(exp { - (~/2)t~ }). Hence  
I~ + I~ = O(t2 ~) which contradicts (2.12). This contradict ion shows that lira inf p.  >/1 
and this proves the lemma. �9 
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Let ~. = v,(t,). F r o m  (2.8) one gets 

P--~ = f(v,)v, exp { - t} at  + f (~ , )g ,  exp { - 6}- (2.13) 
4~ 

In the following lemma we compute  the limit, as n --* o% of the two terms on the right of 
equat ion (2.13). These limits will enable us to show that  II J '(u.)l[--,  0 as n---, o0. 

Lemma 2.3. 

fo " f 1 lira (v,)v. exp { - t} dt = - -  
~o~ 8~' 

1 
!ira f (~ . )~ ,  exp { -  t,} = ~-~. 

Since the proof  is technical, we prove Lemma 2.3 in the appendix (w 

Lemma 2.4. 

J(u.)--*�89 as n--.c~, 

Proof. Since 

fo  dr" d p~ l 2n ~ -  t = ~ -  ~ as n-- ,oe,  

(2.9) implies that the lemma is proved if we show that  

oF(V,)exp{-t}dt--*O as n ~ o e .  

Let N be a large fixed positive number.  Not ing  that F(t)<<, Mf(t)t 1-~ for some 
M positive, qe(0,  1] and all large t, we have 

foF(V.)exp - t} { dt 

=f~, ~ ,F(v")exp{-t}dt+ f F(v.)exp{-t}dt 
v. ~ Nj  {v. >N}  

<~ f{~.<~ulF(v.)exp{-t}dt + M f  o.>Nftv.) t-"e pt-t}dt., 
Using the dominated  convergence theorem, the first integral on the right tends to zero 
as n -~ oe. Also, since I~f(v.)v. exp { - t} dt  is bounded,  

f~ f(v.)v~-"exp{-t}dt<~ 1-- ~ f(v,)v, exp{-t}dt 
~.>N} N" J {v. >N] 

= O ( N - . ) .  

Since N was an arbitrari ly large positive number,  it follows that 

J 0'1~ F(vn) exp { -- t} dt --~ 0 as n --~ oo. 

This proves the lemma. �9 
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Lemma 2.5. 

IIJ'(u.)ll~0 a s  n ~ .  

Since the proof is again technical, we prove Lemma 2.5 in the appendix. 

Proof of Theorem A. Lemmas 2.4 and 2.5 show that {u.} is a Palais-Smale sequence 
for J thereby yielding (a) of the theorem. Since u, ~ 0  in H~(f~) (up to a subsequence), 
and J(u,)~�89 it follows that {u,} does not contain any subsequence that converges 
strongly in HI(O ). Hence J does not satisfy the Palais-Smale condition at the energy 
level �89 By a standard procedure, for any positive integer k, we can construct a sequence 
of functions ~,, each of them being sum of k Moser functions with mutually disjoint 
supports, to get as n ~ 0% J(~,)-~k/2 and 

II S'(~,)t1 ~0 .  

This shows that J does not satisfy Palais-Smale condition at the energy levels k/2, 
k any positive integer. This proves (b) and hence the theorem. �9 

3. Proof  of  theorem B: Pala is -Smale  fails along solutions to (P) on a disc 

We prove a few preliminary lemmas from which the theorem will follow easily. But 
first we transform the problem to an ODE (ordinary differential equation). We are 
considering solutions u R, obtained in [1] and [-6], of the problem 

- A u = f ( u )  in B(R), 

u > 0 in B(R), 
u -- 0 on t~B(R). (PR) 

By regularity (see Remark 4.1 in [1]), u is in C2'~(B(R)) for some ~ > 0. We note that, by 
Gidas-Ni-Nirenberg [14], u is radial about the origin. Defining y(t) = u(x) for any 
x such that I xl = 2 exp { - t/2}, we see that y solves the problem, with 7 = u(0), 

--y" = exp { - t}f(y), 

y(~) = 7 > 0, 
y ' (~ )  = 0. (P,) 

Let To(7) denote the first zero of y. Let g(7) = log f(7). 

Lemma 3.1. 

y'(To(7))Tlo/2(7)~O as 7 ~ , .  

Proof. Let T2(7) be the point at which Y(T2(7))= s o for all 7 > so (So as in the 
hypotheses of theorem). We will require the following asymptotics: 

-/g, , 7g ' (7 )~+1o  To(7) >J ~ t T ) - ~ )  g ~--~-)  + O(1), 

T2(7 ) = So (7) + 9(7)-- + log + O(1), 

[ y'(r2(~))=O-~- ~ 1 + 0 \  g(7) J J" 
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(For the proof of the first asymptotic we refer to lemma 2 in [6]. The second and third 
asymptotics have been proved in lemma 4.4 in the next section.) Define 6(~) = g(7) - 
�89 + log(�89 Let ? --, oo be a given sequence. To prove the lemma we distinguish 
two cases: 

Case (i). For some subsequence ?k ~ ~,  6(?k ) >>. lOg?k: In this case To(?k ) >~lOgTk + 
0(1). Hence, 

f T2 ('ek) 
y'(To(Tk)) = y'(T2(?k)) + f(y) exp { --t} dt 

d To(?k) 

Case (ii). 6 (7) ~< log 7 for all large ~: Define T3(?) = 4 log ?. Then, 

y(r3(~)) = y(r2(~)) - y' (r2(~))(r2(~) - r3(~)) + O (exp { - r3(?)}) 

=So-y- ;~2 [lq~o(l~176 \ g(?) j +6( ' ) - -T3(7)1+0 1 ( ~\-~/ 

= O ( ~ )  

Therefore, 
F T2(Y) 

y'(T3(~/)) = y'(T2(y)) + f ( y )  exp { - t }  dt 
J T3(y} 

Hence, with 0 as in the hypothesis of the theorem, 
f T3(~) 

y'(To(?)) = y'(T3(?) ) + f ( y )  exp { --t} dt 
d To(~,) 

oCf = 0 + y( t)  exp { -- t} dt 
\ d To(7) 

) , 
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Thus in both the cases y'(To(?) ) = O(1/7). Hence, noting that g(?) - �89 ?g'(?) = O(? a) for 
some fie [0, 2), and To(?) ~< T2(?) we get 

y'( To(y)) Tlo/2(?) = O (~ [max{?ll2,?#/2} ] ) 

--+0 as ?-~ o0. 

