Review of Chemical Constituents of the Red Alga *Palmaria palmata* (Dulse)

KEITH C. MORGAN, JEFFREY L. C. WRIGHT, AND F. J. SIMPSON¹

The data reported in the literature and recent analyses of the composition of Palmaria palmata (Rhodymenia palmata) are compiled and discussed. The reported values have a relatively wide spread ranging from 73–89% moisture and, on a dry weight basis, 12–37% ash, 8–35% crude protein, 38–74% carbohydrate and 0.2–3.8% lipid. Some of the variation can be attributed to seasonal and nutritional conditions. P. palmata has potassium, chlorine and sodium as its major mineral constituents and, in comparison to terrestrial fruits and vegetables, is a good source of iron, magnesium, calcium and iodine. Vitamin A (as carotene) and, in the fresh plant, vitamin C, are present in appreciable amounts. P. palmata is potentially a high protein food source, and its protein quality rates well with vegetables of good nutritional value. The major polysaccharide is a β -(1 \rightarrow 3) and β -(1 \rightarrow 4) linked xylan. P. palmata is a natural source of desmosterol.

Marine plants have been used by man for centuries as food, fodder, fertilizer and sources of chemicals for the pharmaceutical, food and chemical industries. People in the Far East and Polynesia have a long history of eating marine algae as a beneficial supplement to their diets. In contrast, very little seaweed, as such, is eaten in the Western world. An exception is the red alga Palmaria palmata (L.) O. Küntze [= Rhodymenia palmata (L.) Greville (Guiry, 1974, 1975)], which has been used for centuries in coastal areas of Europe and more recently in northeastern North America (Schachat and Glicksman, 1959; Chapman, 1970; Ffrench, 1974). P. palmata, distributed throughout cooler waters of the North Atlantic and North Pacific (Guiry, 1975), is known to local inhabitants more popularly as "Dulse" (Great Britain and North America), "Dillisk" (Ireland), "Söl" (Iceland), "Søl" (Norway), "Goemon à vache" (France), or "Darusu" (Japan) (Butters, 1899; Schachat and Glicksman, 1959; Levring et al., 1969; Dixon, 1973). Interest in *P. palmata* as a food has prompted several studies on its protein, carbohydrate, fat, vitamin and mineral content. In this article we review published information on the chemical composition of P. palmata, add some recent data and evaluate its potential as a food source.

CHEMICAL COMPOSITION

Data reported in the literature on the chemical composition of P. palmata are from analyses of field-collected material by many independent groups. As a result the considerable variation in some data is probably owing to differences in methodology and to differences in plants, arising from site, seasonal, and population variations. A seasonal pattern is apparent for some constituents, but a lack of detailed information about the environment at the time of collection makes it

¹ National Research Council of Canada, Atlantic Regional Laboratory, 1411 Oxford St., Halifax, Nova Scotia.

Submitted for publication September 11, 1979; accepted October 29, 1979. NRCC No. 17762.

28

difficult to correlate the effects of environmental parameters on the chemical composition of the plant.

1. Dry weight, ash, major minerals and trace elements

There is a wide range of dry weights (11-22%) of wet weight) and ash weights (11.7–36.6% of dry weight) in the literature for field-collected material (Table 1). Although no seasonal data are reported for *P. palmata*, the dry weights of other Rhodophyceae in cold and temperate waters are commonly high in late summer and autumn and low in winter (Vinogradov, 1953). Some ash values show an opposite trend (Young and Langille, 1958). At the Atlantic Regional Laboratory dulse maintained in flowing seawater in tanks under conditions of controlled light and temperature was high in dry matter and low in ash when grown in nitrogendepleted water, whereas plants fed high levels of nitrate had a low dry matter but high ash content (Morgan et al., 1979; Table 1). The experiments mimicked the high winter and low summer levels of nitrogenous nutrients in seawater which are considered important in promoting variation in the growth and chemical composition of marine benthic algae (Mathieson and Tveter, 1975; Chapman and Craigie, 1977). In addition, a population difference was observed: the lower water content of Dark Harbour dulse relative to Woodward's Cove dulse at Grand Manan Is., New Brunswick (Ocean Science Associates, 1972) was maintained when plants from the two areas were grown under similar culture conditions (Morgan et al., 1979). Munda (1972) reported variation in the dry weight of plants collected from several locations in Iceland (Table 1).

P. palmata contains a variety of mineral elements (Tables 1, 2). Although the data are fragmentary and variable, the elements in highest concentration appear to be chlorine, potassium and sodium (Table 1). The concentrations of potassium and phosphorus are notably high relative to amounts found in other seaweed species (Butler, 1931; Young and Langille, 1958). *P. palmata* is also a rich source of iodine, and radiotracer experiments reveal the halogen occurring mainly in mono- and diiodotyrosine and triiodothyronine (Scott, 1954; André, 1971). The concentrations of alkaline earth elements, when compared with other algae (Bowen, 1956), are relatively low. Of 14 species examined by Mauchline and Templeton (1966) only *P. palmata* had less calcium than was found in the surrounding seawater. The sulfate content is lower than that in seaweeds containing sulfated galactans (e.g., carrageenan) as their primary sugar (Ross, 1953).

Among trace elements, iron, aluminum and zinc occur in the highest amounts (Table 2). In comparing the trace elements present in red and brown algae, Black and Woodward (1957) found relatively high amounts of zinc, vanadium and chromium and low amounts of strontium in *P. palmata*. Their values are much higher than those reported in other studies. Lunde (1970) reinvestigated a number of seaweeds collected from the same area, and found that dulse contained average amounts of copper, manganese, zinc, selenium and iron but low amounts of molybdenum, arsenic, antimony and cobalt. Strontium occurred at lower levels in *P. palmata* and other red algae than in brown algae (Bowen, 1956), whereas the opposite was found for thorium (Strohal and Pinter, 1973).

	Month or	Dev weight	4 ch	ច	×	Na	Ca	Mg	а.	s	_	
Site	Season	% wet wt.	% dry wt.				mg/g dry wt.	· wt.				Reference
Rhode Island	1	13.7			24.2				3.0			Wheeler & Hartwell, 1893 ^a
Brittany, France	I	15.7	36.6		06	22	12.5	\$	2.5		0.81	Vincent, 1924 ^a
-	-				378 ^b	4.9 ^b						Bertrand & Perietzeana, 1927 ^a
St. Andrews, New Brunswick	June–July	15	26.9		122						0.23	Butler, 1931
Nova Scotia	I				22.2				3.9		1.2	Young, 1948
Halifax, Nova Scotia	May	11.9	26.7				2.4		3.2			MacPherson & Young, 1949
N. Berwick, Scotland	I		21.2							2.3		Ross, 1953
Weymouth, England	ļ						1.1					Bowen, 1956
N. Berwick, Scotland	January		27.4	67	79	20.7	7.2	3.9	5.6	3.5	0.3	Black & Woodward, 1957
Nova Scotia	July				71	25	4.7				0.08	Young & Langille, 1958
Irish Sea	I		11.7									Culkin & Riley, 1958
Culture		20		53	80	1.9						MacRobbie & Dainty, 1958
Irish Sea	I						0.17 ^c					Mauchline & Templeton, 1966

TABLE 1. DRY WEIGHT, ASH AND MAJOR ELEMENTS OF Palmaria palmata.

1980]

29

	Month or	Derricht	Ak	ច	К	Na	Са	Mg	d ,	s	I	
Site	season	% wet wt.	% dry wt.				mg/g dry wt.	· wt.				Reference
Iceland	summer	16.4–21.1 25–32.5	25-32.5									Munda, 1972
Grand Manan Is., New Brunswick	summer											Ocean Science Associates, 1972
Dark Harbour Woodward's Cove		16 11										
Tank culture Dark Harbour		20.1										Morroan et al 1070
Woodward's Cove		15.4										MUIBAIL VI ALI, 1/1/
Tank culture	High light/ low N	27	14									Morgan et al., 1979
	Low light/ high N	13	31									

TABLE 1. CONTINUED.

Other data (mg/g dry weight): Silicon 10 (Black & Woodward, 1957); Iodine 7.1 (Standford, 1877^a), 1.2 (Cameron, 1915), 0.008^c (Kylin, 1929^a), 0.21 (Bruievich et al., 1933^a), 0.009^c (Vinogradov & Bergmann, 1938^a).

^a Cited in Vinogradov, 1953.
 ^b Expressed as mg/g of ash weight.
 ^c Expressed as mg/g of wet weight.

palmata.
Palmaria
FRACE ELEMENTS OF
TABLE 2. T

	Mouth	Fe	ΙV	Zn	B	Ś	ï	Мn	ბ	C	>	Р.	ĹL,	As	Ba	Sn	ථ	Ag	Мо	Dofor
Site	or season								/8 1 1	$\mu g/g$ dry weight	ight									encea
Brittany, France		4,400						12.5												٩I
ļ	ŀ						S													5°
San Juan Archipelago,																				
Washington	1				46															e
Gulf of Kola					131															4 b
Gulf of Kola	I																			5
Halifax, Nova Scotia	May	250																		9
Iceland	FebApr.									22										٢
Weymouth, England						18.8									0.6					×
N. Berwick, Scotland	Jan.	1,355		200		90	100	110	34	48	29	29 28 15.2	15.2			<5 2.6		1.0 0	0.83	6
Irish Sea		252	175							24.4					21					10
Nova Scotia	July			41						26				10		Ŭ	0.13	0	0.31	11
Irish Sea	' 					s°									<5°					12
Trondheimsfjord,																				
Norway	March	153		143				11		24				13		Ŭ	0.5	0	0.6	13

antimony 0.05 (Lunde. 1370); thorium 1.2 (Strohal & Pinter, 1973). ^a Reference: 1-Vincent, 1924; 2--Kaminskäia, 1933; 3-Igelsrud et al., 1938; 4--Glebovitch, 1941; 5-Borovik-Romanova, 1944; 6--MacPherson & Young, 1949; 7--Pálsson & Grimsson, 1953; 8--Bowen, 1956; 9--Black & Woodward, 1957; 10--Culkin & Riley, 1958; 11--Young & Langille, 1958; 12--Mauchline & Templeton, 1966; 13--Lunde, 1970. ^b Cited in Vinogradov, 1953. ^c Expressed as µg/g of wet weight.

