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Abstract: A closed-form analytic solution of two-dimensional scattering and diffraction of plane SH waves by a semi- 
cylindrical hill with a semi-cylindrical concentric tunnel inside an elastic half-space is presented using the cylindrical wave 
functions expansion method. The solution is reduced to solving a set of infinite linear algebraic equations. Fourier expansion 
theorem with the form of complex exponential function and cosine function is used. Numerical solutions are obtained by 
truncation of the infinite equations. The accuracy of the presented numerical results is carefully verified. 
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I Introduct ion  

One of  the most important problems in earthquake 
engineering and seismology is to explain the 
amplification or deamplification effects to earthquake 
responses by surface and subsurface topography. 
Due to the difficulties in formulating the solutions, 
very limit analytical solutions are hitherto available: 
semi-cylindrical alluvial valley (Trifunac, 1971), 
semi-elliptical alluvial valley (Wong and Trifunac, 
1974), circular underground cavity (Lee, 1977), semi- 
cylindrical hill (Yuan and Men, 1992), and cylindrical 
hill of  circular-arc cross-section (Yuan and Liao, 1996). 
Furthermore, most of  the analytical solutions focus on 
certain topography, such as a canyon, valley, hill or 
cavity, etc. The interaction between topography and 
substructure, such as between a tunnel or cavity, is not 
as frequently studied. Diffraction from a canyon above a 
subsurface unlined tunnel (Lee et al., 1999) and multiple 
foundations above a subway (Lee and Chen, 1998) have 
been examined. Hilly topography is also a common local 
surface irregularity. In reality, a mountain tunnel is very 
common. It is necessary to consider the influence from the 
site effect when tunnels or pipes are constructed through 
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mountains in seismic areas. Again, cavities are ordinary 
in a mountainous area, especially in the karst region. 

In this paper, a closed-form analytic solution of  
two-dimensional scattering of  plane SH waves by 
a semi-circular cylindrical hill with a semi-circular 
concentric tunnel inside on a half-space is presented 
using the wave functions expansion method. The 
solution is reduced to solving a set of  infinite linear 
algebraic equations. Unlike the former paper (Yuan and 
Men, 1992), Fourier expansion theorem with the form 
of both the complex exponential function and cosine 
function are used. Numerical solutions are obtained by 
truncation of  the infinite equations and singular value 
decomposition method. The efficiency of  the computer 
program is improved distinctly by using the Fourier 
expansion theorem algorithm with the form of  complex 
exponential function as opposed to the sines and cosines 
trigonometric function. The accuracies of  the numerical 
results are checked by the convergence of  the ground 
surface displacement and residual errors of  boundary 
conditions by increasing the truncation order. The effects 
of  the frequencies, incident angles of  the incident waves 
and the radius of  the tunnel on displacement amplitude 
of  ground surface are illustrated. It was shown that the 
existence of  a hill and tunnel has a significant effect on 
the ground surface motion nearby. 

2 Mathemat i ca l  m o d e l  

The cross section of  the two-dimensional model 
studied in this paper is shown in Fig. 1. It represents an 
elastic, isotropic and homogeneous half-space with a 



250 EARTHQUAKE ENGINEERING AND ENGINEERING VIBRATION Vol.3 

semi-cylindrical hill of radius a. There is a semi-circular 
concentric tunnel inside the hill. The free surface of the 
half-space consists of a flat surface F and semi-circular 
hilly boundary L. The upper and flat ground boundary 
of the semi-circular tunnel are marked as L 1 and /"1 
respectively. The radius of the tunnel is a~. The height 
and half-width of the hill is h and b. For the semi- 
cylindrical hill, b=h. 