This proves the lemma. �9 

Lemma 3.2. 

IIJ'(~s)N~O as R ~O. 

Proof. We assume without loss of generality that x o = 0 and B(0, 2) c ft. Also we 
consider R to be much smaller than 1. Let X ~ C~(~) be such that 

Support(x) c B(0, 2), 

Z - 1  on B(0,1), 

0~<X~<I. 

For 4b ~ H~(fl) set 

~1 = z ~ ,  

O(r) =~-~ qSl(rcosO, rsinO)dO. 

We note that for some c > 0 (independent of q~), it holds that 

114xll ~<cll411. 
NOW, 

C [ /' 2 "k'k 1/2 
lf*li tJogt, ) ) �9 

Letting da denote the surface measure on OB(R), we have 

(J'(~R),~) = (J ' (~R) ,~ , )  

= fovn,.Vr fof(aR)r 
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= fo OuR ~R) W (a 1 da 

= u'dg) [ 4)1 da 

= RU'R(R) 41(R cos O, RsinO)dO 

= 2nRUR(R)O(R ). 
Hence, for some c > 0, 

/ / 2 \ \  1/2 
I< J'/~.),+ >l ~ ell + II R lu:~R)l t log t ~ )  J 

Therefore IIJ'(~R)II wi l l  tend to zero as R-->0 i f  we can show that  Rlu'~tR)I 
(log(21R)) li2 --+0 as R ->0 .  Since uR(R) = 0, i f  we define T O by R = 2exp  { - To12 ) and 
set y(t) = UR(2 exp { -  t/2 }), we see that y solves (P~) with ~ = uR(0) and To is the first 
zero ofy.  Hence by lemma 3.1, 

t / [ 2  \ ' ~ 1 / 2  

tlo t )) 
~ 0  

as uR(0 ) = 7 + ~ .  Since uR(0)--, ~ if and only if R + 0, it follows that 

IlJ'(fiR)ll--+O as R--)0. 

This proves the lemma. [] 

Lemma 3.3. 

J(fiR)~�89 as R--)O. 

Proof. Since 

f~ IVuRI2 dx--* I R ~ 0 ,  a s  
(R) 

by (i) of theorem D in w it is sufficient to show that 

nF(fiR)dx--*O as R~O.  

Let N be a large positive number. We have, using the fact F(t) <~ Mf(t)t I ~ for some 
M > 0, q e (0, 1] and all large t, 

f F(fia)dx=fB~F(uR)dX 

=f..~.F(uR)Ox+ f~.> F(uR)dx. 
<<. f F(uR)d x + M  f f(uR)U, dx. 

J~,<~N N" L.>N 
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Now, since u R solves (PR), we have 

fB,Rf(u')u~dx = fB,R IVU'I2 dx" 
Therefore, the second integral on the right in the last inequality is of the order I/N". By 
the dominated convergence theorem, it follows that the first integral in the same 
inequality tends to zero as R tends to 0. Therefore, 

a F ( ~ R ) d x ~ O  as R ~ 0 .  

Hence J(uR) ~ 1/2 as R ~ 0 which proves the lemma. II 

Proof of  theorem B. Putting lemmas 3.2 and 3.3 together, we get that {fir } as R ~ 0 is 
a Palais-Smale sequence for J. Since ~ ~ 0  in H~(f~) and J(uR) --*�89 as R -~0, it follows 
that {~a} has no strongly convergent subsequence. Thus J does not satisfy the 
Palais-Smale condition at the energy level �89 By a standard construction, for each 
positive integer k, instead of uR we may consider sum of k such solutions with mutually 
disjoint supports. Then, we will have that J does not satisfy the Palais-Smale condition 
at the energy levels k/2, k = 1, 2, 3 . . . . .  This proves the theorem. II 

4(1). Proof of theorem C: Blow-up behaviour of the Moser functions m~,l(x ) 

Define Al.p(x ) = 2n(mtA(px) 2 -- ml.l(py)2). 

Case (i). p <~ I for all l >10: In this case Ipyl ~< I. Therefore 

1 
mla(py) 2 = - ~ log l, 

and hence 

a , , , ( x ) =  
-- (log p + log {xl) 2 + (log l) 2 

log l 

I 
0 

[ l o g p  1) 

, w +  

log I p 

1 
0 ~ < l x l ~  - ,  

P 

l 1 
-~<lx l~< - .  
P P 

l 
0~lx i~< - ,  

P 

1 
~ l x l ~  - .  

P 

(4.1) 

Also, since p ~< l, 

a = lim -1 >t 1. 
I ~ 0  t9 
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If a = oo, it easily follows from (4.1) that Al, o(x)~O as 1~0, the convergence being 
uniform on compact subsets of N2. 

Suppose a < oo. Then, (4.1) immediately implies (since b = limt~ 0 (log p/log l)) that 
b = 1. Therefore, 

Hence, 

log p 
- - - - 1  +o(/) 
log I 

as l ~ 0 .  

as l ~ 0 .  