2. Vitamins

In general, green and red algae have a higher content of B vitamins than brown algae (Lundin and Ericson, 1955). The amounts found in *P. palmata* are typical for a red alga, although high levels of thiamine (Kanazawa et al., 1966) and niacin (Larsen, 1958) and low levels of vitamin B_{12} (Ericson and Lewis, 1953; Kuceva and Bukin, 1957) have been reported (Table 3). The B_{12} activity is due to at least four factors, three having been identified as cyanocobalamin, pseudovitamin B_{12} and vitamin B₁₂₅ (Ericson and Lewis, 1953). Studies of ⁶⁰Co uptake by *P. palmata* have shown that despite a large accumulation of isotope by the plant, vitamin B_{12} was unlabelled (Ericson and Lewis, 1953; Scott and Ericson, 1955). The investigators concluded that B_{12} in the seaweed arises from an exogenous source, possibly from closely-associated bacteria. Biotin-1-sulfoxide is the principal active form of biotin (Larsen, 1961) and nicotinic acid amide of niacin (Larsen, 1958). The influence of season and habitat on vitamin B content of P. palmata is not understood. Some data suggest that the concentration of niacin is maximal in spring (Larsen, 1958), vitamin B_{12} in spring and summer (Lundin and Ericson, 1955), while biotin shows no regular seasonal trend (Larsen, 1961).

 α -Tocopherol (vitamin E) is the only tocopherol detected in *P. palmata* and other algae, except species of Fucaceae which contain the γ - and δ -homologues as well (Jensen, 1969). The tocopherol content of *P. palmata* is low (Table 3) compared with members of the Fucaceae (Jensen, 1969), with a maximum in late summer and autumn (Brown, 1953). However, dulse contains average to high amounts of vitamin C on a wet weight basis (Lunde and Lie, 1938; Creac'h and Baraud, 1954), again reaching a peak in late summer and autumn (Lunde and Lie, 1938). Other vitamins, including choline (DaSilva and Jensen, 1973), folic and folinic acid (Ericson, 1953) are present in the usual amounts found in a marine alga (Table 3).

Total carotene concentrations approximate vitamin A activity (Tables 10, 11), and in *P. palmata* are generally higher than in other seaweeds (Owen, 1954; Larsen and Haug, 1956). Conditions during the harvest and drying of dulse can severely affect the carotenoid content. Drying in the open during poor weather conditions has resulted in almost complete degradation of the carotenoids within a week (Haug and Larsen, 1957). The degradation is apparently an enzymatic process which is effectively retarded by potassium cyanide or sodium sulfide (Haug and Larsen, 1956b). The loss was also significantly less with rapid artificial drying at 80°C. The carotene content varied throughout the year: Owen (1954) reported appreciably higher values in September than in January, although Haug and Larsen (1957) observed no regular trend (Table 10).

3. Nitrogenous constituents

The total nitrogen content of *P. palmata* on a dry weight basis is high in comparison to other seaweed species (MacPherson and Young, 1949; Munda, 1972), though there is considerable variation in both field-collected (1.8-4.7%) and tank-cultivated (1.3-4.2%) material (Table 4). Seasonality has been demonstrated recently by Chaumont (1978): total nitrogen was highest during winter and early spring and lowest during summer and autumn, a trend reported for other Rhodophyceae (e.g., Mathieson and Tveter, 1975, 1976). Similarly, in tank

		T	TABLE 3.		TAMII	V CON	TENT	0F <i>P</i>	almar	VITAMIN CONTENT OF Palmaria palmata.	mata.			
) aimstiV	Choline	Тосорћегој	Niacin	пічвПодіЯ	Pantothenic acid	animeidT	Folic acid	Folinic acid	Vit. B ₆	Biotin	Vit. B ₁₂	
Site	Month or season	μg/g wet wt.					/Brl	μg/g dry wt.						Reference
ļ	FebMay SeptJan.	220-450 400-500												Lunde & Lie, 1938
Angmagssalik	ł	170												Høygaard & Rasmussen, 1939
N. Berwick, Scotland	summer								1.3 0	0.46				Ericson, 1953
N. Berwick, Scotland	July												0.09	Ericson & Lewis, 1953
Middleton, Ireland	fall winter			139 22										Brown, 1953
ļ													0.10	Ann. Rep. Inst. Seaweed Res., 1954
France	March	520												Creac'h & Baraud, 1954
N. Berwick, Scotland	Ι												0.24	Scott & Ericson, 1955
Barents Sea	I												0.009	Kuceva & Bukin, 1957
N. Berwick, Scotland	Jan.				28.9	5.3		1.5						Black & Woodward, 1957
Norway	April Sept.				83 22									Larsen, 1958
Norway	I											0.07		Larsen, 1961
Grand Manan Is., New Brunswick	summer				16.9	5.0	4.3	6.3		•	0.14	0.18	0.028	Kanazawa et al., 1966
Norway	spring			35										Jensen, 1969
Norway	Feb.		2,000				1							DaSilva & Jensen, 1973

1980]

33

Location	Season	Total nitrogen	Alcohol soluble-N	Nitrate-N	Volatile base-N	Amide-N	amino acid-N	Residual-Na	Crude ^b protein	Reference
N. Berwick, Scotland	January	3.91		0.13	0.01	0.48	0.25	3.28	(24.4)	Channing & Young, 1953
Halifax, Nova Scotia	September	2.08	0.24					1.84	(13.0)	Smith & Young, 1955
France	Spring	3.42	0.84	0.10	0.008			2.58	(21.4)	Citharel & Villeret, 1964
France	OctMay	2.4-5.7, av. 4.0	0.5-1.9, av. 1.0	0.03-0.7, av. 0.23				1.7-4.8, av. 3.0	(15.0–35.6, av. 25.0)	Chaumont, 1978
	June-Sept.	1.3-3.1, av. 1.9	0.2-0.8, av. 0.4	0.01-0.04, av. 0.03				0.8-2.3, av. 1.5	(8.1–19.4, av. 11.6)	
Tank culture	high light/low N low light/high N	1.30 3.79	$0.24 \\ 0.40$	0.0007 0.02				1.06 3.39	(8.1) (23.4)	Morgan et al., 1979

TABLE 4. NITROGEN CONSTITUENTS OF Palmaria palmata (% DRY WEIGHT).

^a Residual-N calculated as difference between total nitrogen and soluble nitrogen, except for data of Channing & Young (1953) where residual-N is the difference between total nitrogen and the sum of nitrate-, volatile base- and amide-N.

		nìng & 3, 1953ª		ith & 3, 1955 ^b		n et al., 956°	Black	, 1958°		nda & sek, 1976		hting & m, 1969
Amino acid g/100 g dry wt.	Dried plant	Crude protein	Dried plant	Crude protein	Dried plant	Crude protein	Dried plant	Crude protein	Dried plant	Crude protein	Dried plant	Crude protein
Alanine	1.85	7.6	0.8	6.1					1.32	7.02	1.64	5.60
Glycine				4.9					1.02	5.43	1.30	4.43
Valine	1.46	6.0	0.7	5.2	1.25	6.04	1.1	6.4	1.05	5.59	1.37	4.68
Leucine	0.71	2.9	0.7	5.3	1.12	5.41	1.1	5.5	1.02	5.43	1.84	6.29
Isoleucine	0.66	2.7	0.5	3.5	0.88	4.25	0.8	4.0	0.67	3.56	1.06	3.62
Serine			0.6	4.4					0.76	4.04	1.21	4.13
Threonine			0.5	4.1	0.89	4.30	0.9	4.4	0.87	4.63	1.04	3.56
Cysteine			$+^{d}$	+					0.0	0.0	0.81	2.76
Methionine			0.1	0.8	0.37	1.79	0.5	2.3	0.39	2.07	2.00	6.84
Aspartic Acid	2.20	9.0	1.1	8.3					1.84	9.99	2.05	6.99
Glutamic Acid	2.37	9.7	1.0	8.0					1.00	5.32	2.36	8.05
Lysine			0.5	4.1	1.49	7.20	1.5	6.9	0.83	4.42	1.63	5.57
Arginine			0.5	4.1	1.08	5.22	1.0	4.8	0.87	4.63	1.37	4.68
Phenylalanine			0.6	4.5	0.81	3.91	0.8	3.2	0.71	3.78	1.44	4.92
Tryptophan			+	+	0.27	1.30	0.2	0.9	0.56	2.98	e	_
Proline			0.5	3.6					0.97	5.16	1.08	3.68
Histidine			0.07	0.5	0.33	1.59	0.3	1.3	0.26	1.38	0.29	0.99
Total nitrogen ^f	3.91		2.08		3.33		3.60		3.01		4.68	

TABLE 5. AMINO ACID COMPOSITION OF Palmaria palmata.

^a Incomplete analysis.

^b Analysis of combined amino acids only. Original data expressed as % amino acid nitrogen of total nitrogen in hydrolysate.

° Analysis of essential amino acids only.