b ( 

- '1\ 0/k/l~egion V /1' / 
\ L \,, r~// I w(V~, / /  1/Region H 

\ \  Region C / / ~  

L 

Fig. 1 Mathematical model 

For the convenience of using wave functions for the 
solution, the half-space can be divided into three parts 
as shown in Fig. 2. The first one is the annular region C 
including the hill, whose outer upper and lower boundary 
are L and L respectively, and the inner upper and lower 
boundary are L~ and L~. The second region is the half- 
space canyon H, which has a common boundary, L_ with 
region C and a flat ground surface boundary/'. The last 
region is the semi-circular region V, the semi-circular 
"valley" region bounded by/'~ and L~ . The original 
model is thus divided into three individual regions and 
a Fourier-Bessel wave function expansion is used in 
each of these regions. The boundary conditions are: 
the traction-free boundary conditions on L in region C; 
the traction-free boundary conditions on F in region H; 
the traction-free boundary conditions on/'~ in region V; 
displacement and stress continuity boundary conditions 
on L between region C and H; and displacement and 
stress continuity boundary conditions on L I between 
region C and V. Note that there are two different 
boundary conditions on the full circular boundary such 
as L+L and L~+L~. Therefore, this model is a mixed 
boundary problem. 

F I 

L L~ 
Ar____ ' / ~ / / "  Region// L 

Fig, 2 Division of the half-space 

3 Incident and scattered waves: Fourier-Bessel 
series expansion 

The excitation of the half-space consists of a steady- 
state set of incident plane SH waves, with an angle of 
incidence ~, and particle motions in the z-directions (anti- 
plane). It can be represented in the Cartesian coordinate 
system with origin in O by 

where i = ~ means the imaginary unit, c and c are 
x y 

the phase velocities along the x-direction andy-direction, 
respectively, o9 and w 0 are the circular frequency and 
amplitude of the waves. In Eq. (1), the time factor 

exp(-io9t) is omitted, similarly hereinafter. 
The displacement in the half-space region H can be 

expressed by 

w = w Iff) + w (s) (2) 

where w ~f~ represents the free field displacement 
in the half-space; and w ts) represents the scattering 
displacement resulting from the interaction between the 
half-space and boundary L. 

The total displacement field w must satisfy the 
steady-state elastic wave equation (Helmholtz equation) 
(Pao and Mow, 1973) 

~2 w 1 Dw 1 Dew 1 DZw 
- - + - . - - +  - - -  ( 3 )  
Dr 2 r Dr r 2 DO e co 2 Dt 2 
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and the traction-free boundary conditions 

r,-lo=o,~ = 0 at (r, 0) ~ F (4) 

ro_.lo=o " = 0 at (r, 0) ~ F, (5) 

ri,.,,, = 0  at (r, 0) e L (6) 

r,:[,. '~2 = 0 at (r, 0) c L~ (7) 

where the hoop stress r~j~ and the radial stress r,~ 
given by 

are 

Ow 
to= - (8) 

r O0 

v ~: = I . t - -  
~ w  (9) 
Or 

where/L is the shear modulus. 
The free field displacement w (~ consists of  the 

incident wave, w 0) and its reflected wave w ~) on the flat 
ground surface 

w (~)= w (i/+ w ~" (10) 

w ~ given by Eq. (1), and the reflected plane SH wave 
w I~ is given by 

w(~'=woexp[-ico(t+x/c -y/c~,)]  (1l) 

Substitute c x = c l /cos  7 and c = cSsin7 into Eqs. (1) and 
(11), in which % is the velocity of  the incident SH wave. 

{ w ' ~  w o exp[ - ik (x  cos ~/+ ys in  },)] 

w ~t = w o exp[- ik(xcos~ '  -ys inT/ ) ]  
(12) 

in which k = co/% is the wave number. 
By x=rcosO, y=rsinO and the expansion theorem 

(Abramowitz and Stegun, 1972) 

exp(+ikrcosO)= ~ c ,  (+i)" J ( k r ) cosn0  
n=0 

(13) 

the free field displacement in the polar coordinate system 
(r, 0) can be written as 

w'"'(r,O)= wo 2 o.,,Jo( )cos.O 
n=O 

where J( . )  is the Bessel function of  the first kind with 
order n, and 

ao," = 2E.(- i)"  cosny (15) 

in which % = 1, e,, =2, for n= 1, 2, 3 .... Inserting Eq. (14) 
into (9) leads to 

(16) 
n=O 

where r 0 = ttkw o, representing the stress amplitude of  the 
free-field waves. 