Therefore, from (4.1), as 1--* 0, 

f ~ 
limo At,p(x)= ( a  \ 

2log ~-~) 

0~<!x[~< a, 

a ~ l x l ,  

uniformly on compact subsets of ~2. 

Case (ii). l < p < 1 for all 1 > O: In this case, I PYl > I. Therefore 

1 (logp) 2 
mz'l(PY)2= 2n log/ ' 

and hence, 

I (l~ - (l~ 0 ~< [xl ~< - ,  
log I p 

A,,p(x) = (4.2) 
(logp) 2 - ( l o g p + l o g l x l )  z /~<lxl~< 1 

log l p p" 

Also, we have 

a~<l and b~<l. 

I fb < 1, by (4.1) we get a =0.  Hence I/p~O as l--*0 and (4.2) gives 

uniformly on compact subsets of •2\{0}. 
If b = 1, there are two cases: a = 0 and a > 0. In the former case, again lip ~ 0 as l--* 0 

and as before 

uniformly on compact subsets of R2\{0}. 
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In the latter case, for Ix I > a, from (4.2) it follows that uniformly on compact subsets 
of{x: Ixl >a}, 

limA,,p(x) = 2log ,~0 (~-~)" 

For (x[ ~< a, we have from (4.2) 

At'p(x) = \ l o g / +  1 log 

~ 2 1 o g ( ~ )  as l--,0 (4.3) 

uniformly on [ x l ~< a. That is 

2log ( ! )  0~<,x,~< a, 

lim A t p(x) = 
I ~ 0  . ' 

uniformly on compact subsets of N 2. This proves the theorem. II 

4(2). Proof of theorem D: Blow-up behaviour of the solutions u R 

Here we consider a more general situation where u R is any solution of the problem (P) 
posed on f~ = B(R) and with f ( s ) =  h(s)exp (47zs2}, h ~ ,  satisfying the hypotheses 
listed in the statement of theorem B. The theorem shows that u R concentrates to the 
Dirac mass at the origin as R ~ 0. Also, the blow-up behaviour of u R helps us to find the 
'limiting equation' associated to the problem under consideration. The asymptotics 
developed in [6] will be crucial to the proof of the theorem. 

We will find it convenient to prove the ODE version of theorem D. This ODE  
version is stated as theorem D' below. First we indicate how the statements in theorem 
D transform to corresponding statements in theorem D'. We are considering the 
problem 

- A u = h ( u ) e x p { 4 r t u  2} in B(R), 

u > 0  in B(R), 

u = 0  on 8B(R). (P~) 

By Gidas-Ni-Nirenberg [14], every solution u R of (PR) is radial about the origin. 
Define for r e [0, R],  and any x ~ 8B(r), 

wR(r) =uR(x). 
Clearly, w R solves the following ODE: 

-- w" - l w ,  = h(w)exp  {4nw 2 } 
F 

w > O  

w'(O) = w(R) = O. 

in (0, R), 

in (0, R), 

(PR) 
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Let  7 = wR (0). Define y~(t) = wR(2 exp { - t/2}), t e N. Then, T O (V) = 2 log (2/R)will be 
the first zero of y~,. Also, y~ solves the following ODE:  

- y" = exp { -  t}h(y)exp {4roy 2} in (To(V), oo), 

y > 0 in (To(V), ~ ) ,  

y(oo) : 7, y'(oo) = 0. (P~) 

Assuming that a parameter  p as in s tatement  (ii) of the theorem exists, we let 
It = 2 log(2/p). Now, ? ~ oo if and only if R ~ 0  and we have assumed that  p ~ 0  as 
R ~ 0. Therefore,  we get that/1 --, oo as ? ~ oo. Henceforth,  we shall denote  simply by 
y the solution yy of  (Py). Due to the above  reduct ion arguments,  it is clear that  
statements (i) and (ii) in the theorem concerning the behaviour  of UR can be rewritten as 
the following statements concerning the behaviour  of y. 

Theorem D'. 

(a) y'(t) 2 dt--* as 7---, o% 
o(~) 

(b) There exists a parameter It dependin9 continuously on ?, It ~ oo as ? ~ ~ ,  such that, 
2 

Y2(it + t ) -  y 2 ( i t ) ~ l  l ~  ) 

uniformly (with respect to t) on compact subsets o f  ~. 
Therefore,  it is sufficient to prove theorem D'  in order  to prove the theorem D. We 

prove few simple lemmas from which theorem D'  will follow readily. Before doing so we 
make  some prel iminary observations. 

Let  To(?) denote  the first zero of the solution y of (P~.). Let k be large, but  fixed, 
positive integer. Define 

6 = k log?,  

" "+ l o  T,(?) = 9~?) g ~--~--) - 6. 

Fo r  easy notat ion,  in the sequel we let 9 =9(7), 9' = 9'(?), 9 ' ' =  9"(?), 9 ' ' ' =  9'"(?), 
T o = To(?), T 1 = TI(?)~ etc. Define 

9' z ( t )=7- -~ log ( l  +~exp{g- - t }  ) �9 

The analysis in [6] gives the following relations: 

y(t) <~ z(t), t >~ T1, (4.4) 

y'(t) >~ z'(t), t >. T 1, (4.5) 

Y(T1) =7  -- ~7 + 0 , (4.6) 

9(y (TO)=9-  2J + O(~---g ),  (4.7) 

Y'(T~)=2 [l  + O(bmg ) ] (4.8) 
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Equations (4.4) to (4.8) appear respectively as equations (4.4), (5.1), (7.8), (7.9) and (7.17) 
in [6]. 

Lemma 4.1. 

ts~P)iZ(t)--y(t)[--~O as 7-~oo. 