^d Detected, but not measured.

e Not detected by method used.

1% of dry weight.

culture, the nitrogen content rapidly declines when *P. palmata* is grown in nitrogen-depleted water (Morgan et al., 1979).

The earliest amino acid analyses of *P. palmata* were reported by Channing and Young (1953) and Coulson (1953b) who detected 17 common amino acids in paper chromatograms of whole-plant hydrolysates. Coulson also detected the iodoamino acids, 3:5-diiodotyrosine, 3:5-diiodothyronine and thyroxine. Quantitative analysis of certain amino acids in the protein fraction by Channing and Young (1953) showed that the dulse proteins were rich in glutamic and aspartic acids. Subsequent analyses (Smith and Young, 1955; Coulson, 1955; Schlichting and Purdom, 1969; Munda and Gubensek, 1976) confirmed the preponderance of aspartic and glutamic acids, and also found that arginine, glycine, alanine, leucine and valine were present in major amounts (Table 5). Only Schlichting and Purdom reported a high methionine content (2 g/100 g of dry sample), some 3-4 times higher than that found in other studies. Most investigators agree that methionine, histidine, tryptophan and cysteine are present in small quantities (Coulson, 1955; Smith and Young, 1955; Munda and Gubensek, 1976). The prevalence of acidic amino acids and low concentration of basic amino acids in the proteins of P. *palmata* is typical of most other Rhodophyceae examined (Munda and Gubensek, 1976). Two groups studying only the essential amino acids in *P. palmata* (Lyman et al., 1956; Black, 1958) found relatively high amounts of lysine (Table 5).

P. palmata contains a pool of free amino acids and small peptides. Channing and Young (1953) in analyzing the soluble nitrogen fraction of alcohol extracts

ECONOMIC BOTANY

reported alanine, aspartic and glutamic acids as the major constituents, while Coulson (1953a) found, in addition, significant amounts of serine and proline, the latter constituting over 50% of the total free amino acids in winter samples of dulse (Citharel, 1966). Proline and glutamic acid were found to be the major free amino acids by Laycock et al. (1979) in dulse grown in tanks in a greenhouse. They discovered the presence of *D*-homocysteic acid, an unusual amino acid not previously reported in a marine alga. Laycock (1979) has since found that partial purification of the alcohol extract on Dowex 50 reveals major amounts of several basic amino acids, including gigartinine and arginine, and the dipeptide L-citrullinyl-L-arginine, not detected in crude extracts by an amino acid analyzer or by electrophoresis. L-citrullinyl-L-arginine may be one of the basic peptides previously referred to in a brief report (Ann. Rep. Inst. Seaweed Res., 1963).

Trace amounts of amines, ammonium salts (volatile base nitrogen, Table 4), and nitrite have been found in the alcohol soluble non-protein fraction (Channing and Young, 1953; Citharel and Villeret, 1964), but concentrations of nitrate as high as 18% of the total nitrogen have been reported (Chaumont, 1978). The data in Table 4 illustrate a considerable seasonal variation in the percentage of soluble nitrogen on a dry-weight basis. Chaumont (1978) records a 2–3-fold increase between summer and winter samples, tissue nitrate levels increasing about 7-fold, while other soluble nitrogen constituents show lesser increases. Winter samples of Nova Scotian dulse are also reported to contain increased amounts of peptides and free amino acids (Smith and Young, 1952). In culture there is a rapid, but transitory, increase in tissue nitrate in dulse following the addition of high (0.5 mM) levels of nitrate (Morgan et al., 1979).

4. Carbohydrates

The most common polysaccharides of red algae contain D- or L-galactose residues in which the galactan units are alternately β -(1 \rightarrow 3)- and β -(1 \rightarrow 4)- linked (Mackie and Preston, 1974). The sugars may be methoxylated or esterified with sulfate. Included in this group are agar, carrageenan, porphyran and furcellaran. The major polysaccharide of *P. palmata*, however, is a water-soluble xylan composed of β -(1 \rightarrow 3)- and β -(1 \rightarrow 4)-linked D-xylose units which contain no sulfate ester or methoxyl groups. This polysaccharide is unlike the xylans of land plants which are usually water insoluble and possess only β -(1 \rightarrow 4)-linked residues. The xylan of dulse also differs from the xylans of green algae which are composed of continuous chains of β -(1 \rightarrow 3)-linked units (Mackie and Percival, 1959; Cerezo et al., 1971).

The water-soluble xylan of *P. palmata* was first isolated by Barry and Dillon (1940), and subsequent chemical analysis, including characterization of the products of enzymic hydrolysis (Howard, 1957), showed it to be an essentially linear molecule of xylose units, with both β -(1 \rightarrow 3) and β -(1 \rightarrow 4) linkages present in the same chain (Barry et al., 1950, 1954; Percival and Chanda, 1950). Only a small proportion of the (1 \rightarrow 3)-linked units are adjacent, the majority being flanked by (1 \rightarrow 4)-linked residues (Manners and Mitchell, 1963). More recent work has revealed two xylans in *P. palmata*, one obtained by extraction with water (xylan I) and the other by subsequent extraction of the residue with 0.1 M sulfuric acid (xylan II) (Bjorndal et al., 1965). The main difference between these xylans is the

Site	Month or season	Isoflo- ridoside	Flor- idoside	Floridean starch	Hexose	Uronic anhydride	Pentose	Total carbo- hydrate	Cellu- lose	Reference
1	 		14.8							Kylin, 1918
St. Andrews, New Brunswick	July								1.5	Butler, 1931
I	Summer				8-11 ^a	5-7a	41-45 ^a			Schmidt-Nielsen & Hammer, 1932
I	ł								2.1	Naylor & Russell- Wells, 1934
I	1							45		Young, 1948
France	July Feb.		4.0 1.9							Henry, 1949
N. Berwick, Scotland	I				3.5 ^b	3.3°	36 ^b		2.4	Ross, 1953
N. Berwick, Scotland	Jan.								2.1	Black & Woodward, 1957
I	March SeptOct.		0.4 ^d 2.5–5.4	None None						Schachat & Glicksman, 1959
Washington Coast				Small granules						Meeuse et al., 1960
Nova Scotia	ł								3.5	Young, 1966
Nova Scotia	July	0.1°	5.6							Craigie et al., 1968
France	July-Sept. OctJune		16–25 ^f 3–8							Chaumont, 1978
Tank culture	low light/high N high light/low N						29 ^e 46	38h 74		Morgan et al., 1979

TABLE 6. CARBOHYDRATES OF Palmaria palmata (% DRY WEIGHT).

^a Expressed as % of ash-free dry weight. ^b Hydrolysis with N-sulphuric acid; analysis by means of hypoiodite solution; results calculated to anhydro-hexose or -pentose.

^c Distillation with 19% HCl and absorption of CO₂ in NaOH.

^d Expressed as % of wet weight. ^e Expressed as % of alcohol extracted dry weight.

f Measured against galactose.

* Extraction with 0.1 N H₂SO₄ at 80°C: analysis by orcinol-FeCl₃/HCI method (Mejbaum, 1939); measured against xylose. ^b Extraction with 0.1 N H₂SO₄ at 80°C; analysis by phenolsulfuric method (Dubois et al., 1956); measured against sucrose.

ECONOMIC BOTANY

proportion of β -(1 \rightarrow 3) and β -(1 \rightarrow 4) linkages: xylan I contains 71% of β -(1 \rightarrow 4) and 29% β -(1 \rightarrow 3) whereas the corresponding figures for xylan II are 62% and 38%. Using 3 M NaOH, Turvey and Williams (1970) extracted a third xylan containing almost exclusively β -(1 \rightarrow 4) linkages from the skeletal material of the cell wall.

There is disagreement about the molecular size of *P. palmata* xylans. Determinations of the degree of polymerization (DP) by several different methods give DP's ranging from 40–114 (Barry et al., 1950; Manners and Mitchell, 1963; Bjorndal et al., 1965; Sturgeon, 1973). Although the variation likely is due to differences in methodology, the chain length and the proportion of the two types of linkage may vary in the different molecules.

Before the major polysaccharide of *P. palmata* was purified and characterized, floridoside was isolated by Colin and Guéguen (1930). This low molecular weight carbohydrate, 2-O-glycerol α -D-galactopyranoside, is a common reserve product of the Rhodophyceae (Putman and Hassid, 1954). In dulse, floridoside may reach levels as high as 25% of the dry weight (Chaumont, 1978), but lesser amounts (<10%) are usually found (Table 6). Trace amounts of the closely related derivative, isofloridoside (1-O-glycerol α -D-galactopyranoside), have also been reported (Craigie et al., 1968).

Another storage polysaccharide of *P. palmata* is floridean starch, which occurs in characteristically shaped granules. It is composed of chains of α -(1 \rightarrow 4)- and α -(1 \rightarrow 6)-linked glucose units, interspersed occasionally with α -(1 \rightarrow 3)-linkages similar in structure to the amylopectin of higher plants (Percival and McDowell, 1967). Meeuse and co-workers (1960) found only small granules of floridean starch in *P. palmata* collected along the northwest coast of the United States, and considered it a poor source of this material. Schachat and Glicksman (1959), in fact, detected none in both winter and autumn samples, but higher levels apparently occur in older fronds (Myers and Preston, 1959) and in cells of the stipe (Dawson, 1966). A modified cellulose, containing equal amounts of β -(1 \rightarrow 4)linked xylose and glucose residues, is synthesized by *P. palmata* in small amounts (Cronshaw et al., 1958; Myers and Preston, 1959; Table 6). Chitin was not detected in the cell wall (Young, 1966).