The general solution of  Eq. (3) satisfying the zero- 
stress free-field boundary condition Eq. (4) is 

wI~)(r,O) = w o E  A, H~U(kr)cosnO (17) 
~1=11 

which represents the scattering wave w ~'t resulting 
from L.  A,,, n = 0, 1, 2, ... is complex coefficient to be 
determined and 1- ~) " 1 (-) is the Hankel function of  the first 
kind with order n. 

Inserting Eq. (17) into Eq. (8), the stress on the 
ground surface can be expressed as 

v~o~'(r,O) - n#w~ ~,A,,Hr (18) 
F n=0 

Apparently, 0 is equal to 0 or x on the boundary E 
resulting in the zero stress boundary condition Eq. (4) 
satisfied. 

Inserting Eq. (17) into Eq. (9) gives 

r ~ ) ( r , 0 )  =ro~AH~';(kr)cosnO (19) 
n=O 

The total displacement in the cylindrical region 
C resulting from the refracted waves as inward and 
outward propagating from boundaries L , L and L~, L t 
separately and satisfying Eq. (3) can be represented as 

wIC)(r,O) = w o ~ [ B(UH~U(kr) + B(2~H(2)(kr)l e i.0 
L tl n . . n " " " _ l  

(2o) 
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where B <~, B/2) are respectively the constant coeffi- 
cients of the outgoing ( H  ~ ~}) and incoming ( H  {'~) Hankel 
wave functions, to be determined. Inserting Eq. (20) into 
Eq. (9) gives 

= (2)H(2)' kr e i"~ r:C)(r,O) r o ~7~[BJ, l)H(,i)'(kr)+B,, , ( )] 

(21) 

The inward wave w m in region V satisfying Eq. (3) 
and traction-free boundary condition Eq. (5) is given by 

w~Vl(r,O) = w o E C ,  J,(kr)cosnO (22) 
n = O  

where C are constants to be determined. Inserting Eq. 
(22) into Eq. (8) leads to 

r(V)tr ti~- nlxw~ ffs o: t ,~ , C,,J,(kr)sinnO (23) 
r n=0 

On the fiat ground surface F~ of the tunnel, 0 is equal to 
0 or =. It is easy to realize that the zero stress boundary 
condition Eq. (5) is satisfied strictly. 

Inserting Eq. (22) into Eq. (9) leads to 

1 (c) 
~ (0) =--r , . :  (a,O) 

T O 

= ~_.~[B,<l,H<,li'(ka)+B,2>,, Hn(2)' ( k . ) j  ~ ~,-] ~inO 

t2[ 0 = ] (s) r~!i)(a,O)+rr: (a,O) , 
[ To - 

- x < 0 < 0  

0 < 0 < x  

rE] 0 , 

ao.,,J;(ka)+A,,H~,,'r(ka)]cosnO , 0<0  <r~ 

(27) 

From Eq. (27), q~(O) has an exponential Fourier series 
expansion on 0 ~ [-~, rt] 

q~(O)  = y_~ b,,e ~''~ (28) 
t t = - ~  

where, b = ~-~L~(O)e-i"~ , f o r n : 0 , ~ l , •  

Compare Eq. (28) with Eq. (27), explicitly 

r~ v)  ( r , O )  : r o ~ C . J  ' ( k r ) c o s n O  (24) 
tl=O 

4 M i x e d  b o u n d a r y  cond i t ions  

All the waves expanded as Fourier-Bessel series in 
each region are presented. In what follows, the boundary 
conditions are introduced and the equations derived for 
the constant coefficients. 