Proof. Let 

g' 
exp {0 - t}). /(t) = ~,log(1 + 

Then, from lemma 1 in [6], for t > T 1, 

O(y( t) ) >~ 9 - o' l(t). 

Applying 9-  t on either side of the above inequality and using Taylor's expansion of 
order two, we get, for some r e [9 - g'l(t), 9], 

y( t)  >~ g -  ' (g)  - ( g -  1)'(g)g'l(t) -~ (g -  t ,, 2) (~) (g')212(t). (4.9) 

Differentiating the identity 0-1(9(s)) = s successively twice, we get 

1 
(~176 #(s)' 

-o"(s) 
( e -  1)"(o(s)) = (0,(s))2. 

The above equations together with the facts 9' ~ 7 and 9" = 0(1) imply that 

(g-  t)"(~)(g')212(t) = O { l~ Y~ 

2 ~ ?3 ]" 

Hence, from (4.9) we get 

9' 

0 (log2,'~ = z(t) + \ ? j 

uniformly with respect to t >~ T~. Thus the lemma is proved. �9 

Lemma 4.2. 

sup I(z ' )2(t)-(y ' )Z(t) l -~O as y--}oo. 

Proof. Clearly z(oo) = 7. Also, it can be checked easily that z(t) satisfies the differential 
equation 

z"(t) = - exp {9 + 9'(z(t) - ?) - t}. (4.10) 
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N o w  we have 

z ' ( t )  = 
exp {9 - t} 

(1 + (9'/2) exp {g - t}) 

which implies 

z,(rl) 2 1 + g' 

From (4.4) we have, for all t ~> T1, 

y(t) <~ z(t). 
Let 

l ( t ) = ~ l o g ( l +  9' - -   exp{0 t}). 
Then for all large Y and t/> T1 we have 

g(z(t)) = O(Y -- l(t)) 

= 9(7) -- g'(y)l(t) + g"(012(t), 
Z 

(4.11) 

(4.12) 

for some ~ e [7 - l(t), Y]- Since g" is bounded  for large y, 

g(z ( t ) )=g-g ' [~ log (1  g' - + ~ e x p  {g t } ) J  

+O(!~  (4.13) 

Since g' ~ 7 and for t >i T 1, log (1 + (g'/2) exp {g - t}) = O(log ?), the above equat ion 
becomes 

O ( 1 ~  (4.14) g(z(t))=g + g'(z(t)-- y) + \ 72 ]. 

Since y(t) ~< z (t) for t/> T 1, and 9 is increasing in [ T l, oo), it follows from (4.14) and (4.10) 

f/ y'(t) = exp {g(y) - s} ds 

f t  ~ exp {g(z) - s} ds ~< 

"~-" e x p  exp{g + g'(z(s)- y ) -  s}ds 

[ { l ~  
= z'(t) 1 + 0 \ - - - ~ , ] j .  

Since from (4.5), y'(t) >7 z'(t) for all t >i T I, we get 

[ (l~ 
z'(t) ~ y'(t) ~ z'(t) 1 + 0 \ - - - ~ - ]  j 
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and hence for all t >~ T 1, 

[ (z')Z(t) <~ (y')Z(t) <~ (z')2(t) 1 + 0 \ ~z j 

which proves the lemma. 

L e m m a  4.3. 

fr ~  as ~ o e .  
1 

Proof .  By the previous lemma, it is enough to show 

fT ~ as 7---*~. 
l 

We have 

exp (0 - t} 
z ' ( t )  = 

1 + (0'/2) exp {9 - t} 

which implies z'(t) ~< 1 for all t s [ T  1, oe), for all large y. Hence 

(z')a (t) dt ~< z' (t) dt  
1 1 

= z(oe)--z(T1) 

2 
g, log(1 + 7 k) 

- - ,0  as ?- - ,oe .  �9 

Define T 2 < T 1 by y (T2)  = s o, where s o as in the hypotheses of the theorem is chosen as 
large as required. 

L e m m a  4.4. 

(y ' )2 ( t )d t -*  as 7 -~oo .  
2 

Proof .  F r o m  lemma 2 in [6], we have for all t e  IT2,  r l ] ,  

O(y(t)) - t <. O(y(t)) - 9 + ~ (Y - y(t)) - log - ~b(y). 

Then O " ( s ) =  O"(s)> 0 for all s e  [ y ( T 2 ) , y ( r l )  ]. Thus, O is convex in [ y ( T 2 ) , y ( r ~ )  ] 
and hence for  all t e [T2, T1 ], 

0(y(t))  - t <~ max {0(y(r~)), O(y(r2))}. 
We have by the hypothesis  (iv), for some t />  0 and all large 7, 

1 1 
g/(y(T2))  = O(So) - 0 + -~ 70 - -~ soo - log 

<<. - t l y .  
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Also, using the asymptotics (4.7) and (4.8) we get 

O(y(T 1 )) = g(y(Tt  )) - g + 2 (y -- y(T1 ))g' - log ~- 

~< - -  3 + 0 ( 1 ) .  

Therefore, for all t r [T2, Tt ], 

g(y(t)) - t <~ max { - r/y, - 3 + 0(1)} = - 3 + 0(1). 

Hence, for all t ~ [T  2, T t ] we have, if k is large enough 

y'(t) = y ' ( r  1) + exp {g(y(s)) - s} ds 

( T ,  - t ' ~  
~ y ' ( T , ) + O \  yk J 

g' 

Since y'(t) >t y ' (T  I ) for any t � 9  IT  2, T~], we get, for any t in this range, 

Y ' ( t )= '~ , [ l+O( f i -~g ) ]  " 

Therefore, for some ~ �9 I T  2, T 1 ], 

1 
T 2 = TI -- y,(~---j (Y(T2) - y ( T  t )) 

2 6  
+ [~, (1 + 0 ( ~ ) ) ] - ( S o - , + - ~ r + O ( ~ - - - g ) )  

= g - ~ - + - ~ - + l o g  + O  -g- 7 . 

