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A seismic free field input model for FE-SBFE 
coupling in time domain 

Yan Junyi( I~ f~.~-.) *, Jin F e n g ( ~ )  *, Xu Yanjie(~,~, :~,)  ~ , 

Wang G u a n g l u n ( : E : ~ )  * and Zhang Chuhan( ~ [ ~ ) *  

Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, China 

Abstract: A seismic free field input formulation of the coupling procedure of the finite element (FE) and the scaled 
boundary finite-element(SBFE) is proposed to perform the unbounded soil-structure interaction analysis in time domain. 
Based on the substructure technique, seismic excitation of the soil-structure system is represented by the free-field motion of 
an elastic half-space. To reduce the computational effort, the acceleration unit-impulse response function of the unbounded 
soil is decomposed into two functions: linear and residual. The latter converges to zero and can be truncated as required. 
With the prescribed tolerance parameter, the balance between accuracy and efficiency of the procedure can be controlled. 
The validity of the model is verified by the scattering analysis of a hemi-spherical canyon subjected to plane harmonic P, SV 
and SH wave incidence. Numerical results show that the new procedure is very efficient for seismic problems within a nor- 
mal range of frequency. The coupling procedure presented herein can be applied to linear and nonlinear earthquake re- 
sponse analysis of practical structures which are built on unbounded soil. 
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1 I n t r o d u c t i o n  

The seismic response of many practical engineer- 

ing works, such as long span bridges, offshore struc- 

tures, underground constructions, nuclear power 

plants, high dams, e tc . ,  is affected remarkably by 
the unbounded soil. To accommodate Sommerfeld "s 

radiation conditions, many kinds of numerical proce- 

dures have been developed in the past three decades, 

including the boundary integral equation method or 

boundary element method, infinite element method 

and finite element method with various transmitting 
boundaries. In this regard, a novel procedure called 

the cloning algorithm was proposed by Dasgupta in 
1982, in which the similarity-based formulation is 
used to satisfy the radiation conditions and the dynam- 
ic response of unbounded media is modeled in finite 

element sense. From then on, several similarity- 

based procedures were presented, such as the gener- 

alized cloning algorithm (Wolf and Weber, 1982 ) ,  
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multi-cell cloning algorithm (Wolf and Song, 1994) ,  

the scaled boundary finite-element method (SBFE)  

alias consistent infinitesimal finite-element cell meth- 

od (Wolf and Song, 1994; Song and Wolf, 1997 ) 

and forecasting method ( Song and Wolf, 1995 ).  As 
a development of the cloning algorithm, SBFE com- 
bines the advantages of both the finite-element method 

(FE)  and boundary-element method ( B E ) .  On the 

one hand, only the boundary is discretized which 

leads to a reduction of the spatial dimension by one. 
On the other hand, no fundamental solution is re- 

quired which implies a wider application scope com- 
pared with BE. As a semi-analytical algorithm, it is 

exact in the radial direction and converges to an exact 
solution in finite element sense in the circumferential 
direction. SBFE can be applied to static, diffusion 
and wave propagation problems both in frequency and 

time domains ( Wolf and Song, 1996). Thus incorpo- 

rating the SBFE with FE directly in the time domain 
to perform linear/nonlinear seismic analysis of the un- 

bounded soil-structure system provides a very attrac- 

tive procedure for this topic. 

Recently, several combined models of FE and 

SBFE have been presented to perform the dynamic 

soil-structure interaction analysis. A three-dimension- 

al coupling scheme is proposed in time domain by 
Zhang et al. ( 1999 ) ,  in which the acceleration unit- 

impulse response function of the unbound soil is 
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approximated by a piece-wise linear function to re- 
duce the computational effort. However, with this ap- 
proximation the accuracy of the procedure becomes 
uncontrollable, which reduces the primary advantage 
of the SBFE method. A frequency-based scheme was 
presented by Genes and Kocak (2002) , where a par- 
allel algorithm is introduced to solve the first order 
nonlinear ordinary differential equations for the dy- 
namic stiffness matrix of the unbounded region. Com- 
bining the SBFE with the standard FE using Lagrange 
multipliers, Ekevid and Wiberg (2002)  analyzed the 
wave propagation in solid materials under moving 
loads. To achieve high efficiency and accuracy con- 
trollability synchronously, a system-realization-based 
coupling procedure of FE-SBFE was proposed by Yan 
et al. (2002) and Yah et al. (2003), which is per- 
formed directly in time domain and where only the ex- 
ternal time-varying loading is involved. In this paper, 
a seismic free field input formulation of the coupling 
procedure is presented and a more efficient scheme is 
used to evaluate the soil-structure interaction forces. 
High efficiency and precision controllability are still 
retained as primary advantages of the coupling 
scheme. The validity of the model is demonstrated by 
numerical examples. 