4.1 Stress continuity condition on L and the 
traction-free condition on L: 

r(C)(r,0) = (n) +r(s) rr: (r,O) ~ (r,O), (r,O)e L (25) 

r~['l(r,O) = O, (r,O)e L (26) 

and 

b,,- o) o)' B(2)Hi2)'(ka] - B,, H,, ( ka )  + . . . . .  (29) 

1 x - inO 
b. = ~ I '  q~,(O)e dO 

= ~ Ss ,,~o [a~ + AmHC":"(ka)] c~ e-i"~ 

+ ] . -  = A,.H<,Y(ko)  '7 . . . .  
' ~  #IS 0 L ' 

( 3 o )  

in which 

l p ~  + .  

r/re'-+" = ~ Jo cos mOe-'"~ = c(m, n) + is(m, n) 

(re=O, 1, 2, '"  ) ( n =  O, 1,2, . . . )  (31) 

Define an auxiliary function, q~(O), at r = a �9 with 



No.2 Vincent W. Lee et al.: Diffraction of  anti-plane SH waves by a semi-circular cylindrical hill with a tunnel 253 

I 1, 

c(m,n) = l iocosmOcosnOdO : 1/2, 

x [0, 

m = n = O  

m =] n Ig: 0 

m :lnl 

(32) 

s (m,n)=l  ;~ cosmOsinnOdO :.  

0 
( m + n  is even) 

2/'/ 
/~(n 2 - m  2) 

(m + n  is odd) 

(33) 

Therefore, compare Eq. (29) with Eq. (30), the boundary 
equation can be written as 

(1) (1)' 2.[B, H, (ka)+ (2) (2)' B H, (ka)]  

: ~[OO,mJ'm(ka)+ A,.h<.l,)'(ka)]rl.,_,, 
m=O 

(n = 0, +1, +2, ...) (34) 

4.2 Displacement continuity condition on L : 

w(C)(r,O)=w(fr)(r,O)+w(S)(r,O), (r,O)~ L (35) 

Define an auxiliary function ~1 (0) , for 0 e [0, rt]: 

q~l(O) = 1---w(C)(a,O ) 
Wo 

: s [ , , . ,  (ko) ] (1) (,) + B~2)H~ 2) (ka) e i'~ 
n = - ~  

=l--!-[w(ff)(a,O)+w(S)(a,O)] 
wo 

= ~[ao,.,Jm(ka)+ A,.H~)(ka)]cosmO 
m=O 

(36) 

It is easy to see that W~ (0) is (a cosine even) function 
about 0 in the interval [0, x]. Making 7~x(0) cosine 
series Fourier expansion on 0 e [0, x]: 

tPl(0 ) = ~ a , ,  cosm0 (37) 
m=0 

with 

a,,, =(e, /u tP~(O)cosmOdO,co =l,c,,, =2,m=1,2,3. . .  

Compare Eq. (37) with Eq. (36) 

and 

a m =ao.,,Jm(ka)+Amn,, , ~k ) (38) 

a,. =a,, ~ [B~,UHl,,')(ka)+ Bl,~-'Hl,,2'(ka)],l ...... (39) 

with q,,,.,, defined earlier in Eq. (31). Hence, compare Eq. 
(38) with Eq. (39) 

e,, ~ [B,(,t)H(,,l)(ka)+ B(21H'2)(ka)]r 
i 1 = - ~  

= a0,,,J,, , (ka) + A,,, Hr ) (ka) 

(m=0, 1,2, '") (40) 

4.3 Stress continuity condition on L~ and traction- 
free condition on L~: 

v~C)(r,O) =v~V)(r,O), (r,O)6 L, (41) 

(c) (42) r,.: ( r , 0 ) = 0 ,  (r,O)~ L, 

Define an auxiliary function (/)2(0), at r = a~: 

~ 2 ( O ) = l T f ~ ) ( a l , O )  
T O 

= < - r  , , , . ,  inO 

J O, - ~ < 0 < 0  

= 1 (r) I--L.[ (a,,O), O < O < x  
[ %  

o, 

C,J',, ( kat ) cos nO, 

- x < O < O  

O<O<_x 

(43) 



254 EARTHQUAKE ENGINEERING AND ENGINEERING VIBRATION Vol.3 

Similarly, making Eq. (43), q)2(0), an exponential 
Fourier series expansion on 0 ~ [-~, ~] 

~2(0) = ~ b'ne i'~ (44) 

where, b',=-~xl~qO2(O)e-iO~ , for n= 0, +l,  +2, ... . 