Thus, 

fr"2 4 [  ( _ ~ ) ]  (y')2(t)dt = ~ 1 + 0 (T,  - T2) 

g, + 0  

1 
- -  a s  7 - *  o o .  
4n 

305 

(4.15) 

(4.16) 

This proves the lemma. �9 
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Lemma 4.5. 

fr '~(y')2(t)dt~O as 7--}m. 
o 

Proof. Let r 3 = max {To,41ogT). Note  that T 3 depends on 7. Also, since 

sup {f(y):0 ~< y ~ y(r2)  = So} = 0(1), 

we get, upon integrating the ODE - y" = exp { - t} f(y) successively twice between the 
limits t = T3 and t = T2 and using the concavity of y together with the fact T 3 >/4 log 7, 

y(T3)= y(T2)- Y'(T2)(T2- T3)+ O (-~) , (4.17) 

y'(T3) = y '(r2)  + 0 ~-~ . (4.18) 

We now distinguish two cases regarding the behaviour of To(7) as 7 ~ m. 

Case (i). For some subsequence 7k--* m, T O (Tk) > 4 log 7k: Clearly in this case, T 3 = T O 
and hence from (4.18) and the fact that y' is decreasing on [To, D) we get, 
y'(t) = (2/0') [1 + O (~2/0) ] for all t e  [T  o, r2] .  Hence 

T~(y,)2(t) dt 4 [I+OC___~)j(T2_To) 
T o  = 

= 

Since 0 - (70 ' / 2 )=  O(7 ~) for some Be [0, 2), (4.16) implies that r 2 = O(7~). Therefore, 
the last inequality implies that 

fr ~ as 7k-*m 
0 

and so the lemma is true in this case. 

Case (ii). To(7)~< 41ogTfor all large 7: In this case, T 3 =41og7 for all large 7. Hence 
(4.17) gives 

Y(T3)=s~ . ~ / _ J .  _ _ ~ _ + L ~  + ' g ' . s  g' l o g ( 2  ) / ' "  

--41og7 + 0 ( - ~ ) )  

#, g- -  + l o g  + 0  . 

Since by assumption (iv) in theorem B, g -(g '7/2) + log (g'/2) >/(1 + O) log 7 for some 
0 > - 1 and all large 7, the above equation gives 

y(t)=o(l~ 7) forall  t~[To, T3]. 
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Now, for any te  [T  o, T3], 

ff3 y'(t)=y'(r3)+ f(y)exp{-s}ds. 

Since f(0) = 0, for any se  [T o, r3] ,  f(y(s)) = O(y(s)) = O (log?/?). Therefore, the last 
equation implies that for all t e  [To, T3], 

y'(t)=y'(Ts)+O(1-~) 

__o(lO+,). 
Therefore, since To/> 0 for all large ? (in fact, T O ~ oe as ? ~ or), 

fT "~ {l~ ?'~ o (Y')2(t)dt <~0 \ ?2 ] T2" 

Since T 2 = 0(? p) for some fle [0, 2), the above inequaliy implies 

fr ~ as 7 ~  
o 

and so the lemma is true in this case also. This proves the lemma. �9 

Proof of theorem D'. (a) follows from lemmas 4.3-4.5. In view oflemma 4.1, (b) is proved 
if we show that there exists a parameter # depending continuously on ?, # ~  ~ as 
? ~  0% such that a s / ~  

z2 (#+ t )_ z 2 (p ) l l og (1  2 
+ e x p { - t } )  

uniformly (with respect to t) on compact subsets of N. 
We take # = ff + log (9'/2). Then, 

z2(#+t)--z2(P)=(?--~log(1 + exp {-- t}))2 -- (?  -- ~ , l og2 )  2 

# ' l~  l + e x p { - t  + 0  

2 

uniformly (with respect to t) on compact subsets of N as #-~ oe. This proves (b) and 
hence the theorem. �9 

5. Generalizations 

In this section we generalize theorems A and B by replacing - A in problem (P) by the 
n-Laplacian - A. in ~", n/> 2. Let ~ .  denote the subset of C 1 (R+, R+ ) consisting of 
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functions h(s) which vanish only at s = 0 and which satisfy the following growth 
conditions: 

For every ~ > 0, 

lim h(s) exp {~s "/("- t)} = oo, 
s ~ o t J  

lim h(s) exp { - (3s "/("- t)} = O. 

We call a func t ionf  e C 1 (~+, R+ ) a function of critical growth in R" if f (s) = h(s)s"- 2 
exp {e.s ("/("-1))} with h ~ .  and e. .,.,1(~-1) = ,,~,, , a~. = volume (S"- 1). Consider the follow- 
ing problem wi thf  having critical growth in N" and f~ a smooth bounded domain in N": 

- A , u = f ( u )  in f~, 

u > O  in f~, 

u = 0 on Off. (P.) 

The associated energy functional J . :  W~'~(f~) ~ R is given by 

where F denotes the primitive o f f .  

5.1 Generalization of  theorem A 

Let 0 < l < R. Define the Moser functions 

[log(R/l)]~_~/" O~<lxl~<l, 

1 log(R/lx[)  14  Ix] ~ R, 
ml, e(x ) = wl/-- ~ [log(R/l) ]t/. 

0 Ixl~> R. 

Let Xoefl  and R < d(xo, Sfl ). Define m~,R,~o(X ) = ml, R ( x -  Xo). We can now state the 
following. 

