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Introduction

The mechanics of turning alpine skis has been an
interesting topic of sports engineering over the past

decade. In Japan, for example, much investigation was
carried out during the 1950s, with many results
published in a book edited by the Society of Ski
Science (1971). Renshaw and Mote (1989) subse-
quently used experimental two-dimensional ice
cutting data by Lieu and Mote (1984) to analyze a
turning ski in which hypothetical thrust was consid-
ered; while Hirano and Tada (1996) numerically
simulated alpine ski tracks of a ski–skier system in
which the centripetal force necessary for turning
motion was considered to be the component trans-
verse to the velocity vector of the impacting force for
soft snow, or that of the oblique cutting force for
compact snow. The transverse component is obtained
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Abstract

Time differences between medalists at Olympic or World Cup alpine ski races are often less than
0.01 s. One factor that could affect these small differences is the line taken between the numerous
gates passed through while speeding down the ski slope. The determination of the ‘quickest line’
is therefore critical to winning races. In this study the quickest lines are calculated by direct
optimal control theory which converts an optimal control problem into a parameter optimization
problem that is solved using a nonlinear programming method. Specifically, the problem is
described in terms of an objective function in which state and control variables are implicitly
involved. The objective function is the time between the starting point and finishing gate, while
state variables are positions of the ski–skier systems on a ski slope, rotational angles of skis, veloc-
ities, and rotational velocity at a discrete time, i.e., a node. The control variable at each node is the
skier-controlled edging angle between the ski sole and snow surface. Equations of motion of the
ski–skier system on a ski slope are numerically satisfied at the midpoint between neighbouring
nodes, and the original problem is converted into a nonlinear programming problem with
equality and inequality constraints. The problem is solved by the sequential quadratic program-
ming method in which numerical calculations are carried out using the MATLAB Optimization
Toolbox. Numerical calculations are presented to determine the quickest lines of an uphill and a
downhill ski turn with a starting point, first gate, and second gate (finish line) having been suc-
cessfully carried out. The quickest line through four gates could not be calculated due to
numerical difficulty. Instead, the descent line was respectively calculated for an uphill and
downhill turn and simply added, giving a resultant time that represents an upper bound.
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by placing the ski’s longitudinal axis inclined away
from the velocity vector and simultaneously edging
the ski into the snow. Tada and Hirano (2002)
performed oblique snow cutting experiments in a low-
temperature room, deriving the cutting force
equations by applying multiple regression analysis.
The cutting forces were considered functions of the
cutting depth which was constant in the experiments.
In reality, however, cutting depth is not constant
during turning on a ski slope and should be deter-
mined considering the equilibrium of forces normal to
the snow surface, including the gravitational force,
snow reaction force, and the vertical component of the
cutting force which is a function of the edging angle
between the ski sole and snow surface. The cutting
forces were revised considering equilibrium under
specific conditions and represented in graphical form
(Tada and Hirano, 2002).

Optimal control theory is one method for deter-
mining the quickest descent line, i.e., the line in which
the least amount of time is expended between the
starting and finishing points. Zhang et al. (1995) inves-
tigated bobsled optimal control by developing
minimum-time and smooth-steering algorithms based
on the so-called indirect method. This method utilizes
the calculus of variations in which the objective
function is total racing time for a given sled/track and
the control variable is steering angle. Seo et al. (2004)
utilized the direct method to maximize the flight
distance in V-style ski jumping flight, converting their
optimal control problem into a parameter optimiza-
tion problem that is solved using a nonlinear
programming method (sequential unconstrained min-
imization techniques (SUMT)). Flight distance,
forward lean, and ski-opening angle were respectively
the objective function and control variables.