Compare Eq. (44) with Eq. (43) 

b' n (0 (l)' B(2) (2; =B,' H n (ka,)+ , H, (ka,) (45) 

and 

Fourier expansion on 0 ~ [0, n]: 

7,2(O)= ~ a'm COSmO 
m=O 

where 

a'm=(g/X cos0d0 ; 

as in Eq. (37). 

Compare Eq. (49) with Eq. (50) 

m =0,1,2... 

and 

(50) 

a' m = CmJ m (ka I ) (5 1) 

b',:~xLdP2(O)e-i"~ 

=~--x~:oCmJ'm(kal)cosmOe-i"~ 

l ~. CmJ'm(kal)rlm,_" (46) 
m=0 

in which, ~/m,. is just like Eq. (31). Hence, compare Eq. 
(45) with Eq. (46) 

2 B~"H~'"(ka,)+B~2)H~2"(ka~) = [ ] ~ f m J m ( k a l ) F I m , - n  
m=O 

(n = 0, +1, +2, "") (47) 

4.4 Displacement continuity condition o n  L, : 

wW)(r,O) = w~V)(r,O), (r,O)6 L, (48) 

Define an auxiliary function 7,2 (0) . When 0 ~ [0, ~], 

7,2 (0) = ~ w w) (al, 0) 
w0 

= ~ [B~"H~l'(ka,)+ B'2'H ' 2 ' ,  . (ka,)j~-,-I~i,0 

= l_~w,V)(a,,O)= ~ CmJm(kal)cosmO 
1420 m=0 

(49) 

It is easy to see that 7,2(0) is an even function about 0 
in the interval 0 ~ [-~, ~]. Making 7,2(0) cosine series 

a' m = ,z m f~ [BmH m (ka,) + B~2~H 12)'k ,q L . . . .  [ at)jrl .... 

(52) 

in which, rim,, is defined in Eq. (31). Combining Eq. (51) 
and Eq. (52) 

~m ~ [B~l'H~l)(kal) + B(2)n(2) 'k Cl n n [ al)J17m,n 

= CmJ m (ka  I ) 

(m=0, 1, 2 , '"  ) (53) 

The system of equations resulting from boundary 
conditions deduced above is Eqs. (34), (40), (47) and 
(53). Using Eq. (40), the set of coefficients {Am}can be 
expressed in terms of the sets {B ~l)} and {B/2)}. Then, 
{Am} can be eliminated after substituting the expression 
into Eq. (34). After a series of simplifications, 
Eq. (34) can be written as a function only of the 
unknown sets of coefficients {B ~1)} and {BI2)}, 
resulting in the following infinite system of equations: 

(2) ," ~ D(2 )  Lr-m(l)(ka)'nl B] 1) + m~n, [ k u l ' D l  ] =  mn 

(n = 0, +1, +2, "- ) (54) 

in which 

( j )  M,, (ka)=E~'(ka)H'tJ~(ka)-H~J"(ka)6,, (55) 

1 ~ a H"r - J '  (ka)l mo: X 
_ [ H ,(ka) rim_, 

(56) 
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andd~= 0 i f n r  =l. (c) r ( ,O)l/ o (r,O)e L (60) 

(/ca) ( j )  : ~[~  ~*rn (J) '  E.I (ka) (57) and displacement 
m=0 2 C~mJ)(ka)qm'-n~Tm'l interface L and L I 

and stress residual errors on the 

with, forj = 1,2, 3, 4 

C2~(ka) : J~(ka). C22)(ka) = Ym(ka). 