Theorem A'. Le t  f ( s )  = h(s)s"- 2 exp {a.s ("/("- 1))}, s >~ O, h ~ ~ .  and h satisfies the 
followin 9 hypothesis: Ih'(t)l ~ ch(t)t (((1/("-1))-~) and F(t) <<. cf( t) t  ((~176 for 
r/e(0, 1/ (n - 1))],for some c > 0 and all large t. 

Let  R depend on I so that liml.0 (log ( 2/ R ) / log (R/l) ) = O. Then there exists a sequence 
Pl -* 1 as l ~ 0 such that 

(a) {plmt, e,~o}l>o is a Palais-Smale sequence for J ,  as l ~ 0 ,  
(b) J, fai ls  to satisfy the Palais-Smale condition along the above sequence at the energy 

levels k/n, k any positive integer. 

Proof. Except for some technical modifications, same as that of theorem A. 

5.2 Generalization of  Theorem B 

Let x o e f~ and R > 0 be small enough so that B (x o, R) = {x:lx - xol < R } c ~. We now 
state the following generalization of theorem B. 
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Theorem B'. Let h e ~ .  and f (s) = h(s)s"- z exp {e.s ~"/(~- 1)) }, s >1 O, satisfies the follow- 
ing hypothesis: There exists s o > 0 such that 

(i) h(s)s"- 1 ~ oo as s -~ oo, 
(ii) g(s) = log f (s)  is C a and convex for s >1 s o, 

(iii) f (s) is strictly increasing for s >1 So, 

(iv) / / - - ~  \ ~ i ) S g , ( s ) ) + ( n _ l ) l o g ( ( n _ n  l )g , ( s ) )>~(n_ l+O) log  s for all 
\ \ - - i  i k " -  i 

s >~ s o and some 0 > 1 - n, 

�9 ( ) (v) h m s u P s ~  g ( s ) -  - ~ -  sg'(s) s -~ = O(1)for some Be [O,(n/(n- 1))), 

sO r 1)(s ) 
(vi) lim sup ,--::---, , k = 0, 1, exist and are different from 0 (here gtk) denotes the k-th 

~ ~ g ~ ' ( s )  

derivative of g). 

Let u R denote the solution to problem (Pn) with the above choice of f which is 
obtained in [1]. Let fir denote the extension of  u R obtained by setting f i r - -0  in 
f~\B(x o, R ). Then 

(a)  {UR}g>o as R ~ 0  are Palais-Smale sequences for J. ,  
(b) J. does not satisfy the P alais-Smale condition at the energy levels k/n, k any positive 

integer. 

Proof. Except for some technical modifications, same as that of theorem B. 

6. The Neumann case 

If we consider the problem (Pn) with the Dirichlet boundary condition replaced by the 
homogeneous Neumann condition, the associated energy functional J~: Wl'n(f2)~ 
will be given again by 

J n ( u ) - l f n ] V u l n d x - f ~  F ( u ) d x ' - n  

If f satisfies the assumptions of either theorem A' or theorem B', it can be shown that J ,  
fails to satisfy the Palais-Smale condition at the energy levels k/2n, k any positive 
integer. The proof is done first for the case of half-space R~, where one uses the results 
from Dirichlet case to show that the associated energy functional fails to satisfy the 
Palais-Smale condition at the energy levels k/2n, k any positive integer. The proof 
for a general domain f~ with smooth boundary is accompolished by the standard 
localization argument involving partition of unity. 

7. Concluding remarks 

1. Analogues of theorems A and B can be shown to hold even when the Palais-Smale 
sequences considered in w and w 3 approach a boundary point of ~ and/or there are 
multiple concentrations at a single point in fl or boundary of f~. In each of these cases 
Palais-Smale still fails at the energy levels k/2, k any positive integer. 
2. If the non-l ineari tyf  grows like exp {bs 2 } for some b > 0 as s ~  oo similar argu- 
ments as in theorems A and B will show that the corresponding energy functional 
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will fail to satisfy the Palais-Smale condition at the energy levels 2kMb, k any 
positive integer. 
3. Blow-up result similar to the one presented in part (ii) of theorem D were first 
obtained in [20] for the maximizing sequence for the Trudinger imbedding. 
4. The blow-up result in part (ii) of theorem D extends the results of [17, 18], where h is 
assumed to have atmost polynomial growth. Also, we have greatly simplified the proof 
given in these references. 
5. In fact, the blow-up analysis given here can be easily seen to hold even when the 
non-linearityf grows like exp { :}  as s -~ oo for any ~/> 1. 
6. Lemmas 4.1 and 4.2 are generalizations of the corresponding results in Volkmer 
[23]. 

8. Appendix 

Proof of Lemma 2.3. Let ~ ( 0 ,  1) be fixed. For 6 > 0 
T(e, n) =(1 - e)t, + e[,. Then, for any 6 > 0, and all large n, 

f T(~'n) f (v.)v. exp { -- t} dt 

=f;t~'")h(v~)v'exp{ p:(t-f')2~Z~ t}dt  

<<. h(v,)v, exp {f,(1 - e)(t - ~,) - t} dt 

~f ""' h(v,) exp {p:,(1 - ~ ) ( t -  f.) - 6 ~  + 6: .}  t dt 

T(~,n) 

<<. h(v~)exp{-~v2n}v~exp{fn(1-e)(l + 8 ) ( t - f ~ ) - t } d t  

f: 
( ~ , n )  

<~ h(v,) exp { - bye} v,, exp {p2n(1 - e)(1 + 8) - 1)t} dr. 

Let M be an upper hound for h(vn)exp { - 6v2n}. 
We choose 6 > 0 small enough so that for some ~/> 0 and all large n, 

( l - e ) ( 1  + 8 ) f  n -  l <~-rl. 

