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Stochastic seismic response of structures with added viscoelastic dampers 

modeled by fractional derivative 

Ye Kun( I1]" [~) t ,Li Li(~fi~-) * and Tang J i a x i a n g ( ) ~ )  * 

School of Civil Engineering, Huazhong University of Science and Technology, Wuhan 430074, China 

Abstract: Viscoelastic dampers, as supplementary energy dissipation devices, have been used in building structures un- 
der seismic excitation or wind loads. Different analytical models have been proposed to describe their dynamic force deform- 
ation characteristics. Among these analytical models, the fractional derivative models have attracted more attention as they 
can capture the frequency dependence of the material stiffness and damping properties observed from tests very well. In this 
paper, a Fourier-transform-based technique is presented to obtain the fractional unit impulse function and the response of 
structures with added viscoelastic dampers whose force-deformation relationship is described by a fractional derivative mod- 
el. Then, a Duhamel integral-type expression is suggested for the response analysis of a fractional damped dynamic system 
subjected to deterministic or random excitation. Through numerical verification, it is shown that viscoelastic dampers are ef- 
fective in reducing structural responses over a wide frequency range, and the proposed schemes can be used to accurately 
predict the stochastic seismic response of structures with added viscoelastic dampers described by a Kelvin model with frac- 
tional derivative. 
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1 Introduction 

For years, viscoelastic dampers have been widely 

used not only for improving residential comfort under 

strong wind conditions, but also for enhancing struc- 

tural safety against large earthquake ground motions. 

There are many examples, such as World Trade Cen- 

ter in New York City and Columbia Center in Seattle, 

USA, where viscoelastic dampers were applied suc- 

cessfully to improve the structural performance under 

dynamic loads. For the design of structures with add- 

ed viscoelastic dampers, it is important to develop or 

select an accurate force-deformation model and a con- 

venient analytical procedure to calculate the dynamic 
response for different installation options. 

A typical viscoelastic damper consists of thin lay- 
ers of viscoelastic material bonded between steel 

plates. It is well-known from previous tests that the 

force-deformation relationship of a viscoelastic damper 

dependents upon the frequency of the cyclic loading 

applied. It has also been shown that fractional 

derivative models describe the frequency dependence 
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of the viscoelastic damper very well ( Bagley and Tor- 

vik, 1983a; 1983b; 1985) .  One of the most fre- 

quently used fractional models is the three-parameter 

Kelvin model with fractional derivative (Bagley and 

Torvik, 1983) as follows : 

fro = kvouvo +cvoO (uvo> 0<a<l (1) 

In this model, the parameters uve and cve are the stiff- 

ness and damping coefficients of the damper, respec- 
tively, and D"(  �9 > = d~/dff denotes the fractional 

derivative operator. To represent the fractional deriva- 

tive, two fundamentals have been used. According to 
the Riemann-Liouville's definition (Miller and Ross, 

1993 ) ,  the fractional derivative can be expressed as: 

1 d f' f(~-) d~- (2) 
D"(f(t)} = V(1  - a )  " d t J o ( t - r )  

where F ( u )  = ~  t'L-le -u dt represents the Gamma 

function. 

Whereas in Caputo "s definition (Oldham and 

Spanier, 1974) ,  the fractional derivative is written in 

the following form: 

1 f[ f (T)  dr (3)  D ~ ( f ( t ) }  = F ( 1  - a ) "  ( t - T )  