C~m3)(ka) : H~'(ka) and C2)(ka)= H~)(ka) 

Similarly, for Eq. (46) and (52), we extract the set of 
coefficients {6",,} from Eq. (52) and substitute it into Eq. 
(46). With {6',,} eliminated, 

(2) ~ ) ,D(2) ~f.,[N~)'(ka,)B;" + N,, (ka,,t,, ] : 0  

(n = 0, • :52, ... ) (58) 

where, 

. i  tKa,) = E~l'(ka,)" H'/'(ka,)- H~" (ka,)'~., 

(59) 

I (w) I = I w'"~ (r.O) - w~"~(r.O)- w(S)(r,O) I/w o 

( r . 0 )e  _L (61) 

I e(z)l : [r~ c' (r ,O)-  r(,z ~) (r ,O)-  r2 ) (r,O)tit o 

(r,O)eL (62) 

le(w)] :l  w" '(r,o)- w ")(r,O)l/wo 

(r.O)e L I (63) 

c' (r, o ) -  C'(r ,o)  t/ o 

(r,O)e L, (64) 

and the stress residual error on the wall of the tunnel L 1 

(c) r Ic(Ol=lrrz ( ,O)l/ro (65) 

The system of Eqs. (54) and (58) can be solved by 
truncating the infinite matrix into a sufficiently large 
finite matrix. The number of terms considered must be 
large enough to satisfy the required accuracy. Because 
of the ill-condition of the matrix, in this paper, the 
equations are solved using the subroutines of LAPACK 
(Anderson et al., 1999) and using the SVD (Singular 
Value Decomposition) (Golub and Loan, 1996) method. 

If the term .B("H~o'"(ka)+B~o2'H~)'(ka) ,. , . - _  . . . . -  
is replaced by B,J (ka) m Eq. (34) and 

(1) ( I )  r~(2) T T(2) l /  x Bo H (ka)+z~ ta, tKa~ by B,J,(ka) in Eq. (40), 
and Eqs. (47) and (53) are eliminated, Eqs. (34) and 
(40) are reduced to the infinite set of linear algebraic 
equations for the analytical solution for the hill of a 
semi-circular cross-section (as the model of Yuan and 
Men, 1992). The numerical results show that these two 
solutions are equivalent. 

5 Surface d isplacements  and stress 
ampl i tudes  

The dimensionless parameters used in subsequent 
figures are defined as follows: stress residual error on 
the free surface L of the hill 

Since the stress residual errors on the free flat ground 
surface F and tunnel surface F~ equal zero strictly by 
setting the wave functions, they are not discussed here. 

Furthermore, the dimensionless frequency q is 
defined as the ratio of the width of hill 2a and wavelength 
of incident wave 2 (Lee, 1988): 

2a ka (oa 
77 . . . .  (66) 

Thus, the problem can be characterized in terms of 
the dimensionless frequency q, the radius of the tunnel to 
that of the hill afa, and the incident angle ),. 

The resulting motion will be characterized by Iwl, the 
dimensionless displacement amplitudes of total motion 
w, and relative phases on the free surface, where 

i W i= {[Re(w)l  2 + [Lrrl(w)] l r  .211/2 / w~ 

Phase(w)=tan-~(Im(w)/Re(w)) (r,O)c F + L 

(67) 
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in which Re(.) and lm(.) represent the real and imaginary 
parts of the complex argument, respectively. 

5.1 A n a l y s i s  o f  a c c u r a c y  

In order to determine the approach trend of  the 
numerical results to the genuine solution of  the 

problem, Figs. 3-6 demonstrate the behavior of  w e and 
r e on various boundaries for a =10.0, a~ = 5.0, y = 90 ~ 
different truncation order n and dimensionless frequency 
~/0/= 0.5 and 5.0). In all figures, the longitudinal axis is 
characterized by logarithmic coordinates. 