This study applies optimal control theory in con-
junction with empirical snow cutting force equations
to determine the quickest descent lines between ski
slope gates. The direct method is used to convert the
problem into a parameter optimization problem
which is then solved by a nonlinear programming
method, i.e., sequential quadratic programming
(SQP). The objective function and control variable are
the time between the starting point and finishing gate
and the angle between the ski sole and snow surface,
or edging angle, respectively. MATLAB is used for

calculations. Results provided here are the quickest
descent lines between the starting point, first gate, and
second (finishing) gate for an uphill and downhill turn.

Compact snow cutting force and equations
of motion

A ski moving down an alpine ski slope (Fig. 1) has
snow cutting forces and a component of gravitational
force that is parallel to the slope. It is these forces
which determine the dynamic motion of the ski–skier
system. Oblique snow cutting forces were previously
measured by Tada and Hirano (2002) in a low-tem-
perature room. They have a normal, inverse
horizontal, and transverse component with respect to
ski velocity V, denoted as FN, FH, and FT , respectively
(Fig. 2). FT corresponds to the centripetal force of the
system which makes the turning motion possible.
Angles γ and α are called the attack and edging angle,
respectively. Positive sign conventions for the
notation in Fig. 2 are as follows: FT, π/2 counter
clockwise from velocity vector; FH, opposite to the
velocity vector; RT, in the y′ direction; RL, opposite to
the x′ direction; γ, clockwise from the x′ axis; and α,
clockwise viewed from the tip of the ski. The snow
cutting depth is denoted as dc. Since the measured
forces are proportional to cutting width and depth,
the forces are divided by cutting width and depth and
expressed as pressures PH, PN and PT , i.e.,

PH = e5.212(sin⎪γ⎪)–0.2371(sin⎪α⎪)0.2366(tan⎪α⎪)–0.0153

(kN m–2) (1)

PN = e20.84(sin⎪γ⎪)–0.8833⎪α⎪–3.993(sin⎪α⎪)3.180

(kN m–2) (2)

PT = ( )e5.118(tan⎪γ⎪)–0.6279(tan⎪α⎪)0.1610

(kN m–2) (3)

where the values of γ and α are in degrees. Equations
(1)–(3) were obtained by applying multiple regression
analysis. Although cutting forces were previously
determined at constant cutting depth (Tada and
Hirano, 2002), since this depth is a function of edging

γ
⎪γ⎪
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angle, the forces were revised versus edging angle con-
sidering the equilibrium of forces normal to the snow
surface under certain conditions; mass of the system,
80 kg; ski slope angle ψ, 15° ; ski length � = 1.8 m;
and spring constant of snow per unit area kG,
3.186 × 107 N m–3. Here we determine transverse and
inverse horizontal forces FT* and FH* in the ski moving
direction per unit ski length using

FT* = 278( )sin(2γ)tanα (Ν m–1) (4)

FH* = 500sinγ tanα (Ν m–1) (5)

Equation (4) indicates that FT* has a maximum value
when attack angle γ = 45°, and that FT* and FH* are
zero when the edging angle α = 0° and infinite when
α = 90°. While these expressions are indeed simplis-

γ
⎪γ⎪

tic, we use them for the sake of convenience because
exact expressions are beyond the scope of this study.

The attack angle along the ski length φr is not
constant due to the rotation of a ski around the center
of the mass of the ski–skier system (Fig. 2), and is
expressed as

φr = tan–1{ } (6)

where r is the coordinate along the x′ ski axis, and ω is
the angular velocity of the system. If the angle
between the ski axis and a horizontal line on a ski slope
is denoted by β (Fig. 1), then ω = dβ/dt.

Since rotation should be taken into account in
equations (4) and (5), γ should be replaced by φr.
However, the resultant resistance forces acting on a ski
are for the sake of convenience simply denoted by the
product of the ski length and FT* and FH*, respectively.
The rotational moment around the centre of the
gravity of the system for the front and rear part of the
ski can now be calculated, denoted as MF and MR. This
takes into account the non-uniformity of the attack
angle along the ski length, i.e.,

MF = –∫
0

rF
r (FT* cos φ r + FH* sinφ r)dr (7)

MR = ∫
0

rR
r (FT* cos φ r + FH* sinφ r)dr (8)

where rF and rR are the front and rear length of the ski.
Integration is performed numerically using Simpson’s
rule.