There is some seasonal variation in concentration of carbohydrate as illustrated in Table 6. Schachat and Glicksman (1959) reported the concentration of floridoside in March was 0.4% (fresh weight) and in September was 5.4%. A recent 12-month study by Chaumont (1978) found that the floridoside content reached a maximum in July and a minimum in November. Several workers (Black et al., 1965; Fuller and Mathieson, 1972; Mathieson and Tveter, 1975) have recorded summer-autumn maxima in the carbohydrate content of other red algae which seem to coincide with the depletion of nitrate from the seawater. Likewise, the carbohydrate content of dulse under greenhouse conditions was 50–80% higher in plants grown in nitrogen-depleted seawater than in plants fertilized regularly with nitrate (Morgan et al., 1979).

5. Lipids

The lipid content of *P. palmata* is low (0.3-3.8% of dry weight), typical for a red alga. The fatty acid constituents were first examined by Lovern (1936) but

	Month	- inide		Fatty acid o	Fatty acid composition, %		
Site	Or season	% dry weight	saturated	ed	unsaturated	Ð	Reference
Aberdeen, Scotland			Σ saturated C ₁₆ others	25 19 6	Σ unsaturated C ₁₈ C ₂₀ others	75 20 36 19	Lovern, 1936
France	I	0.4-1.6					Henry, 1949
Halifax, Nova Scotia	May	3.8					MacPherson & Young, 1949
N. Berwick, Scotland	1	2.4					Ross, 1953
N. Berwick, Scotland	Jan.	0.3					Black & Woodward, 1957
Isle of Man, England	March		Σ saturated C ₁₄ C ₁₆ others	36.3 11.9 22.0 2.4	Σ unsaturated C_{18} C_{20} others	58.0 39.1 11.0 7.9	Chuecas & Riley, 1966
Grand Manan Is., New Brunswick	summer	0.6					Idler et al., 1968
Grand Manan Is., New Brunswick	June-Aug. SeptNov.	0.6-1.7 0.2-1.1					Idler & Wiseman, 1970
Iceland	summer	0.8 - 1.7					Munda, 1972
Halifax, Nova Scotia	Dec.		\$\Sigma\$ saturated14:016:0others	36 8.9 25.0 <2	Σ monoethylenic 18:1ω9 others Σ polyethylenic 20:5ω3 others	11 3.6 7.5 83 ~8 ~8	Ackman & McLachlan, 1977

TABLE 7. LIPID CONTENT AND FATTY ACIDS OF Palmaria palmata.

1980]

ECONOMIC BOTANY

these data were expanded by Chuecas and Riley (1966) and refined by Ackman and McLachlan (1977) (Table 7). Marine plants afford a greater variety of fatty acids than do most terrestrial plants (Hilditch and Williams, 1964; Wood, 1974) and like animals, accumulate polyethylenic fatty acids of C_{20} and C_{22} chain lengths in the cellular membrane (Ackman, 1964; Hilditch and Williams, 1964; Wagner and Pohl, 1966). There is little difference in the proportions of the three basic types of fatty acids, saturated, monounsaturated and polyethylenic among the three major divisions of benthic marine algae (Rhodophyceae, Phaeophyceae, Chlorophyceae). Palmitic acid (16:0) is the major unsaturated acid and oleic (18:1) the major monoethylenic acid (Chuecas and Riley, 1966; Ackman and McLachlan, 1977). An earlier report (Laur, 1961) of a group of uncharacterized polyethylenic C_{20} acids in *P. palmata* has been confirmed by Ackman and McLachlan (1977). This major group is mainly comprised of 20:5 ω 3 together with trace amounts of 20:2, 20:3 and 20:4 isomers.

The principal sterol of the unsaponifiable lipid fraction of most red algae is cholesterol (Goodwin, 1974), but dulse is unusual in that it produces desmosterol rather than cholesterol as a major C_{27} sterol (Gibbons et al., 1967; Idler et al., 1968; Idler and Wiseman, 1970; Ferezou et al., 1974; Morisaki et al., 1976; Idler and Atkinson, 1976) (Table 8). Although red algae are capable of synthesizing C-24 alkyl derivatives (which contain one or two extra carbons in the side-chain) they are seldom major products (Ferezou et al., 1974). A list of minor sterols in dulse appears as a footnote to Table 8.

In two short-term studies of the sterol composition of dulse from Grand Manan Island, Bay of Fundy, Idler and co-workers (Idler et al., 1968; Idler and Wiseman, 1970) found a significant but unaccountable variation in the proportion of desmosterol (31–97% of total sterols) and cholesterol (2–92%) from sample to sample, although the largest desmosterol yield occurred in midsummer (Table 8). However, results of a later and more prolonged study from Logy Bay, Newfoundland (Idler and Atkinson, 1976) were different: desmosterol was the major sterol in all samples, but was present in higher amounts than in Grand Manan samples, reaching maximal levels in November–December and May. These differences suggested to the authors that geographical location is an important factor in desmosterol production by dulse.

Hydrocarbons are minor components in *P. palmata*, forming 0.003 and 0.009% of the dry weight in two samples from the east coast of the United States (Clark and Blumer, 1967; Youngblood et al., 1971) and 0.019% in samples collected in the Bay of Fundy (Wright, 1979) (Table 9). In each study n-heptadecane was the predominant saturated hydrocarbon with smaller amounts of n-pentadecane, typical for red algae (Youngblood et al., 1971).

5. Pigments

The chlorophyll and biliproteins of *P. palmata* are well characterized. Chlorophyll *a* (Owen, 1954; Bjornland and Aquilar-Martinez, 1976), R-phycocyanin (O'hEocha, 1962; Young, 1970), allophycocyanin (O'hEocha, 1962; Young, 1970), R-phycoerythrin and β -phycoerythrin (O'hEocha, 1960; Young, 1970; van der Velde, 1973a, 1973b) have all been observed. No seasonal data exist on the biliprotein content, but *P. palmata* and other Rhodophyceae growing in shallow,

	Sesson	Total sterols	Desmosterol	Cholesterol	Desmosterol	Cholesterol	
Site	or month		mg/100 g dry wt.		% Total sterols	sterols	Reference
1	ļ				66	T	Gibbons et al., 1967
Grand Manan Is., New Brunswick	Summer	1040	1.2–39	1.1–15	7.7–97.2	2.1–92.3	Idler et al., 1968
France	I				62	27	Alcaide et al., 1968
Rhode Island	I				88	7	Meunier et al., 1970
Grand Manan Is., New Brunswick	June-Aug. SeptNov.	10–19 6–10	8–18 1.5–11.9	0.5-5.8 0.2-2.0	39.2–97.2 30.6–91.4	2.1–30.4 3.3–49.2	Idler & Wiseman, 1970
France	Ι				56	20	Ferezou et al., 1974
Japan	I		3	I			Morisaki et al., 1976
Logy Bay, Newfoundland	June-May	~ 1–78	\sim 1–77	$\overline{\vee}$			Idler & Atkinson, 1976

palmata.
Palmaria
STEROLS OF
TABLE 8.

Minor sterols (% of total sterols): 22-dehydrocholesterol 0.1–1.7; brassicasterol <0.1; stigmasterol + 24-methylenecholesterol 2.2–6.8; β-sitosterol 0.2–16.2; fucosterol 2.1–3.7 (Idler et al., 1968); β-sitosterol + fucosterol 10 (Meunier et al., 1970); 22-dehydrocholesterol <0.1–1.4; brassicasterol 0–3.8; 22:32-dihydrobrassicasterol 0–9.5; 24-methylenecholesterol 1.0–9.5; 24-methylenecholesterol 0.2–16.2; fucosterol 0–16.2; fucosterol 10 (Meunier et al., 1970); 22-dehydrocholesterol 0–3.8; 22:32-dihydrobrassicasterol 0–9.5; 24-methylenecholesterol 2.3, fucosterol 0–9.5; 24-methylenecholesterol 0.2, 52-dehydrocholesterol 0.47; 25-dehydrocholesterol 0.7, brassicasterol 0.3, 24-methylenecholesterol 2.3; fucosterol 0–9.5; 24-dimethylchola-5,22-dine-3β-01 0.45; cycloartanol 1.0; 31-mor-cycloartanol 0.7; 5α-cholestara, 1970); 22-dehydrocholesterol; 24-methylenecholesterol 2.3; fucosterol 13; 24-dimethylchola-5,22-dine-3β-01 0.45; cycloartanol 1.0; 31-mor-cycloartanol 0.7; 5α-cholestara-3β-01 <0.7, 22-dehydrocholesterol; 24-methylenecholesterol; 1.03; 24-methylenecholesterol; 1.03; 24-methylenecholesterol; 1.03; 24-methylenecholesterol; 1.03; 24-methylenecholesterol; 1.03; 24-dimethylenecholesterol; 1.03; 24-methylenecholesterol; 1.03; 24-methylenecholesterol; 1.03; 24-methylenecholesterol; 1.03; 24-dimethylenecholesterol; 1.03; 24-methylenecholesterol; 1.03; 24-dimethylenecholesterol; 1.03; 24-dimethylenecholesterol; 1.03; 24-dimethylenecholesterol; 1.03; 24-dimethylenecholesterol; 1.03; 24-dimethylenecholesterol; 1.03; 24-dimethylenecholesterol; 1.04; 25-dime-3β-24] (Morisaki et al., 1976).