As seen from Figs.3-4, the errors on various 
boundaries do not converge synchronously. That is 

0.5 

0.1 

0.01 

i i , 

': .~" . ,  

f 
i I 

. . . . .  n - 7  
- - - n = 8  
. . . . .  n=9 

Jt , 

'0 II ij V "  ', 
!iV ~ ' '  : 

i '  
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r . .  

�9 , . " "  
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(b) Residual displacement on L 

Fig.  3 Res idua l  d i s p l a c e m e n t s  on var ious  b o u n d a r i e s  for  q = 0.5,  a~ a = 5/10,  7 = 90~ 
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Fig.  4 R e s i d u a l  s tresses  on var ious  b o u n d a r i e s  for r /=  0.5,  at/a = 5/10,  7 = 90~ 
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because there are two sets o f  Fourier transforms on two 
different circular boundaries, namely L+ L and Lt+ L l ,  
and their convergent  speed is not consistent. Besides, 
when the frequencies o f  incident SH waves are small, 
the truncation orders are also small. For instance, in 
Figs 3, 4 and 5, 6, the truncation orders are 10 and 29, 

respectively. Thus, both o f  these Fourier expansions 
may not converge together at the same truncation order. 
Figures 5-6 show that the displacement and stress errors 
approach zero with an increasing truncation order when 
the frequency o f  the incident wave grows larger. In 
fact, there is a similar phenomenon that appears when 
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the radius ratio al/a is too small or large. Therefore, 
in this analysis, only moderate cases are discussed for 
the purpose of  ensuring the accuracy of the numerical 
results. 

It can be seen from the above figures that the 
residual stresses at the outer rims and tunnel inner rims 
of  the hill remain at a relatively high value even with 
the truncation order n increase. One possible reason is 
that, as stated by Yuan and Liao (1996), the hill outer 
rims and tunnel inner rims are possibly singular points 
for stress. Further, the stress auxiliary functions q~,(O) 
and q~2(O) adopted from Yuan and Liao (1996) that were 
used here are discontinuous at the rims; namely, at the 
points of  0=0,zr the stress functions have 'jumps', from 
nonzero to zero values on the hill top. Expansion of  
discontinuous functions in terms of Fourier series will 
lead to Gibb's phenomena, namely overshooting at 
points of  discontinuity of  4~(0) and 42(0 ). Therefore, 
the stresses as well as displacements at the four rims are 

not accurate in this paper. However, Figs. 3-6 indicate 
that on average, all residuals converge to zero on the 
entire boundary of  auxiliary functions. This means that 
with Fourier series expansion, the effect of hill and 
tunnel rims on the accuracy of  the solution is limited 
only in the very small region near the hill and tunnel 
rims. The authors believe that reducing this discrepancy 
will require a new formulation and methods to solve 
this problem, without using the stress and displacement 
functions qs(O) and q~2(O) at the circular interface 
between the hill and half space. Further research on this 
subject is a high priority for the authors. 

5.2 Three dimensional figures 

Figures 7 and 8 show the surface displacement 
amplitudes, plotted versus the dimensionless distance 
x/a and the dimensionless frequency, r/, for angles of  
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Fig. 7 Displacement amplitudes versus dimensionless frequency: a l / a  = 5/10 
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Fig. 8 Displacement amplitudes versus dimensionless  frequency: al/a = 3/10 

incidence y = 90 ~ (vertical) and 0 ~ (horizontal) and 
corresponding to the radius ratio of  tunnel and hill as 
a/a=5/lO and 3/10. In these figures, the displacement 
amplitudes on the surface of  the hill are plotted along 
the axis x/a in the interval -1 < x/a <1. The point x/a=-1 
corresponds to the left rim of  the hill, x/a=O to the top 
and x/a = 1 to the right rim. The incident SH waves 
are assumed to arrive from the left (x/a<O) in all cases 
except that of  vertical incidence (y = 90~ It can be seen 
from the four figures that the complexity of  the surface 
displacements increases with increasing frequency r/. 
For horizontal incidence (7 = 0~ the complexity of  the 
surface displacement amplitudes increases on the side of  
the half space facing the incoming waves (x/a < -1),  and 
becomes relatively smoother on the other side (x/a > 1). 
The zone behind the surface (canyon, valley or hill) and 
subsurface (cavity or inclusion) topographies is often 
referred to as the shadow zone. 