2 Description of the coupling system 

A typical soil-structure interaction system is shown 
in Fig. 1, where the practical structure, can be a re- 
actor building, cooling tower, high-rise building etc. 
The structure comprising a part of the bounded adja- 
cent foundation is viewed as a generalized structure 
(signed by s) which is discretized by FE permitting 
nonlinear behavior to occur, while the remaining un- 
bounded ground ( signed by g) is always selected as a 
linear motion and is modeled by SBFE. In time do- 

main, the motion equation of the structure and the 
soil-structure interaction forces can be represented as 

} [c: 
+ + 

M~, M~bJtub(t)  C~ C~b fib( t ) 

ir K:ss }: } 
Kbs K~bJtub(t) --rb(t) 

(1)  

t 

rb(t) = fo Ggbb(t - ~-) ub ( r  ) - u~(~ ' ) )d r  (2)  

where M,  C and K are mass, damping and static- 
stiffness matrices of the structure respectively, GSb is 
the acceleration unit-impulse response matrix of the 

** 

unbounded soil; u~ is the scattered motion of the 
foundation without the structure which serves as the 
seismic input of the coupling system; Ps is the exter- 
nal loading vector and rb is the interaction force vec- 
tor. The superscripts s and g denote the generalized 
structure and the unbounded foundation, respective- 
ly, while the subscripts b and s stand for degrees of 
freadom of the nodes located on the structure-soil in- 
terface and those of the remaining nodes of the struc- 
ture, respectively. 

The interaction forces can be expressed as some 
functions of displacement, velocity and acceleration. 
Herein, the acceleration formulation rather than the 
displacement is used to avoid singularity. 

M,  C and K can be obtained using finite element 
assemblage, and G~b can be calculated via SBFE at 

.o  

distinct time stations. When seismic input motion u~ 
is determined, dynamic response of the coupling sys- 
tem can be evaluated from Eqs.( 1 ) and (2)  by using 
time integral scheme. 

P s  

- g b 

- r  b 

Fig. 1 A typical soil-structure interaction system 

3 Seismic excitation input model 
, ,  

The scattering motion of the foundation u~ depends 
on the shape of excavation and is difficult to evaluate 

directly in time domain. Therefore, it is convenient to 
replace it with the free-field motion of the elastic half- 

..f space ub, which can be determined using many avail- 
able procedures ( Eringen and Suhubi, 1974 ; Wolf, 



No. 1 Yan Junyi et al. : A seismic free field input model for FE-SBFE coupling in time domain 53 

1985). 
As shown in Fig. 2,  a half-space can be consid- 

ered as the combination of a finite excavation and the 
unbounded foundation mentioned in section 2. Similar 
to Eqs. ( 1 ) and ( 2 ) ,  the motion equation of the finite 
excavation and the soil-excavation interaction forces 
can be represented in time domain as 

e e "'f 

+ + 
[ e e Meb M : J [ u f e ( t )  Ceb Ce~J[ttfe(t) 

Kbb Kbe Ufb( t )  = - r b  (3)  

[. e e J  K,b Kee [uf~ ( t )  0 

rfb(t) = s - T)(ufb(7) - u ~ ( r ) ) d r  (4)  

where rfb is the soil-excavation interaction force vec- 
tor. The superscript e indicates excavation and the 
subscript e indicates the degrees of freedom of the ex- 
cavation nodes, excluding those on the interface. 

Subtracting Eq. (4)  from Eq. (2)  and eliminating 
the term u~, the soil-structure interaction force can be 
rewritten as 

t 

rb( t )  = f0 G~sb(t - ~-)(ub(~') -/~fb(~') )d r  + rfb(t) 

(5)  

When the finite excavation is discretized by FE,  
the property matrices can be obtained by standard as- 
semblage and then rfb can be evaluated straightfor- 
wardly through Eq. ( 3 ) .  Finally, substituting Eq. 
(5)  into Eq. ( 1 ) ,  the seismic response of the cou- 
pling system can be obtained. 

\ - . .  J 

Fig. 2 

,U 

A half-space under seismic excitation 

4 Calculat ion of  soi l -structure interact ion 

forces  

It is exact bu! very expensive to evaluate the soil- 
structure interactio~l forces directly by convolution in- 
tegral as shown in Eq. (5)  , because the computation- 
al effort would be proportional to the square of the 
number of time stations. Moreover, the full sequence 
of the unit-impulse response matrix of the unbounded 
soil is required, meaning that the convolution integral 
and Lyapunov equation must be treated at each time 
station in SBFE. To reduce the numerical cost, de- 
composition and truncation of the acceleration unit- 
impulse response function are performed. 

4.1 Decomposition 

The second order time derivative of the accelera- 

tion unit-impulse response function, denoted by G ~b, 
is equivalent to the regular part of the displacement 
unit-impulse response function, which converges to 
zero physically for an energy dissipation system. In 
other words, the acceleration unit-impulse response 
function G~b tends essentially to vary linearly. There- 

fore, G~b can be decomposed as shown in Fig. 3 

G ~ ( t )  = C~bH(t) + K~btH(t ) + Gbmb(t) (6)  

where H ( t )  is the Heaviside step function, and the 

m residual function G~ converges to zero when time in- 
creases to infinity. Thus, Eq. (5)  can be rewritten as 

r b ( t  ) =K~b(ub(t ) -  u ~ ( t ) )  + C~(~tb(t  ) - ttfb(t)) 

fO m )d,7" 4- rfb(t) + G~b(t - 7) (ub( 'r)  - u b " f  ( T )  

(7) 

L g Gbb(t) 

G , , , t  

t 
ID, 

Fig. 3 Decomposition of the acceleration 
unit-impulse response function 

where the static-stiffness coefficient matrix of the un- 
bounded medium K~b can be obtained by solving an 
algebraic Riccati equation, while the damping coeffi- 
cient matrix C~b is evaluated approximately later. 
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4 . 2  Truncat ion 

Considering the convergence-to-zero property, Gb% 

can be approximated as 

Gbmb(t)..~ {0 G~b(t) - C~b -K~bt  0 _ < t  < t  c 

t > _ t  c 

(8) 

where t~ is called the cut-off time. 