Now (8.1) implies, with r/and M chosen as above, 

ff ~'")f(v~)v, exp { -- t} dt 

p.M 
f Tr texp { --t/t} dt 

~< x / ~ ( t ,  - tn) 1/2 d?. 

= O(ti~/:). 

denote 6=614~. Define 

(8.1) 

(8.2) 
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Integrating by parts, we obtain for some v > O, 

~,.) h(v.)v, exp [ t . - f .  

= h(v.)v. \ t . -  ~ .  
(~,n) 

- t }d t  

(. t . - [ .  

,. - 2 2p2 
- f'r(..., { -h(v . )v . (2Pt~(~t : ' )  1 ) - ( t . - , . )  )1 
+ (h(v.)v.) \ t. - r. 1 [ t. - f. 

= 2P.--~ -~- 1 exph(o")5" {p~(t. - f . ) - t . }  + O(exp { -  vt.}) 

h(v.)v.exp = t dt 
(~,n) tn - -  t n 

+ 0 (h(v . )v . ) 'exp~p~(t -~)  t dt . 
( , , .1  ( t. - -  t. 

By the hypothesis on h we get, for some r/e (0, 1], for some c > 0 and all large t, 

I h'(v.)lv. <~ ch(v.)vl.-%. 

(t -f.~'l-~'/2 
<<. c \ 4n ] h(v.)v.. 

Therefore, for some positive numbers cl, c 2 and ca, 

<. { Ih ' (v . )v ' . l v .+h(v . ) lv ' l }exp~P~25 ) t dt 
(~n) ( tn - -  tn 

_ cl {Ih '(v .) lv .+h(v.)}exp( t dt 
( t .  - f . ) ' ~  ~.,.) 

~ ~.,.)h(v.)v.exp - t  dt 

c3 h(v.)v.exp ( ~--_t= . 
+ t. -- t-. I...) 

Since by lemma 2.2, p z_, 1 as n--* oo, (2.13) implies 

fo "f(v.) exp { --t} = 0(1). dt 
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(8.3) 

(8.4) 
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Therefore (8.4) gives 

" p (t fn)2 _ [ n (~..)](h(v.)v.)'lexp ( t dt=O(t~"/2). 

Hence, (8.3) implies 

'f'r" f (v . )v .exp { -  t} dt = 
f (~ . )6 . exp  { in} 

~,.) 2p2. - 1 ~- 0 (t;"/2). 

Combining (8.2) with the last equation, we get 

fi"f(o.)v, exp { - t} dt --- f(Vn)Vn exp { -- tn} 2p2. -- 1 + 0 (t~"/2). 

The lemma now follows from (2.13) and the fact that  p2.o 1 as n o  ~ .  

Proof of Lemma 2.5. F rom (2.6), it is sufficient to show that  

d r .  2 
In= ~ ~ f ( v n ) e x p { - - s } d s - ~ -  ~ d t o 0  

as n - ~ .  

We split 

with 

Using the explicit form of v., we find that  

dr .  p .  

d t  x / ~  

O. 

(tn - -  t n ) -  1/2 

0 

0~<t<f., 

tn < t < tn, 

t . < t .  

I. = A. + B. + C. 

(8.5) 

(8.6) 

[] 

t. P-P-- (t. - ~.)- 1/2 
B . =  f ( v . ) e x p { - s } d s  x/ 4/-~ 

fTIf7 as C. = f(v.) exp { - s} 

We show that  A., B. and C. tend to zero as n o ~ .  This we do in the following series of 
claims. Let ~ > 0 be arbitrary.  Define T(~, n) = (1 - e ) t .  + el.. 

Claim 1. There exists an q > 0 such that  for any t ~ [f., T(e, n)], as n o ~ ,  

ff ~""lf(v.) exp { - s} = O((t. - f . ) ( 1  + t )exp  { - t}) ds 1/2 

+ O (exp { - r/(t. - t-n)1/2 }) .  (8.7) 
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Proof of claim. 

Since h(0)=  0 and v.(s)~< 1 in [0 , ( t~ -  f .)u2],  we have h(v.(s))=O(v.(s)) as n ~  o% 
uniformly for s e [0, (t. - ~)1/2]. Let 6 > 0 and c a > 0 be such that h(t) <~ c a exp {4~z6t 2 } 
for all t/> 0. Also, we may  choose 6 small enough so that  the following inequality holds 
for all s <~ T(e, n) and some q > 0: 

(1 + 6)p2.(s - g.)2(t. - [.)- x _ s ~ - qs. 

Therefore, for t e [f., T(e, n)], all large n and some positive constant  c, 

~t T(e'n) I t  (tn -/'n}ln f(v.)  exp { - s} ds = f(v.)  exp { - s} ds 

f 
T(e,n) 

+ f ( v . ) e x p { - s } d s  
d ( t .  - ~.),/2 

ft 
(t" _ f n )  1/2 

~< c v.(s) exp { - s} ds 

{ (s- 2 } 
+ c a exp (1+6 )p~  ~2_-~-~ s ds 

d(t. - ~- ),/2 

_f.)i/2 sexp{-s}ds 

I 
r(~,n) 

+ c~ exp { - tls} ds 
d ( t .  - f.)1:2 

= O((t. - f~)- 1/2(1 + t ) e x p { -  t}) 

+ O(exp  {-~/( t .  - f.)u2}). 

This proves the claim. 