Apparently, the equations of motion of the 
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structures equipped with supplemental viscoelastic 
dampers consist of a fractional derivative together with 
a regular derivative. The appearance of the fractional 
derivative leads to difficulty in the solution of these e- 
quations. It is harder to conduct the dynamic response 
analysis of these structures, let alone perform a sto- 
chastic analysis. However, some numerical schemes 
have been formulated to solve such equations. For in- 
stance, an L1 method based on the Riemann-Liouville 
definition was proposed by Koh and Kelly (1990)  
and Suarez and Shokooh (1997) .  On the other hand, 
Bagley and Torvik (1985)  and Bagley and Calico 
( 1991 ) adopted the modal decomposition approach to 
develop a general solution using the Mittag-Leffer 
functions. For seismic response analysis of multiple- 
degrees of freedom structures with added viscoelastic 
dampers modeled by a fractional derivative, Chang 
and Singh (2002)  proposed the modal superposition 
formulation. On the whole, the above schemes are 
carried out in the time domain, not the frequency do- 
main. As is well-known, considering the frequency 
dependence in the time domain is difficult. 

As for stochastic analysis of the viscoelastic struc- 
tures with fractional derivatives, some scholars used 
fractional calculus to model their statistical behavior. 
Mainardi (1997)  presented a fractional calculus ap- 
proach to model the Brownian motion, and his formu- 
lation led to a fractional Langevin, which is solved by 
using the Laplace transform technique. At the same 
time, Spanos and Zeldin (1997)  presented a fre- 
quency-domain approach for random vibration analysis 
of fractionally damped systems. Recently, Agrawal 
(1999) presented an analytical scheme for stochastic 
dynamic systems whose damping behavior is described 
by a fractional derivative on the order of 1/2. In this 
approach, the eigenvector expansion method and the 
properties of Laplace transforms of convolution inte- 
grals were used to obtain the desired results. Howev- 
er, the stochastic seismic analysis of structures with 
added viscoelastic dampers modeled by a fractional 
derivative has not been reported. Therefore, there is 
a need to investigate this process, especially to ex- 
plore the effect of the parametric behavior of the vis- 
coelastic dampers on the seismic response of the 
structure. 

In this paper, an analytical scheme for stochastic 
seismic analysis of a SDOF structure with added vis- 
coelastic dampers is proposed. A Fourier transform 
approach is first presented to obtain the fractional unit 
impulse response function and the Duhamel integral- 
type closed-form expression for the response of the 
system. The method is applicable to deterministic as 
well as random input. Then, these expressions are 
used to obtain the stochastic seismic response of these 

types of structures. The responses are achieved 
through a set of important parametric variables of the 
viscoelastic dampers modeled by a fractional deriva- 
tive. 

2 Fractional  dynamic  model  and general  
solution 

Under earthquake excitation, the differential 
equation of a SDOF structure with added viscoelastic 
dampers whose force-deformation relationship is de- 
scribed by a fractional derivative can be written as:  

rex( t )  + c x ( t )  + cveD~(x(t)  } + 

(k  + k v , ) x ( t )  = - m a ( t )  (4)  

where m, c and k represent the mass, damping and 
stiffness coefficient, respectively, kv, and Cve are, re- 
spectively, the stiffness and damping coefficients of 
the damper, and a ( t )  is the ground acceleration. 
Note that the dimension of Cv, is not the same as that 
of the general damping coefficient, c. 

Eq. (4)  can also be written as:  

x( t )  + 2~:to~ x ( t )  + (.O2X(t) + 2~:veO)ve D ~ ( x ( t )  ) + 

O)2v~X(t) = - a ( t )  (5)  

where w, = kff~m, ~: = c/2nuo n 

O) ve = kvff-ff~ffm~/m , 71 = Cvr 

For the Riemann-Liouville derivative ( i. e. , when 
D" = DR ) ,  the application of the Fourier transform to 
Eq. (5)  leads to : 

H( to )X(w)  = - A ( w ) + ( i t o ) . P ,  +P2 (6)  

where X ( w )  and A(to)  are the Fourier transform of 
x ( t )  and a ( t ) ,  respectively, and H (to) is an indi- 
cial polynomial defined as:  

2 2 O(to) = o)2 + COve - -  to "~ i2~:W.to + 2~L~tow(ito) ~ 

(7)  

transform of Eq. (6)  , one obtains : 

x(t)  = x . ( t ; x ( 0 )  ; ~ ( o ) )  - [' 
d O  

h ( t  - ~:) a(t)  d~: 