	Month		Hydrocarbon		
Site	or season	% dry weight	% Composi	tion	Reference
New Hampshire	March	0.0094ª	n-heptadecane n-pentadecane pristane	79 ~20 trace	Clarke & Blumer, 1967
Massachusetts	Мау	0.003	n-heptadecane n-pentadecane alkenes	99 ~1 ~0.3	Youngblood et al., 1971
Bay of Fundy	December	0.019	n-heptadecane n-pentadecane alkenes	96.8 2.3 trace	Wright, 1979

TABLE 9. HYDROCARBON CONTENT OF Palmaria palmata.

a % extracted dry weight.

sunlit waters commonly lose their dark-red pigmentation in late summer (MacFarlane, 1968; Edelstein et al., 1970). Laboratory culture work indicates that both high light intensity and nitrogen deprivation are important factors in this loss (Waaland et al., 1974; Neish et al., 1977). Amounts of biliprotein in tank-cultivated dulse range from 26 mg/g dry weight in dark-red, nitrate-fed plants to <0.5 mg/g dry weight in pale-green, nitrogen-starved plants (Laycock, 1979; Table 10). In comparison to biliprotein, amounts of chlorophyll *a* in healthy plants are usually much lower (Table 10). Owen (1954) reports marginally higher values in the autumn than in winter.

P. palmata contains the usual red algal carotenoids, α - and β -carotene and lutein (Table 10), though zeaxanthin, common to most Rhodophyceae, is totally absent (Bjornland and Aguilar-Martinez, 1976). An early report of taraxanthin (Heilbron et al., 1935) has since been shown to be lutein epoxide (Buchecker et al., 1976). The α -carotene/ β -carotene ratio ranges from 1.4 to 2.7 (Larsen and Haug, 1956; Bjornland and Aguilar-Martinez, 1976). As noted previously (see Vitamins) the carotenoid yield depends upon the postharvest treatment of dulse. In order to preserve the carotenoid content, the plant must be carefully and rapidly dried.

NUTRITIONAL ASPECTS

Europeans possibly first ate *P. palmata* after observing that shore-grazing animals favored it over other seaweeds (Kingsbury, 1969). According to Icelandic sagas, "söl" has been eaten since at least the 10th century (Hallsson, 1964). The practice came to North America following European settlement and records show that dulse was commercially harvested in the Bay of Fundy area as early as 1876 (Hay, 1886; Farlow, 1891). Today, the commercial trade of dulse no longer flourishes in Scotland, Ireland or England, while in Iceland the harvest is used primarily as cattle feed (Hallsson, 1964). A dulse industry is still active in Atlantic Canada, where amounts harvested over the past 30 years, principally from Grand Manan Island, New Brunswick, range from 21,000–60,000 kg (dry weight) per year (Ocean Science Associates, 1972; Reppert, 1973; Ffrench, 1974; Neish, 1976).

	Month	Bili- protein	Chloro- phyll	Total carote- noids	Carotene	Lutein	
Site	or season	mg/g dry	/ weight	μg	g dry weight		Reference
Helgoland, Germany	July–Aug.				249–285		Seybold & Egle, 1938
N. Berwick,	Jan.		0.41	108	37		Owen, 1954
Scotland	Sept.		0.63	341	115		
Norway	FebJune				197–388		Haug & Larsen, 1956a
Norway	Summer				360		Larsen & Haug, 1956
Norway	April–March				230-420		Haug & Larsen, 1957
Norway	Мау		3.20	800	α80 β30	240	Bjornland & Aguilar- Martinez, 1976
Tank culture	high nitrate low nitrate	26 <0.5					Laycock, 1979

TABLE 10. PIGMENT COMPOSITION OF Palmaria palmata.

In North America and Europe the frond is eaten raw as a vegetable substitute or is dried and eaten as a condiment or in powdered form (Schachat and Glicksman, 1959; Hallsson, 1964; Chapman, 1970; Ffrench, 1974; Madlener, 1977). In Table 11 the vitamin and mineral contents of dulse are compared with those of several vegetables, fruits and some snack foods. Dulse contains high concentrations of most minerals, particularly sodium, potassium and chlorine. There is also a relatively high calcium, iron and magnesium content, both on a fresh weight and dry weight basis, and the high iodine content means less than 1 g of dulse is sufficient to supply an adult's daily requirement for this element. In this context, dulse contains all trace elements (Table 2) recognized in human physiological processes.

Dulse also compares favorably with many fruits and vegetables as a source of most vitamins (Table 11). The vitamin A content is nearly 50% that of carrots, while vitamin C averages more than 75% of the value for oranges. However, drying and storage of dulse probably destroys much of the vitamin C content and has an adverse affect on most B vitamins. Despite this, dried dulse contains average amounts of thiamine, riboflavin and niacin in relation to other foods though it is a meager source of vitamin B_6 and biotin.

P. palmata is potentially a useful source of protein. Conventionally, protein is expressed as the total (Kjeldhal) nitrogen value \times 6.25. Based on nitrogen analyses, some protein values for *P. palmata* are high (>30% of the dry weight; Table 4) and are undoubtedly overestimated because of the presence of nonprotein nitrogen. However, the bulk of nonprotein nitrogen is in the form of amides, peptides and free amino acids, which could enhance the percentage of utilizable amino acids. The protein content of dulse (20–25%) compares favorably with *Porphyra tenera* (28–36%), a red alga popular in the Orient (Chapman, 1970) and with many other high protein foods such as roast beef (25%), canned salmon (20%) and soybean (30%) (Heinz Co., 1956).

The values in Table 12 show that the essential amino acid content of *P. palmata*

DIBLE	
0 G E	
R 100	
(MG PE	
FOODS	
OTHER	
AND	
palmata	
Palmaria	
OF 1	
VITAMIN AND MINERAL CONTENTS OF Palmaria palmata and other foods (mg per 100 g edible	
MINERAL	
AND	
VITAMIN	
OF	
OMPARISON	
Com	
11.	N). ^a
TABLE 1	PORTIO

Water is palmata. Name s Nam Name s Nam N							Minerals	als								Vitamins			
ia palmata.trace1,7407,00056045045503.03602907,50050.00.390.520.0140.0133.8832951,20095750.88.50.560501,2754,5000.070.0020.0020.0020.0558411116660.080.30.40.080.30.40.020.0020.0020.02870.317033100.030.40.080.30.40.080.090.090.090.000.028431708786-3.30.212942100.080.030.120.285-31708786-3.30.212942100.080.090.190.028631708786-3.30.212942100.050.090.120.25892423.30.212942103500.130.120.05892423.30.2129421030.060.190.190.1591242500.1134214220000.130.060.190.161042 </th <th></th> <th>Water g</th> <th>Na</th> <th>х</th> <th>Ca</th> <th>Mg</th> <th>Mn</th> <th>Fe</th> <th>Cu</th> <th>а.</th> <th>s</th> <th>ם</th> <th>Å⊳ IU</th> <th>Ē</th> <th>B2</th> <th>B</th> <th>biotin</th> <th>niacin</th> <th>ပ</th>		Water g	Na	х	Ca	Mg	Mn	Fe	Cu	а.	s	ם	Å⊳ IU	Ē	B2	B	biotin	niacin	ပ
	Palmaria palmata, dried	trace	1.740	7,000	560	450	4.5	50	3.0	360	290	7.500	26.600	0.39	0.52	0.014	0.013	3.8	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	fresh	83	295	1,200	95	75	0.8	8.5	0.5	60	50	1,275	4,500	0.07	0.09	0.002	0.002	0.65	38
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Apples,																		
	dried	20]		24	1		1.4	1	42		1	0	0.05	0.08]	I	0.5	6–60
87 0.3 170 33 10 0.03 0.4 0.08 23 8 4 190 0.8 0.03 0.12 0.2 24 31 708 78 6 - 3.3 0.2 129 42 103 50 0.15 0.08 0.12 0.5 6 - 2.3 0.2 129 - - 6.0 0.05 0.08 0.19 0.5 89 48 311 41 17 0.25 0.9 0.11 34 21 44 370 0.87 0.29 - 0.64 10 42 880 73 140 1.99 6.0 0.81 5.2 30 0.18 56 33 6.90 0.18 0.17 3.0 75 0.9 380 22 27 0.41 2.00 21 6.90 0.30 0.18 5.0 1.9 7 <	fresh	84		116	9	9	0.08	0.3	0.07	10	S	4	90	0.04	0.02	0.10	I	0.2	3–30
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Oranges	87	0.3	170	33	10	0.03	0.4	0.08	23	×	4	190	0.08	0.03	0.12		0.2	49
	Raisins	24	31	708	78	9	I	3.3	0.2	129	42	103	50	0.15	0.08	ł	I	0.5	trace
89 48 311 41 17 0.25 0.9 0.11 34 21 42 $2,000$ 0.13 0.06 0.19 - 0.64 10 42 880 73 140 1.99 6.0 0.80 397 196 44 370 0.87 0.29 - 0.017 3.0 75 0.9 380 22 27 0.41 2.0 0.23 118 56 33 690 0.18 0.18 $ 1.9$ 2.0 7 - 25 3.7 0.13 0.18 0.18 0.1 3.0 87 0.8 410 14 27 0.17 0.8 0.16 52 29 35 40 0.04 0.2 1.9 2.0 1.9 2.0 1.9 2.1 2.1 2.1 2.1 2.1 2.1 2.1 </td <td>Carrots, dried</td> <td>9</td> <td>1</td> <td>I</td> <td>242</td> <td>I</td> <td>I</td> <td>5.9</td> <td>1</td> <td>102</td> <td> </td> <td>I</td> <td>60,000</td> <td>0.29</td> <td>0.28</td> <td>1</td> <td>]</td> <td>3.2</td> <td>11</td>	Carrots, dried	9	1	I	242	I	I	5.9	1	102		I	60,000	0.29	0.28	1]	3.2	11
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	fresh	89	48	311	41	17	0.25	0.9	0.11	34	21	42	2,000-	0.13	0.06	0.19		0.64	4.3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Peas,												12,000						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	dried	10	42	880	73	140	1.99	6.0	0.80	397	196	44	370	0.87	0.29		0.017	3.0	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	fresh	75	0.9	380	22	27	0.41	2.0	0.23	118	56	33	069	0.30	0.18	0.18	1	1.9	26
87 0.8 410 14 27 0.17 0.8 0.16 52 29 35 40 0.10 0.04 0.2 1.0 hips 3 340 880 30 - - 1.9 - 132 - 50 0.18 0.11 - 3.2 d 5 2.0 740 74 167 1.51 1.9 0.27 393 377 4 360 0.30 0.15 12.0 0.03 21.6	Potatoes, dried	٢	ļ	ļ	35	I	I	37	ļ	103	I	İ	400	25 U	0.10	1		4 8	26
hips 3 340 880 30 1.9 - 132 50 0.18 0.11 3.2 1 d 5 2.0 740 74 167 1.51 1.9 0.27 393 377 4 360 0.30 0.15 12.0 0.03 21.6	fresh	87	0.8	410	4	27	0.17	0.8	0.16	52	29	35	40	0.10	0.04	0.2]	1.0	53
d 5 2.0 740 74 167 1.51 1.9 0.27 393 377 4 360 0.30 0.15 12.0 0.03 21.6	Potato chips	ŝ	340	880	30	1	1	1.9	1	132	I	I	50	0.18	0.11	1	ł	3.2	11
	Peanuts, roasted	S	2.0	740	74	167	1.51	1.9	0.27	393	377	4	360	0.30	0.15	12.0	0.03	21.6	0