Claim 2. For  all large enough n, 

fi(~,.)f (v.)exp { _  s} dse[!  l - e ) ( t . -  f.)- l/2 (l + e ) ( t . -  [.)- w2 ] 
4v%. ' _r 

Proof of claim. From lemma 2.3, we may obtain the following two relations for all large n: 

f i " f ( v . ) v . e x p { _ s } d s e [  l - e ,  l + e ] ,  ~ J (8.8) 

f ( g . ) l S . e x p { _ t . } e [ 1 - e  1 + e  1 
8 ~ '  88 [" (8.9) 

We have, for all large n, 

(.,.f(v.) exp { - s} ds ~< jr(. , . f(v.)v ~ exp { - s} ds 

l + e  ~< 
8rw.(T(e, n)) 

(1 + e)(t. -- f , ) -  1/2 

4x/~(1  - e)p. 
(8.10) 
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f (v . )v ,  exp { - -  s} ds = f (v . )v ,  exp { - -  s} ds 

I T(~,n) 
+ f (v . )v .exp  { -- s} ds. 

d ( t .  - ~. )  ~n 

Since by (2.13)f(v.)v. exp { -  t} ~ L 1 ((0, ~ ) )  andf(v.)v.--* 0 as n ~ ~ pointwise in [~., 
(t. - ~.)1/2], by domina ted  convergence theorem 

( t - -  f - )  j / 2  

. f ( v . ) v . exp{ - s }ds - -*O as n ~ .  

By the reasoning that  led to the second 'order  term' in claim 1, we can find an q > 0 such 
that  

f rr f (v , )v ,  exp { -  s} ds = O(exp { -  q(t. - f.)1/2}). 
( t .  - & . ) ' n  

Therefore,  

ff (~")f(v.)v.exp { -  s} d s ~ O  as n ~ oo. 
n 

Now, since 

'f~i ~ 1 f (v . )v ,  exp { - s} ds ~ ~ as n --* oo, 

we obtain for all large n, 

f( f(v.)v.exp{-s}ds>~ 1 - ~  
(~,.) 81"c 

Therefore,  

f (v . )  exp { - s} ds >/ f(v,,) v. exp { - s } ds 
(~,n) Pn (~,.) 

(1 - e)(t .  - ~. ) -  1/2 

>~ 4 x /~  p . 

Combining (8.10) and (8.11) we prove the claim. 

Claim 3. 

lim A. = O. 
n ~ o o  

Proof of Claim. Sincef(O) = O, it follows that  

A. <<. [ f,. + f  (v.)exp { - s } ds 2. 

(8.11) 
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Claims 1 and 2 imply that 

f l f (v,) exp { - s} ds = O ( ( tn -- tn)-  U2). 

Since by lemma 2.3, 

f f f ( v , )  exp { - s} =f03,) exp { - t,} = ((t, - f,) ds 0 1 / 2 ) ,  

n 

it follows that 

A.<~ k t . -  f . /  

Since (~J(t, - f,)) --* 0 by assumption, the claim follows. �9 

Claim 4. 

lim B, = O. 
n ~ c o  

Proof of claim. We split 

B.=B~+82. 
with 

1= f,~(~'") { _  s} ds ___~( tn  __ fn)- l/2 2 B. [ f f f ( v . ) e x p  dt. 

Now, 

f f  P" f(v,)  exp { - s} ds - - - -~( t ,  - f ,)-  1/2 
~/4rc 

= F'"f(v,)  exp { - s} ds +f(~,) exp { -  t,} - ~ (t, - ~,)- it2. (8.12) 
j ,  x/4r~ 

From (8.9) we obtain, 

P, - - a/2 f(~,) exp { - t,} - ~ (t, - t,) 
x/4n 

eF( tn - -~)  -1/2 2 (t.--tn) -1/2 2p : ) ] .  (8.13) 
L 4,/~p. (1-~-2p.). ~ ( l+~- 

Therefore, using claims 1 and 2 we get from (8.12) 

f f f (v") exp { - s} ds - - ~  (t" - ~")-1/2 

+ O((t, - f ,)-  1/2(1 + t)exp { -  t}) 

+ o (exp { - ,7(t. - f . ) -  1~2}). 



316 

Therefore, 

Hence, 

Adimurthi and S Prashanth 

f++,t. ,., f /1++ ;)  BI. ~< 2 o,. 4x /~p .  2 max (1 - e - p2n)2, \ ' i - ~  8 - -  p2n dt 

(F +' ) + 0 ( t . - f . ) - l ( l + t ) 2 e x p { - 2 t } d t  

+ O ( f ; i + ' " ) e x p { - 2 t l ( t . - f . ) ' / 2 } d t )  

= 2rcp~ max ( 1 - e - O . ) , ~ i - ~ _  -p2o + O ( ( t . - f . ) - l ) .  

~ m a x [  2 /" 2e "~2 lim sup B1. ~< 

2e 2 
- rt(1 - e)" (8 .14 )  

From claim 2 and the fact f ( ~ . ) e x p { - t . }  =O(( t . -~ . ) -1 /2) ,  it follows that  for 
t ~ [T(e, n), t ,] ,  

f (v.) e• { - s } as - ~ (t. - f . )-  1/2 = o ((t. - ~.)- 1). 
x/  4 rc 

Therefore, 

(f; ) B~ = 0 ( t .  - f . ) - i  dt 
(~,.) 

= o (~). (8.15) 

Since e > 0 was arbitrary, combining (8.14) and (8.15) we obtain the claim. II 

Claim 5. 

lim C. = O. 
t l ~ o o  

Proof of  claim. We have 

c .  =f(~.)2 exp { - 2t} dt 
n 

1 
= ~ (f(0.)  exp { - t.}) 2 

= o ( ( t . -  ~ . ) - ' )  

which proves the claim. 

Claims 3, 4 and 5 imply that  lim.+o~ I .  =0 ,  which proves the lemma. 
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