(8) 
wherex R( t ;  x ( 0 ) ;  x ( 0 ) )  is the response of the 

the constants Pj and P2 are given as:  

P, = x(O) 

P2 = x ( 0 )  + 2s~vjOve DR -I 

and the fractional derivative of x ( t ) a t  t = 0 can be ob- 
tained using an extension of the initial value theorem 
for the Fourier transform. Taking the inverse Fourier 
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system corresponding to the initial state only, and 

h( t )  = F - ' [ 1 - - ~ ]  
tH(w)J  

is the fractional unit impulse response function. The 
subscript R in the variables above is referred to as the 
Riemann-Liouville derivative. Differentiating Eq. (8) 
with respect to time and using the properties of the 
fractional unit impulse response function, the follow- 
ing is obtained: 

x( t )  = XR(t ; X(0);  X(0))  -- f [ / t ( t - ~ ) a ( t ) d ~  

(9) 

For Caputo derivative ( i. e. , when D" = D~ ) ,  
the application of the Fourier transform to Eq. (5 )  
leads to : 

H ( w ) X ( w )  = - A ( w )  +C~(w)x(O)  "l- C 2 ( o ) ) x ( 0  ) 

( l O )  

where 

C,(w) = iw +a(iw)("- l )  

= 1 

taking the inverse Fourier transform of Eq. ( 10 ) ,  
gives 

x( t )  = xc(t ; x (O);x (O)  ) - [ o ' h ( t - ~ ) a ( t ) d ~ :  
J U  

(11) 

where Xc represents the response of the system corre- 
sponding to the initial state only when the Caputo 
fractional derivative is considered. Differentiating Eq. 
(11 ) with respect to time and using the properties of 
the fractional unit impulse response function, the fol- 
lowing is obtained: 

x( t )  = Xc(t ; x (0 ) ;  x ( 0 ) )  - f o ] Z ( t - ~ ) a ( t ) d ~  

(12) 

Eqs . (8 ) [o rEq .  ( 9 ) ] a n d ( l l )  [orEq. (12)1 
represent general closed-form solutions for the dis- 
placement and the velocity for Eq. (4) or (5) corre- 
sponding to the Riemann-Liouville (the Caputo) frac- 
tional derivative. Note that these equations contain 
two parts, the force and initial condition, each on the 
right-hand side.. The force part represents the zero- 
state response, and the initial condition part repre- 
sents the zero-input response. These equations are 

similar to the Duhamel integral solution for a linear 
system. Therefore, they can be considered as the Du- 
hamel integral formula for the dynamic system de- 
scribed by Eq. (4) .  Also note that the fractional unit 
impulse response functions for the two fractional oper- 
ators are the same. 

3 Stochastic response analysis 

Eqs. ( 8 ) ,  ( 9 ) ,  (11) ,  and (12) are applicable 
for an arbitrary forcing function, and therefore, they 
are also applicable for a random input. For stochastic 
analysis, a ( t )  is considered as a Gaussian random 
process with a zero mean function and a specific cor- 
relation function R( t ,u)  , i. e. , 

E[a]  = O, (13) 

R ( t , u )  = E [ a ( t ) a ( u ) ]  (14) 

where E is the expectation operator. The process 
a( t )  need not have a zero mean function, however, 
this assumption is made for simplicity. Applying E to 
Eqs. ( 8 ) ,  ( 9 ) ,  (11)  and ( 1 2 ) ,  and using Eq. 
( 13 ) ,  the mean function for displacement and veloci- 
ty process is obtained as 

x( t )  : E [ x ( t ) ]  = x . ( t ; x ( O ) ; x ( O ) )  (15) 

s  = E [ x ( t ) ]  =XR( t ;x (O) ;x (O) )  (16) 

for the Riemann-Liouville fractional derivative, and 

x(t) =E[x(t)] =Xc(t;x(O);x(O)) (17) 

s = E [ x ( t )  ] =Xc(t ;x(0) ;x (0 ) )  (18) 

for the Caputo fractional derivative. Using Eqs. ( 8 ) ,  
( 9 ) ,  ( 1 1 ) ,  and (12 )  and Eqs. (15)  through 
(18) ,  it follows that for both derivatives 

x( t ) - E[ x( t ) ] = - fo h( t - sr 

(19) 

t 

- E [  ] = - fo h ( t  - 

(20) 