The equations of motion of the ski–skier system on
a ski slope are expressed by taking the steepest and
horizontal directions of a ski slope as x and y, respec-
tively (Fig. 1), i.e.,

m( ) = –RT cos β – RL sin β + mg sin ψ (9a)

m( ) = RT sin β – RL cos β (9b)

I ( ) = MF + MR (9c)

where m, ψ, and I are the system mass, slope angle,
and moment of inertia, respectively. RT and RL are
components of the resultant force in the direction

d 2β
dt 2

d 2y
dt 2

d 2x
dt 2

(Vsinγ + ωr)
(Vcos γ)
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Figure 1 Employed coordinate axes representing a ski slope.
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Figure 2 (a) Ski attack angle γ and system velocity V and (b) cross
section of a ski with edging angle α on a snow surface.
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transverse and parallel to the longitudinal ski axis, and
are calculated using equations (4) and (5).

Optimal control problem

The proposed problem is solved by applying optimal
control theory. Optimal control methods are roughly
separated into two groups; direct and indirect
methods. The indirect method is based on variational
techniques which are difficult to use when considering
various constraints, while the direct method converts
the original optimal control problems into a mathe-
matical programming problem. Here, the direct
method is used to determine the quickest descent line
between gates on a ski slope. The converted problems
are then solved by sequential quadratic programming
using the MATLAB Optimization Toolbox software
(Coleman et al., 1999).

Optimal control problems are characterized by
state variables X(t) and control variables U(t) that are
vectors in general and continuous functions of time t.
System dynamics are expressed as a state equation, i.e.,

= F[X(t), U(t)] (10)

Initial and final times are denoted by t0(=0) and tf . The
interval is discretized by dividing by N. That is, nodes
ti(i = 0, ... ,N) are obtained, where t0 = 0 and tN = tf.
At each node the state and control variables are dis-
cretized as follows:

Xi = X(ti) (11)

Ui = U(ti) (12)

Following Tsuchiya and Suzuki (1998), state variables
between two consecutive nodes are approximated by
two linear functions with respect to time by taking
into account equation (10) as shown in Fig. 3. Since
the state variables must be continuous at the midpoint
of two consecutive nodes, the following equations
must be satisfied at the mid point.

∆i = {Xi + F(Xi , Ui)( )}
– {Xi+1 – F(Xi+1, Ui+1)( )} = 0 (13)

kitf

2

kitf

2

dX(t)
dt

where

ki = (14)

In the present problem, the final time tf is the
objective function to be minimized under the equality
constraints given by equation (13). The original
problem is now converted into

Minimize tf

subject to ∆i = 0(i = 0, 1, ... , N–1) (15)

Quickest line between gates

The second-order differential equations in equation
(9) can be rewritten using six first-order differential
equations, thereby allowing use of the present optimal
control method, i.e.,

= u (16a)

= v (16b)

= w (16c)

= = f4 (16d)
(–RT cos β – RL sin β + mg sin ψ)

m
du
dt

dβ
dt

dy
dt

dx
dt

(ti+1 – ti)
tf
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Figure 3 Discrete state variables.
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= = f5 (16e)

= = f6 (16f)

State variables are x, y, β, u, v, and ω while the
control variable is α. As mentioned, the starting
point and first and second gates are considered. The
objective function is the terminal time tf. Time is
expressed as

tf = t01 + t12 (17)

where t01 and t12 are times between the starting point
and the first gate, and the first and second gate,
respectively. Both t01 and t12 are divided by N = 10
and the state and control variables are discretized. The
state variables are made to be continuous at the
midpoint of two adjacent nodes. The following are 60
continuity conditions between the starting point and
the first gate.