The maximum amplitudes as high as 8.5 around 
when r /~  2.2 are observed near the left rim of  the hill 
in Fig. 7 (b). Liang et al. (2004), in studying diffraction 
of  SH waves by a hill with a concentric circular tunnel, 
made similar observations. However, in the study of  
diffraction of  SH waves by a hill without tunnel (Yuan 
and Liao, 1996), the displacement amplitudes only reach 
3.9. These phenomena may be explained by the fact 
that, some diffracted waves are more easily reflected 
repeatedly between the surfaces of  the hill and the top of  
the tunnel, resulting in a standing wave pattern (similar 
to an echo). This mechanism of  wave motion is similar 
to the diffraction of  SH waves by a canyon above a 
subsurface tunnel (Lee et al., 1999). At low frequencies 
(e.g., less than 0.05), the graph shows that every point 
on the half-space surface and the hill has displacement 
amplitudes close to 2.0; however, as frequencies 
slightly increase (e.g., larger than 0.1), the displacement 
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amplitudes in the hills can greatly increase as a result of 
diffraction. 

5.3 Two dimentional results of the ground surface 
displacements 

Figures 9-12 show the effects of the incident angle 
and dimension of the tunnel on the ground surface 
displacements. The calculated parameters are: ratio 
of tunnel and hill al/a = 3/10 and 5/10, dimensionless 
frequency ~/= 3.0 and 5.0, and four different incident 
angles of 90 ~ 60 ~ 30 ~ and 0 ~ 

From viewing the figures below, we see that the 

incident angles of SH waves and the tunnel's dimension 
can both affect the pattern of the surface displacements. 
If there is no tunnel, a shadow zone is observed behind 
the canyon by horizontal incident SH waves (Yuan 
and Liao, 1996). The same phenomena is seen in the 
following figures. The displacement amplitudes behind 
the hill for horizontal incident SH waves are always 
lower than those of the free field and in front of  the 
hill. The same observations have also previously been 
made for the case of SH waves incident on a canyon 
(Cao and Lee, 1989) and underground cavity (Lee, 
1977). In Figs. 10 and 12, vertical incidence cases, 
ground motion is concentrated in the hill region (i.e., 
x/ae [-1,1]). The frequencies of incident SH wave are 
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close to certain natural vibration frequencies of  the hill- 
tunnel system, which cause resonances to occur in these 
two cases. 

6 C o n c l u s i o n s  

An analytical solution for scattering of  incident 
SH waves by a semi-cylindrical hill with a concentric 
semi-cylindrical tunnel was derived by wave function 
expansion and the auxiliary function technique. 
Complex exponential and cosine forms of  Fourier 
expansion theorem are used. This method may be 
applied to further studies involving mixed boundary 
problems. Observations are as follows: 

( 1 ) The amplification of  surface displacement ampli- 

tudes at some points around a hill can be as high as two 
times the free-field motions. 

(2) The utilization of  complex exponential and 
cosine forms of  Fourier expansion theorem can improve 
the efficiency and precision of  mixed boundary problems. 
However, the range of  resoluble cases is still limited by 
Gibb 's  phenomena, the complexity of  the model, and the 
precision of  the variables of  computer language. 

(3) The incident angles of  SH waves and the 
dimension of  the tunnel can both affect the pattern of  the 
surface displacements. In hills with no tunnels, a shadow 
zone is observed behind the canyon. 

(4) The dimensionless frequency r/plays an important 
role in determining the displacement patterns. Larger 
values of  r /wil l  result in more complex displacements 
and higher amplifications. 
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