Using Eqs. (13) ,  (14) ,  (19) and (20) gives 
the variance and covariance function as follows 

t t 

E[(x ( t )  - E [ x ( t ) ] ) 2 ]  =f l f l  h ( t - ~ , ) h ( t - ~ 2  ) x 

R(~:, ,~2 ) d~:, d~% (21) 

E[ (:~(t) - E[ t) l =f[ f[ t t • 
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R(E, ,6  ) d6 (22)  

E[x(t) - E[x(t) ] ] E[ ( x ( t )  - E[:~(t)  ] ] = 

l l 

flfl h(t-~l)/Z(t-~2)R(~l'~2)d~'d~2 (23) 

Note that in the above derivative, the initial con- 
ditions are assumed to be deterministic. For random 
initial conditions, the above equations can be modi- 
fied using an approach similar to that for a stochastic 
damped system of order 1. 

Eqs. ( 19 ) through (23 )  provide the stochastic 
response of the system for a general class of random 
ground motion. For the case of white noise with spec- 
tral density function, S(to) = So, and the correspond- 
ing correlation function R ( t, u ) = 2'rrS06 ( t - u ) ,  
Eqs. (21)  through (23)  reduce, after some algebra- 
ic manipulation, to 

S ' E [ ( x ( t ) - E [ x ( t ) ] )  2] = 2"tr 0s h2(~:)d~ (24)  

S t E [ ( x ( t )  - E [ x ( t ) ] )  2] = 2~  os /~2(~)d~ (25)  

E[(x(t) -E[x( t ) ] )  (x(t)  - E [ x ( t ) ] ) ]  = 2 ~ S  O • 

s h(sC)/~(~) d~: (26)  

However, the random behavior of the ground is 
generally presented by the power spectral density 
function. The power spectral density of ground accel- 
eration is modeled as filtered white noise, such as the 
Kanai-Tajimi Spectrum : 

1 + 4~:2g((.O/(.Og) 2 
S (w)  = [1 - (w/ws)2 ]  2 +4~zs(w/w~) 2 SO (27)  

where wg and ~:g are the filter parameters; and S o is 
the spectral density of the input white noise. The cor- 
responding correlation function can be expressed in 
the following form: 

,rrS 0 
n(t,u) = ~ [  e-e~g('-a) { (1 + 4~2s)cos[~s(t - u) ]  

~ g  (.Og 
+--~-g  (1 -4SC2g)Sin[~-s ( t -u) ]}  (28)  

where ~g = cog ~ -  se2g. 

Closed form or numerical computation requires 

knowledge of h ( t )  and /~ ( t ) .  In Appendix I ,  the 
MATLAB computer program for the fractional unit im- 
pulse response function h ( t )  using the fast Fourier 

transform method is presented. Its derivative /~ ( t )  
can be obtained in a similar way. Note that an eigen- 
vector expansion approach for obtaining equations with 

o~ = 1/2 was presented by Agrawal ( 1 9 9 9 ) .  The 
scheme presented is general and applicable to all frac- 
tional derivatives of positive rational order. 

Eqs. (21)  through (23)  (or Eqs. (24)  through 
(26 )  ) can be used to compute the stochastic re- 
sponse of dynamic systems. The approach is similar to 
the impulse function approach to find the stochastic 
response of damped systems of order 1. The above 
formulations present expressions of covariance func- 
tions for an SDOF system only. For MDOF systems, 
the formulation can be developed in a similar manner. 