{x0 + u0(0.05t01)} – {x1 – u1(0.05t01)} = 0

{x1 + u1(0.05t01)} – {x2 – u2(0.05t01)} = 0

.

.

.

.

.

{ β9 + ω9(0.05t01)} – {β10 – ω10(0.05t01)} = 0

{u0 + (f4)0(0.05t01)} – {u1 – (f4)1(0.05t01)} = 0

{u1 + (f4)1(0.05t01)} – {u2 – (f4)2(0.05t01)} = 0

.

.

.

.

.

{ω9 + (f6)9(0.05t01)} – {ω10 – (f6 )10(0.05t01)} = 0 (18)

The subscripts of the state variables and the functions
f4, f5 and f6 denote the node number. Between the first
and second gates there are 60 more equality con-
straints.

(MF + MR)
I

dω
dt

(RT sin β – RL cos β)
m

dv
dt

The conditions that a ski racer must pass between
gates on a ski slope can be expressed as follows for the
case of an uphill turn (turning away from the fall-line
and decreasing the angle of descent) when the first
gate is located at x = 20 m, y = 20 m and the second
at x = 40 m, y = 60 m:

y10 = –x10 + 40 (16 ≤ x10 ≤ 24) (19a)

y20 = –x20 + 100 (36 ≤ x20 ≤ 44) (19b)

Equations (19) indicate that the state variables (x10, y10)
and (x20, y20) are on the lines that connect the two
poles of each gate. Both gates are open in the direction
of 225° clockwise from the y-axis and are about 11.3 m
wide. To perform a regular turning motion, other con-
straints are also imposed on the attack angle γ and
edging angle α. These constraints are 0 < α < π/2 and
γ > 0 for the uphill turn.

For the case of a downhill turn (turning toward the
fall-line and increasing the angle of descent), the
starting point is taken at the calculated terminal point
of the uphill turn. The locations of the first and
second gate are x = 80 m, y = 60 m, and x = 100 m,
y = 30 m, respectively. The conditions that a ski racer
must pass through the gates are as follows.

y10 = x10 – 20 (76 ≤ x10 ≤ 84) (20a)

y20 = x20 – 70 (96 ≤ x20 ≤ 104) (20b)

The conditions for regular turning motion are
–π/2 < α < 0 and γ < 0.

Numerical results

Uphill turn
Calculations for the quickest line were made under the
following conditions: starting point at x = 0 m and
y = 0 m, initial velocity u0 = 6 m s–1, v0 = 6 m s–1;
initial angle between ski’s longitudinal axis x′ and y
axis β0 = 30°, initial angular velocity ω0 =
–0.01 rad s–1, system mass m = 80 kg, moment of
inertia I = 2.5 kg m2, ski length � = 1.8 m, boot
location η = (rF /rR) = 0.53, and slope angle ψ = 15°. To
perform the numerical calculation, the initial values of
state variables and the control variable (edging angle)
at every node must be guessed, with results being very
sensitive to guessed values. Also times t01 and t12 must
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be initially guessed. Accordingly, insight is needed
regarding the occurring phenomena, with inappropri-
ate values yielding either late convergence or
divergence.

Figure 4a shows the initial discrete values for the
state variables x and y (small circles). The other four
state variables and control variable are also initially
guessed. These values are those that successfully
converged for the case of η = 0.505. For a boot
location of η = 0.505, convergence was obtained for
the uphill case, but not for the downhill case. For this
reason only the results for η = 0.53 are presented (con-
vergence in both cases). The indicated short straight
lines are the first and second gates. Figure 4b shows
the resultant quickest descent line, where the differ-
ence between the initial and resultant variables for x
and y are small because of good initially guessed
values. Time t01 between the starting point and the
first gate is calculated as 3.37 s, while time t12 between
the first and second gates is 6.34 s (total time
tf = 9.71 s). Please note the time difference between
two adjacent dots before the first gate is 0.337 s and
that after the gate is 0.634 s. Also note that the
quickest line obtained does not look like a brachis-
tochrone trajectory because of the snow cutting
forces.