ECONOMIC BOTANY

Amino acid	Palmariaª	Whole egg ^b	Palmaria/egg
Histidine	1.2	_	
Isoleucine	3.6	6.6	0.55
Leucine	5.1	8.8	0.58
Lysine	5.6	6.4	0.88
Methionine	2.8 (1.7) ^c	3.1	0.90 (0.55) ^c
Phenylalanine	4.1	5.8	0.70
Threonine	4.2	5.1	0.82
Tryptophan	1.3	1.6	0.81
Valine	5.7	7.3	0.78

TABLE 12. COMPARISON OF ESSENTIAL AMINO ACIDS OF *Palmaria palmata* and whole EGG (G/100 G CRUDE PROTEIN).

^a Average value calculated from data in Table 5.

^b Reference protein recommended by the joint FAO/WHO Expert Group. World Health Organization, 1965.

^e Recalculated omitting data of Schlichting and Purdom, 1969.

compares favorably with whole egg protein, except for somewhat insufficient amounts of leucine, isoleucine and possibly methionine. Dulse had the highest protein quality of several marine algae examined by Larsen and Hawkins (1961) and rates well with vegetables of good nutritional value. This is not inconsistent with results of feeding tests with rats (Bender et al., 1953): dulse was found to have a net protein utilization (protein retained per protein ingested) of 42, as compared to 44 for peas and 49 for corn. Lyman et al. (1956) (Table 5) considered dulse sufficiently rich in lysine to compensate for the marked deficiency of this amino acid in feed grains.

The low fat content of *P. palmata* and other marine algae render them as unimportant sources, though the lipids are easily assimilated by man (Johnston, 1966). As is typical for a red alga, the concentration of sterols in dulse is relatively low (0.001–0.08% of the dry weight). However *P. palmata* could serve as a source of desmosterol for the synthesis of pharmacologically important steroids including progesterone (Bernassau and Fetizon, 1975) and 25-hydroxycholesterol, a key intermediate in the synthesis of the biologically active forms of vitamin D₃, 25-hydroxycholecalciferol and 1 α ,25-dihydroxycholecalciferol (Morisaki et al., 1972; Partridge et al., 1974).

Some of the carbohydrates in dulse are digestible by man. Ptyalin, diastase and other digestive enzymes readily hydrolyze the α -glucose linkage of floridean starch and floridoside (Johnston, 1966). The β - $(1 \rightarrow 3)$ - and β - $(1 \rightarrow 4)$ -linkages of xylan, resistant to human digestive enzymes, are susceptible to degradation by microorganisms (Howard, 1957), and an early report (Swartz, 1911) of the complete disappearance of dulse xylan from the human alimentary tract seems attributable to such bacterial activity; it is unknown to what extent this hydrolyzed material can serve as a useful nutrient source. Pentose-fermenting bacteria of the rumen enable sheep and cattle to make complete us of xylan and other hemicelluloses (Ann. Rep. Inst. Seaweed Res., 1956; Howard, 1957).

LITERATURE CITED

Ackman, R. G. 1964. Structural homogeneity in unsalinated fatty acids of marine lipids: A review. J. Fish. Res. Board Canada 21: 247-254. —, and J. McLachlan. 1977. Fatty acids in some Nova Scotian marine seaweeds: a survey for octadecapentaenoic and other biochemically novel fatty acids. Proc. Nova Scotian Inst. Sci. 28: 47-64.

- Alcaide, A., M. Devys, and M. Barbier. 1968. Remarques sur les stérols des algues rouges. Phytochemistry 7: 329-330.
- André, S. 1971. Destinée des iodures fixés chez diverses algues marines et caractérisation des acides aminés iodés dans les hydrolysates. Compt. Rend. Séances Soc. Biol. Fil. 165: 2293–2298.
- Ann. Rep. Inst. Seaweed Res. 1954. Inveresk, Scotland. p. 44.
- ------. 1963. Inveresk, Scotland. p. 23.
- Barry, V. C., and T. Dillon. 1940. Occurrence of xylans in marine algae. Nature 146: 620.
 - ——, ——, B. Hawkins, and P. O'Colla. 1950. The xylan of *Rhodymenia palmata*. Nature 166: 788.
- ------, J. E. McCormic, and P. W. D. Mitchell. 1954. Properties of periodate-oxidized polysaccharides. III. Estimation of α -glycol groupings in a polysaccharide. J. Chem. Soc. (London): 3692– 3696.
- Bender, A. E., D. S. Miller, E. J. Tunnah, and W. A. P. Black. 1953. Biological value of algal proteins. Chem. Ind. (London): 1340-1341.
- Bernassau, J. M., and M. Fetizon. 1975. An improved method for the degradation of the lanosterol side chain. Synthesis 12: 795–796.
- Bjorndal, H., K.-E. Eriksson, P. J. Garegg, B. Lindberg, and B. Swan. 1965. Studies on the xylan from the red seaweed *Rhodymenia palmata*. Acta. Chem. Scand. 19: 2309–2315.
- Bjornland, T., and M. Aguilar-Martinez. 1976. Carotenoids in red algae. Phytochemistry 5: 291-296.
- Black, W. A. P. 1958. The algae. In Processed Plant Protein Foodstuffs, A. M. Altschul, ed. pp. 805–827. Academic Press, New York.
- -----------, W. R. Blakemore, J. A. Colquhoun, and E. T. Dewar. 1965. The evaluation of some red marine algae as a source of carrageenan and of its κ and λ -components. J. Sci. Food Agric. 16: 573–585.
- -----, and F. N. Woodward. 1957. The value of seaweeds in animal feedingstuffs as a source of minerals, trace elements, and vitamins. Empire J. Exp. Agric. 25: 51-59.
- Bowen, H. J. M. 1956. Strontium and barium in seawater and marine organisms. J. Mar. Biol. Assoc. U. K. 35: 451–460.
- Brown, F. 1953. The occurrence of δ -tocopherol in seaweed. Chem. Ind. (London): 174.
- Buchecker, R., S. Liaaen-Jensen, and C. H. Eugster. 1976. Reinvestigation of original taraxanthin samples. Helv. Chim. Acta 59: 1360-1364.
- Butler, M. R. 1931. Comparison of the chemical composition of some marine algae. Pl. Physiol. 6: 295–305.
- Butters, F. K. 1899. Observations on Rhodymenia. Minnesota Bot. Stud. II: 205-213.
- Cameron, A. T. 1915. Contributions to the biochemistry of iodine. II. The distribution of iodine in plant and animal tissues. J. Biol. Chem. 23: 1–39.
- Cerezo, A. S., A. Lezerovich, and R. Labriola. 1971. A xylan from the red seaweed *Chaetangium* fastigiatum. Carbohydr. Res. 19: 289–296.
- Channing, D. M., and G. T. Young. 1953. Amino acids and peptides. Part X. The nitrogenous constituents of some marine algae. J. Chem. Soc. (London): 2481-2491.
- Chapman, A. R. O., and J. S. Craigie. 1977. Seasonal growth in Laminaria longicruris: relations with dissolved inorganic nutrients and internal reserves of nitrogen. Mar. Biol. (Berlin) 40: 197-205.
- Chapman, V. J. 1970. Seaweeds and Their Uses. Methuen, London.
- Chaumont, J. P. 1978. Variations de la teneur en composes azotés du *Rhodymenia palmata* Grev. Bot. Mar. 21: 23-29.
- Chuecas, L., and J. P. Riley. 1966. The component fatty acids of some seaweed fats. J. Mar. Biol. Assoc. U. K. 46: 153–159.
- Citharel, J. 1966. Recherches sur les constituants azotés des algues marines. Les acides aminés libres. Compt. Rend. Hebd. Séances Acad. Sci. 262: 1495–1497.
- , and S. Villeret. 1964. Recherche sur le métabolisme azoté de quelques algues marines des Côtes Bretonnes. Proc. Int. Seaweed Symp. 4: 291–300.
- Clark, R. C., Jr., and M. Blumer. 1967. Distribution of n-paraffins in marine organisms and sediments. Limnol. Oceanogr. 12: 79-87.