4 Numerical study 

In this section, numerical results of parametric 
studies on the stochastic behavior of a structure with 
added viscoelastic dampers modeled by fractionally 
derivative are given and compared with those obtained 
for a structure without added viscoelastic dampers. In 
the numerical calculation, it is assumed that to n = 

6.28rad �9 s - l ,  ~ :=0 .02 ,  and Wve = l . 5 7 r a d  �9 s -l 
Moreover, the filtered white noise is used as the ran- 
dom earthquake excitation with S O = 8 .83  x 10 -3 x 

m3/(rad �9 s -3) , w s =12.56rad �9 s -I and sr : 0 . 5 .  
Figs. 1 through 5 show, respectively, the obtained 

fractional unit impulse response functions h ( t )  and 

/~ ( t ) ,  the time variation of the variance function 
E Ix z] and E l y  2 ] , and the eovarianee function 
E[xv] w i t h e = 0 . 6  for 7 / = 0 . 1 , 0 . 5 , 1 . 0  and 5 .0 .  
Here v = x. These numerical results confirm that vis- 
coelastic dampers can be effectively used to reduce 
the structural responses over the entire frequency 
range. It is also not surprising that as r/ increases, 
the values of these functions decrease. Note that both 
fractional unit impulse response functions h ( t )  and/z 
( t )  exhibit oscillation characteristics of an over- 
damped system when r /= 5.0.  
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Fig. 1 Fractional unit impulse response function h (t) (tr 
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Similar results are plotted in Figs. 6 through 10 
with 77=0 .5  for a = 0 . 2 ,  0 . 4 ,  0 . 6 ,  0 .8 .  From 
these figures, it is seen that when a increases, all 
related functions decrease. However, compared to the 

effect of "r/ shown in Figs. 1 through 5, ol has less of 
an effect on the impulse functionsh ( t )  and h ( t ) ,  and 
a comparable effect on variance function E [ x 2 ] and E 
[ v 2 ] ,  and covariance function E [ x v  ]. These condi- 
tions are true for the variation range of r/and r/values 
that were assumed in the numerical calculation. 
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5" Conc lus ions  

A Fourier-transform-based technique has been 
presented to obtain the fractional unit impulse 

response function and the response of a single-degree- 
of-freedom structure with added viscoelastic dampers 
whose force-deformation relationship is described by a 
fractional derivative model. A Duhamel integral-type 
expression has been presented for the response of 
fractional damped dynamic systems that may be sub- 
jected to deterministic or random input. These expres- 
sions are used to obtain the stochastic response of the 
structure subjected to random ground motion. 
Through numerical verification, it is shown that visco- 
elastic dampers can be effectively used to reduce 
structural responses over the entire frequency range, 
and the proposed schemes can be used to accurately 
predict the stochastic seismic response of structures 
with added viscoelastic dampers modeled by fractional 
derivative. 

References  

Agrawal OP (1999),  "An Analytical Scheme for 
Stochastic Dynamic Systems Contain Fractional Deriv- 
ative," Proceedings of the American Society of Me- 
chanical Engineers Design Engineering Technical Con- 
ferenees Las Vegas, NV, September 1 2 -  15, Paper 
No : DETC99/BIV-8238. 

Bagley RL and Torvik PJ (1983a) ,  "A Theoretical 
Basis for the Application of Fractional Calculus to 
Viscoelasticity," Journal of Rhelogy, 27 ( 3 ) : 201- 
210. 

Bagley RL and Torvik PJ (1983b),  "Fractional Cal- 
culus-A Different Approach to the Analysis of Vis- 
coelastically Damped Structures," AIAA of Journal, 
21(5)  :741-210. 
Bagley RL and Torvik PJ (1985) , "Fractional Calcu- 
lus in the Transient Analysis of Viscoelastically 
Damped Structures," AIAA of Journal, 23 ( 6 ) : 918- 
925. 