Downhill turn
The starting point for this case is taken at the terminal
point of the previous uphill turn case, i.e., x = 44 m,
y = 56 m. Figure 5a shows the considered gates. The
initial conditions used are the terminal state variables
(u0 = 1.42 m s–1, v0 = 3.41 m s–1) of the uphill turn
except the angle β and ω. The initial values of β and ω
were taken as 48° and 0.2 rad s–1. The conditions for
the ski itself and the ski–slope are the same as for the
uphill turn. The initial state values guessed at every
node for the iterative calculation were obtained by
trial and error methods, and the initially assumed
values for x and y are indicated (small circles).

For this case convergence occurred, with the
resultant quickest line being shown in Fig. 5b. Time
t01 between starting point and first gate is calculated as
5.02 s, while time t12 between the first and second gate
is 4.12 s (total time tf = 9.15 s).

Combination of uphill and downhill turn
Four gates are considered having the same locations as
the uphill and downhill cases as shown in Fig. 6.
Although various initial values were guessed and tried
for this gate placement, numerical convergence was
not obtained. The upper bound for this problem was
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Figure 4 (a) Initial values for state variables x and y on a ski slope for uphill turn (b) Resultant quickest
descent line for uphill turn.
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then taken by the addition of the uphill and downhill
results. That is, at the connecting point between the
uphill and downhill descent lines, discontinuity of β
(the angle between the ski axis x′ and y axis) and ω
(angular velocity) occurs. To successfully carry out
numerical calculations the author had to abruptly
change the attack angle (γ) at the second gate. Ski
racers can manage such discontinuity by stepping
outer-ski outwards or jumping sideways in order to
change the descent direction. Figure 6 shows the line
obtained by simple addition of the quickest lines for
the uphill and downhill turn, where the upper bound
of the descent time between the starting point and
fourth (finishing) gate is 18.86 s (9.71 s + 9.15 s). The
line shown in the figure represents the one for the
upper bound for the problem of passing through four
gates.

Conclusions

This study provides a method to determine the
quickest descent line between gates on a ski slope. A
direct optimal control method is used to convert the
original optimal control problem into a parameter
optimization problem which is solved by a mathemat-
ical programming method. The objective function of
the present problem is the descent time between the
starting point and the finishing gate. The control
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Figure 5 (a) Initial values for state variables x and y on a ski slope for downhill turn. (b) Resultant quickest descent
line for downhill turn.
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Figure 6 Addition of uphill and sequential downhill result.
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variable is the edging angle which can be adjusted by
ski racers. Six position and velocity state variables of
the ski–skier system are considered. The control
variable and state variables are discretized at several
nodes between the initial time and finishing time. The
state variables must satisfy the equations of motion of
the system on a ski slope. This is numerically accom-
plished by considering continuity at the midpoint
between adjacent nodes, a condition that yields many
equality constraints. Since inequality constraints are
also taken into account to make regular turning
motion possible, the problem is to minimize the
descent time under equality and inequality constraints.
The results of numerical calculations are presented for
both an uphill and downhill turn with the starting
point, first gate, and second (finish) gate. If the
quickest lines between gates have been calculated, ski
racers can follow them by intuitively adjusting the
edging angle. The values of the control and state
variables at the nodes must be initially guessed, and
the numerical calculations are very sensitive to these
initially guessed values, such that many trials are
necessary for convergence. Such results were obtained
for an uphill and a downhill turn, although they are
not guaranteed to be a global minimum. When an
uphill and a downhill case were combined, however,
successful results were not obtained. This indicates
that determining the quickest descent line during
actual alpine ski racing with many gates most likely
requires other methods or software. Future work will
be directed at taking into account bending deforma-
tion, side cut of the ski, and carving turns. Assuming
that new descent lines will be found, alpine ski racers
can attempt to follow the quickest line by instinctively
adjusting the edging angle.
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