- Colin, H., and E. Guéguen. 1930. La constitution du principe sucre de *Rhodymenia palmata*. Compt. Rend. Hebd. Séances Acad. Sci. 191: 163–164.
- Coulson, C. B. 1953a. Amino acids of marine algae. Chem. Ind. (London): 971-972.

. 1953b. Proteins of marine algae. Chem. Ind. (London): 997-998.

— 1955. Plant proteins. V. Proteins and amino-acids of marine algae. J. Sci. Food Agric. 6: 674–682.

Craigie, J. S., J. McLachlan, and R. D. Tocher. 1968. Some neutral constituents of the Rhodophyceae with special reference to the occurrence of the floridosides. Canad. J. Bot. 46: 605–611.

Creac'h, P., and J. Baraud. 1954. L'acide ascorbique total dans les algues marines. Compt. Rend. Séances Soc. Biol. Fil. 148: 105-107.

Cronshaw, J., A. Myers, and R. D. Preston. 1958. A chemical and physical investigation of the cell walls of some marine algae. Biochim. Biophys. Acta 27: 89–103.

- Culkin, F., and J. P. Riley. 1958. The occurrence of gallium in marine organisms. J. Mar. Biol. Assoc. U. K. 37: 607-615.
- DaSilva, E., and A. Jensen. 1973. Benthic marine and blue-green algal species as a source of choline. J. Sci. Food Agric. 24: 855–861.
- Dawson, E. Y. 1966. Marine Botany. Holt, Rinehart and Winston, New York.
- Dixon, P. S. 1973. Biology of Rhodophyta. Oliver and Boyd, Edinburgh.
- Dubois, M., K. A. Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith. 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28: 350–356.
- Edelstein, T., L. Chen, and J. McLachlan. 1970. Investigations of the marine algae of Nova Scotia. VIII. The flora of Digby Neck Peninsula, Bay of Fundy. Canad. J. Bot. 48: 621–629.
- Ericson, L.-E. 1953. Further studies on growth factors for *Streptococcus faecalis* and *Leuconostoc citrovorum* in marine algae. Ark. Kemi 6: 503-510.
- ------, and L. Lewis. 1953. On the occurrence of vitamin B₁₂-factors in marine algae. Ark. Kemi 6: 427-442.
- Farlow, W. G. 1891. The Marine Algae of New England. Rep. U.S. Commissioner Fish and Fisheries. Government Printing Office, Washington, D.C.
- Ferezou, J. P., M. Devys, J. P. Allais, and M. Barbier. 1974. Sur le sterol à 26 atomes de carbone de l'algue rouge *Rhodymenia palmata*. Phytochemistry 13: 593-598.
- Ffrench, R. A. 1974. *Rhodymenia palmata*. An appraisal of the dulse industry. Atlantic Regional Laboratory Technical Report, National Research Council of Canada.
- Fuller, S. W., and A. C. Mathieson. 1972. Ecological studies of economic red algae. IV. Variations of carrageenan concentration and properties in *Chondrus crispus* Stackhouse. J. Exp. Mar. Biol. Ecol. 10: 49–58.
- Gibbons, G. F., L. J. Goad, and T. W. Goodwin. 1967. The sterols of some marine red algae. Phytochemistry 6: 677-683.
- Goodwin, T. W. 1974. Sterols. In Algal Physiology and Biochemistry, W. D. P. Stewart, ed. pp. 266–280. Univ. California Press, Berkeley.
- Guiry, M. D. 1974. A preliminary consideration of the taxonomic position of *Palmaria palmata* (L.) Stackhouse = *Rhodymenia palmata* (L.) Greville, J. Mar. Biol. Assoc. U. K. 54: 509–528.

—. 1975. An assessment of *Palmaria palmata* forma *mollis* (S. et G.) comb. nov. (= *Rhodymenia palmata* forma *mollis* S. et G.) in the eastern North Pacific. Syesis 8: 245–261.

- Hallsson, S. V. 1964. The uses of seaweeds in Iceland. In C. R. IV Congrès Int. Algues Marines, Biarritz 1961, D. DeVirville and J. Feldmann, ed. pp. 398–405. Pergamon Press, Oxford.
- Haug, A., and B. Larsen. 1956a. Carotene content of some Norwegian seaweeds, and observations on the breakdown of carotene in seaweeds and seaweed meal. Proc. Int. Seaweed Symp. 2: 16-22.
- -----, and ------, and ------, and ------, and ------, Scand. 10: 472-474.
- , and _____, 1957. Carotene content of seaweed and seaweed meal. Norweg. Inst. Seaweed Res. 19: 1–19.

Hay, G. U. 1886. Marine algae of the Maritime Provinces. Bull. Nat. Hist. Soc. 1: 62-68.

- Heilbron, I. M., E. G. Parry, and R. F. Phipers. 1935. The algae. II. The relationship between certain algal constituents. Biochem. J. 29: 1376-1381.
- Heinz Company. 1956. Nutritional Data. Pittsburgh, Pennsylvania.
- Henry, M.-H. 1949. Contribution à la recherche des glucides solubles et des lipides chez les Floridées. Rev. Gén. Bot. 56: 352–363.

- Hilditch, T. P., and P. M. Williams. 1964. The Chemical Composition of Natural Fats. Chapman and Hall, London.
- Howard, B. H. 1957. Hydrolysis of the soluble pentosans of wheat flour and *Rhodymenia palmata* by ruminal micro-organisms. Biochem. J. 67: 643–651.
- Høygaard, A., and H. W. Rasmussen. 1939. Vitamin C sources in Eskimo food. Nature 143: 943.
- Idler, D. R., and B. Atkinson. 1976. Seasonal variation in the desmosterol content of dulse (*Rho-dymenia palmata*) from Newfoundland waters. Comp. Biochem. Physiol. B. 53: 517-519.
- A. Saito, and P. Wiseman. 1968. Sterols in red algae (Rhodophyceae). Steroids 11: 465–473.
 , and P. Wiseman. 1970. Sterols in red algae (Rhodophyceae): variation in the desmosterol content of dulse (*Rhodymenia palmata*). Comp. Biochem. Physiol. 35: 679–687.
- Igelsrud, I., T. G. Thompson, and B. M. G. Zwicker. 1938. The boron content of sea water and of marine organisms. Amer. J. Sci. 35: 47-63.
- Jensen, A. 1969. Tocopherol content of seaweed and seaweed meal. 1. Analytical methods and distribution of tocopherols in benthic algae. J. Sci. Food Agric. 20: 449-453.
- Johnston, H. W. 1966. The biological and economic importance of algae, Part 2. Tuatara 14: 30-63.
- Kanazawa, A., A. Saito, and D. R. Idler. 1966. Vitamins B in dulse (*Rhodymenia palmata*). J. Fish. Res. Board Canada 23: 915–916.
- Kingsbury, J. M. 1969. Seaweeds of Cape Cod and the Islands. Chatham Press, Chatham, Massachusetts.
- Kuceva, L. S., and V. N. Bukin. 1957. Morskie vodorosli i sapropeli kak istocniki vitamina B₁₂. Dokl. Akad. Nauk SSSR 115: 765-767.
- Kylin, H. 1918. Weitere Beiträge zur Biochemie der Meeresalgen. Hoppe-Seyler's Z. Physiol. Chem. 101: 236–247.
- Larsen, B. 1958. The influence of season, habitat and age of tissue on the niacin content of some brown algae. Norweg. Inst. Seaweed Res. 19: 1-13.
- ------. 1961. The biotin content of marine algae. Norweg. Inst. Seaweed Res. 26: 1-18.
- ——, and A. Haug. 1956. Carotene isomers in some red algae. Acta Chem. Scand. 10: 470–472.
- ——, and W. W. Hawkins. 1961. Nutritional value as protein of some of the nitrogenous constituents of two marine algae, *Chondrus crispus* and *Laminaria digitata*. J. Sci. Food Agric. 12: 523–529.
- Laur, M.-H. 1961. Application de la chromatographie en phase gazeuse à l'étude des acides gras des Rhodophycées. Compt. Rend. Hebd. Séances Acad. Sci. 253: 966–968.
- Laycock, M. V., A. G. McInnes, and K. C. Morgan. 1979. D-homocysteic acid in *Palmaria palmata*. Phytochemistry 18: 1220.

-----. 1979. Unpublished data.

- Levring, T., H. A. Hoppe, and O. J. Schmid. 1969. Marine Algae. A Survey of Research and Utilization. Cram, De Gruyter, Hamburg.
- Lovern, J. A. 1936. Fat metabolism in fishes. IX. The fats of some aquatic plants. Biochem. J. 30: 387-390.
- Lunde, G. 1970. Analysis of trace elements in seaweed. J. Sci. Food Agric. 21: 416-418.
- ------, and J. Lie. 1938. Vitamin C in Meeresalgen. Hoppe-Seyler's Z. Physiol. Chem. 254: 227-240.
- Lundin, H., and L.-E. Ericson. 1955. On the occurrence of vitamins in marine algae. Proc. Int. Seaweed Symp. 2: 39-43.
- Lyman, C. M., K. A. Kuiken, and F. Hale. 1956. Essential amino acid content of farm feeds. J. Agric. Food Chem. 4: 1008–1013.
- MacFarlane, I. 1968. The cultivation of seaweeds in Japan and its possible application in the Atlantic Provinces of Canada. Industrial Development Service, 20. Department Fish. Canada.
- Mackie, I. M., and E. Percival. 1959. The constitution of xylan from the green seaweed Caulerpa filiformis. J. Chem. Soc. (London): 1151–1156.
- Mackie, W., and R. D. Preston. 1974. Cell wall and intracellular region polysaccharides. In Algal Physiology and Biochemistry, W. D. P. Stewart, ed. pp. 40–85. Univ. California Press, Berkeley.
- MacPherson, M. G., and E. G. Young. 1949. The chemical composition of marine algae. Canad. J. Res. Sect. C. Bot. Sci. 27: 73-77.
- MacRobbie, E. A. C., and J. Dainty. 1958. Sodium and potassium distribution and transport in the seaweed *Rhodymenia palmata* (L.) Grev. Physiol. Pl. 11: 782–801.