Bagley RL and Calico RA ( 1991 ) , "Fractional Order 
State Equations for the Control of Viscoelastically 
Damped structures," Journal of Guidance, Control 
and Dynamics, 14 ( 2 ) : 304-311. 

Chang TS and Singh MP (2002) ,  "Seismic Analysis 
of Structures with a Fractional Derivative Model of 
Viscoelastic Dampers," Earthquake Engineering and 
Engineering Vibration, 1 (2) : 251-260. 

Koh CG and Kelly JM (1990),  "Application of Frac- 
tional Derivative to Seismic Analysis of Base-isolated 
Models," Earthquake Engineering and Structural Dy- 
namics, 19 : 229-241. 

Mainardi F ( 1997 ) ,  Fractional Calculus : Some Basic 
Problems in Continuum and Statistical Mechanics, 



No. 1 Ye Kun et a/.: Stochastic seismic response of structures with added viscoelastic dampers modeled by fractional derivative 139 

Springer-Verlag, New York. 

Miller KS and Ross B ( 1993 ) ,  An Introduction to the 
Fractional Calculus and Fractional Differential Equa- 
tions, New York: John Wiley and Sons, Inc. 

Nigam NC ( 1 9 8 3 ) ,  Introduction to Random Vibra- 
tion, MIT Press,  Cambridge. 

Oldham KB and Spanier J ( 1974 ) ,  The Fractional 
Calculus, Acdemic Press,  New York. 

Spanos PD and Zeldin BA ( 1 9 9 7 ) .  "Random Vibra- 

tion of Systems with Frequency-dependent  Parameters 

of Fractional Derivat ives ,"  Journal of Engineering 
Mechanics, 123: 90-292. 

Suarez LE and Shokooh A ( 1 9 9 7 ) ,  "An Eigenvector 

Expansion Method for the Solution of Motion Contai- 

ning Fractional Derivat ives ,"  Journal of Applied Me- 
chanics, 6 4 ( 3 ) : 2 9 - 6 3 5 .  

Appendix I : MATLAB computer program for the fractional unit impulse re- 
sponse function h ( t ) .  

This program is developed for computing the fractional unit impulse response function h ( t )  illustrated in Fig. 1 

or Fig. 6. The constants wn = 2 * pi ,  wve = p i / 2 ,  zn = 0 . 0 2 ,  zve = 0 .1  and alfa = 0 . 6  , which are defined near the 

beginning of the code, stand for ton = 6 . 2 8 r a d / s ,  tow = 1.57rad/s, s ~ = 0 . 0 2 ,  ~/= 0. 1 and a = 0 . 6 ,  respectively. 

The meaning of the related variables and functions is as follows: 

1. dur: the duration time 

2. dt : time interval 

3. dw: radius frequency interval 

4. wmax: maximum radius frequency 

5. oml : positive radius frequency range 

6. om2: negative radius frequency range 

7. ore: radius frequency range 

8. ifft: inverse discrete Fourier transform function in MATLAB 

9. hiw: fractional frequency response function in discrete form 

10. ht: fractional unit impulse response function in discrete form 

Program 
% 

clear; 

wn = 2  * pi; 

wve = p i /2  ; 

zn = 0 . 0 2 ;  

zve = 0 .1  ; 

alfa = 0 . 6 ;  

dur = 100.0  ; 
dt = 0 . 0 1  ; 

t = O : d t : d u r ;  

wmax = p i /d t  ; 

dw = 2  * p i /du r ;  

oml = 0 : dw : -wmax ; 

om2 = - wmax : dw : -dw ; 

om = [ oml om2 ] 

hiw = 1. / ( wn'2 + wve'2 - ore. "2 + i * 2 * zn * wn * pi * om + ( i * om) .  ^alfa * 2 * zve * wve) ; 

ht = real ( ifft ( h i w / d t )  ; 