Madlener, J. C. 1977. The Seavegetable Book. Crown Publ., New York.

- Manners, D. J., and J. P. Mitchell. 1963. The fine-structure of *Rhodymenia palmata* xylan. Biochem. J. 89: 92P–93P.
- Mathieson, A. C., and E. Tveter. 1975. Carrageenan ecology of *Chondrus crispus* Stackhouse. Aquat. Bot. 1: 25-43.
- -----, and ------. 1976. Carrageenan ecology of *Gigartina stellata* (Stackhouse) Batters. Aquat. Bot. 2: 353-361.
- Mauchline, J., and W. L. Templeton. 1966. Strontium, calcium and barium in marine organisms from the Irish Sea. J. Cons. Cons. Int. Explor. Mer 30: 161–170.
- Meeuse, B. J. D., M. Andries, and J. A. Wood. 1960. Floridean starch. J. Exp. Bot. 11: 129-140.
- Mejbaum, W. 1939. Über die Bestimmung kleiner Pentosemengen, insbesondre in Derivaten der Adenylsäure. Hoppe-Seyler's Z. Physiol. Chem. 258: 117-120.
- Meunier, H., S. Zelenski, and L. Worthen. 1970. Comparison of the sterol content of certain Rhodophyta. In Proc. Second Conference Food-drugs from the Sea, 1969, H. W. Youngken, ed. pp. 319-325. Marine Technol. Soc., Washington, D.C.
- Morgan, K. C., P. F. Shacklock, and F. J. Simpson. 1979. Unpublished data.
- Morisaki, M., S. Kidooka, and N. Ikekawa. 1976. Studies on steroids. XXXIX. Sterol profiles of red algae. Chem. Pharm. Bull. (Tokyo) 24: 3214–3216.
- —, J. Rubio-Lightbourn, and N. Ikekawa. 1972. Synthesis of active forms of vitamin D. I. A facile synthesis of 25-hydroxycholesterol. Chem. Pharm. Bull. (Tokyo) 21: 457–458.
- Munda, I. 1972. On the chemical composition, distribution and ecology of some common benthic marine algae from Iceland. Bot. Mar. 15: 1-45.
- Munda, I. M., and F. Gubensek. 1976. The amino acid composition of some common marine algae from Iceland. Bot. Mar. 19: 85-92.
- Myers, A., and R. D. Preston. 1959. Fine structure in the red algae. II. The structure of the cell wall of *Rhodymenia palmata*. Proc. Roy. Soc. London, Series B, Biol. Sci. 150: 447-455.
- Naylor, G. L., and B. Russell-Wells. 1934. On the presence of cellulose and its distribution in the cell-walls of brown and red algae. Ann. Bot. (London) 48: 635-641.
- Neish, A. C., P. F. Shacklock, C. H. Fox, and F. J. Simpson. 1977. The cultivation of *Chondrus crispus*. Factors affecting growth under greenhouse conditions. Canad. J. Bot. 55: 2263–2271.
- Neish, I. C. 1976. Role of mariculture in the Canadian seaweed industry. J. Fish. Res. Board Canada 33: 1007–1014.
- Ocean Science Associates. 1972. A technological development program for dulse cultivation on Grand Manan Island, New Brunswick. Final Report. New Brunswick Department Fish. Environ. Fredericton, New Brunssick.
- O'hEocha, C. 1960. Chemical studies of phycoerythrins and phycocyanins. *In* Comparative Biochemistry of Photoreactive Systems, M. B. Allen, ed. pp. 181–203. Academic Press, New York.
- ------. 1962. Phycobilins. In Physiology and Biochemistry of Algae, R. A. Lewin, ed. pp. 421-435. Academic Press, New York.
- Owen, E. C. 1954. The carotene, carotenoid and chlorophyll contents of some Scottish seaweeds. J. Sci. Food Agric. 5: 449–453.
- Pálsson, P. A., and H. Grimsson. 1953. Demyelination in lambs from ewes which feed on seaweeds. Proc. Soc. Exp. Biol. Med. 83: 518–520.
- Partridge, J. J., S. Faber, and M. R. Uskokovic. 1974. Vitamin D₃ metabolites I. Synthesis of 25hydroxycholesterol. Helv. Chim. Acta 57: 764–771.
- Percival, E. G. V., and S. K. Chanda. 1950. The xylan of *Rhodymenia palmata*. Nature 166: 787-788.
- Percival, E., and R. H. McDowell. 1967. Chemistry and Enzymology of Marine Algal Polysaccharides. Academic Press, New York.
- Putman, E. W., and W. Z. Hassid. 1954. Structure of galactosylglycerol from Iridaea laminarioides. Biochem. J. 79: 7-12.
- Reppert, W. 1973. Final report: Seaweeds development. New Brunswick Department Fish. Environ. Caraquet, New Brunswick.
- Ross, A. G. 1953. Some typical analyses of red seaweeds. J. Sci. Food Agric. 4: 333-335.
- Schachat, R. E., and M. Glicksman. 1959. Some lesser-known seaweed extracts. In Industrial Gums,

Polysaccharides and their Derivatives. R. L. Whistler and J. N. Be Miller, ed. pp. 135–191. Academic Press, New York.

- Schlicting, H., and M. E. Purdom. 1969. Rhodymenia palmata periphyton; protein and amino acids. Proc. Int. Seaweed Symp. 6: 589–594.
- Schmidt-Nielsen, S., and L. Hammer. 1932. Über den hohen Furfurolge-halt von Rhodymenia palmata. Kgl. Norske Videnskab. Selskab. Forh. 5: 158–161.
- Scott, R. 1954. Observations on the iodo-amino-acids of marine algae using iodine-131. Nature 173: 1098-1099.

-----, and L.-E. Ericson. 1955. Some aspects of cobalt metabolism by *Rhodymenia palmata* with particular reference to vitamin B₁₂ content. J. Exp. Bot. 6: 348-361.

Seybold, A., and K. Egle. 1938. Quantitative investigations of the chlorophyll and carotenoids of sea algae. Jahrb. Wiss. Bot. 86: 50–80.

Smith, D. G., and E. G. Young. 1952. On the nitrogenous constituents of algae. Proc. Int. Seaweed Symp. 1: 54–59.

----, and ------. 1955. The combined amino acids in several species of marine algae. J. Biochem. 217: 845-853.

Strohal, P., and T. Pinter. 1973. Thorium in water and algae from the Adriatic Sea. Limnol. Oceanogr. 18: 250–253.

- Sturgeon, R. J. 1973. Determination of the degree of polymerization of xylans. Carbohydr. Res. 30: 175–178.
- Swartz, M. D. 1911. Nutrition investigations on the carobhydrates of lichens, algae and related substances. Trans. Connecticut Acad. Arts Sci. 16: 247–382.
- Turvey, J. R., and E. L. Williams. 1970. The structures of some xylans from red algae. Phytochemistry 9: 2383–2388.
- van der Velde, H. H. 1973a. The use of phycoerythrin absorption spectra in the classification of red algae. Acta Bot. Neerl. 22: 92–99.
- ——. 1973b. The natural occurrence in red algae of two phycoerythrins with different molecular weights and spectral properties. Biochim. Biophys. Acta 303: 246–257.
- Vinogradov, A. P. 1953. The Elementary Chemical Composition of Marine Organisms. Memoir #2, Sears Foundation for Marine Research. Yale Univ., New Haven, Connecticut.
- Waaland, J. R., S. D. Waaland, and G. Bates. 1974. Chloroplast structure and pigment composition in the red alga *Griffithsia pacifica*: regulation by light intensity. J. Phycol. 10: 193–199.
- Wagner, H., and P. Pohl. 1966. Fatty acid biosynthesis and evolution in plant and animal organisms. Phytochemistry 5: 903–920.
- Wood, B. J. B. 1974. Fatty acids and saponifiable lipids. Bot. Monogr. 10: 236-265.

World Health Organization. 1965. Protein requirements. WHO Tech. Rep. Ser. 301.

- Wright, J. L. C. 1979. Unpublished data.
- Young, E. G. 1948. Chemistry of seaweed extracts and their uses. Conf. Utilization of Seaweeds, Halifax, 1948. National Research Council of Canada.
- ———. 1964. The concentration of nucleic acids in some common marine algae. Canad. J. Bot. 42: 1471–1479.
- ——. 1966. The chemical nature of the insoluble residue after severe extraction in some Rhodophyceae and Phaeophyceae. Proc. Int. Seaweed Symp. 5: 337–346.
- ——. 1970. A comparison of the soluble proteins in various species of algae by disc electrophoresis in polyacrylamide gels. Phytochemistry 9: 2167–2174.
- ——, and W. M. Langille. 1958. The occurrence of inorganic elements in marine algae of the Atlantic provinces of Canada. Canad. J. Bot. 36: 301–310.
- Youngblood, W. W., M. Blumer, R. L. Guillard, and F. Fiore. 1971. Saturated and unsaturated hydrocarbons in marine benthic algae. Mar. Biol. (Berlin) 8: 190-201.