Whether the truncated function of the unit-impulse 

response matrix satisfies the prescribed tolerance de- 

pends on the cut-off time t~. To determine the cut-off 

time t~, the following criterion is introduced. In the 

process of calculatibg the unit-impulse matrix via 

SBFE with a prescribed tolerance parameter P,ol, the 

normalized Frobenius norm F ( t ) / F  ( 0 ) , which con- 

verges to zero monotonously as will be demonstrated 

later, is computed at each time station. Once the ine- 
quality 

F ( t ) / F ( O )  <_ p,o~ (9 )  

is satisfied, the time station is selected to be the cut- 
off  time t c. 

Consider two typical unbounded media as shown 
in Fig. 4 ,  and a variation of the normalized Frobe- 

nius norms F ( t ) / F ( O )  with the dimensionless time t 

= tCp/r o plotted in Fig. 5. The property of conver- 

gence-to-zero is clearly demonstrated. As can be seen 

from the figures, with a prescribed value of P~ol, the 

cut-off time depends on the geometry and material 
property of the unbounded medium. 

(a) Prismatic excavation (b) Hemi-spherical  excavation 

Fig. 4 Quarter of a half-space with typical excavation 

When t~ is determined, the coefficient matrix C~b 

is calculated with KSb and the approximate value of 

G~b at t~ ( see Eq. (8 )  ).  

In practical implementation, only a partial se- 

quence of the acceleration unit-impulse response ma- 
trix before t c is required. Generally the cut-off time t~ 

is much less than the duration of load history in 

earthquake engineering, i. e. t c << T, and the enor- 

mous numerical cost spent in calculating G~b via SBFE 

is then reduced. Obviously, truncation of the unit-im- 

pulse response matrix implies a truncated convolution 

integral scheme, which allows economical evaluation 
of the interaction forces. 

10 ~ 

..~ 

~ 10-a 

~" ~ 
'~ tO -2 

Z 

10 -3 

o 1 2 3 

Dimensionless time 

Fig. 5 Variation of the dimensionless Frobenius norms 

4 . 3  Harmonizat ion  of  t ime steps 

Generally, in calculating the unit-impulse re- 

sponse matrix, a sufficiently small time step, 8t ( e. g. 
10-5 ~ 10-4s) must be selected in order to accommo- 

date the requirement of computational stability. How- 

ever, the time step At used in the seismic response a- 
nalysis is usually in the range of 10 -3 - 10-2s. The 

third term on the right hand side of Eq. (7 )  is rewrit- 

ten as 

m r'b(t ) = Gbb(t-~-)u~(~-)d~-  = 

+ + ... + -,Ln-')a')Gbb(t r ) u ~ ( ' r ) d T  

(lO) 

"'a Ub "~ where t = nAt and u~ = - u b. Assuming that the av- 

erage acceleration as implemented in the Newmark 
time integral scheme, each term on the right hand 

side of Eq. (10)  can be written as 

(k+l)At 

~at G~,(t  - T)u~(~-)d~" = 

t'(k+l)zit m 
J~a, G b b ( t - . r ) d . r ) i i ~ ( k A t  ) k : 0 . 1 , . . . , n - 1  

(11) 

where =a 1 ..a .., u b ( k A t )  = ~ - ( u b (  kAt) +ub(  ( k + l ) A t )  ). 

Then, the discrete form of Eq. (10)  is expressed as 

n-I 

r 'b(nAt)  = Z GAb(~-m (n  - k)z i t )  ~ ( k A t )  (12)  
k=O 



No. 1 Yan Junyi et al. : A seismic free field input model for FE-SBFE coupling in time domain 55 

- -  f ( k + l ) A t  
in which Gb~ ( ( n - k) At) = Gbmb ( t - "r) dr. 

Jk/tt 

In practical execution, the sequence length of the 
acceleration unit-impulse response matrix G~b calcu- 

- - m  lated by SBFE is tc/~t, while that of Gbb used in eval- 
uating the soil-structure interaction forces is t /A t .  
Significant cost reduction could be achieved again. 

In this section, no additional approximation is in- 
troduced. 

5 Final coupling equations 

Discretizing Eq. ( 1 ) with time step At and consti- 
tuting Eqs. (7)  and (12) yield 

[ sly }[ M~ M~b u ~ ( nAt ) C~s C~b u s 
+ + 

s s+g  "* s " t-Mb~ Mbb 3tub(nAt)  Cb~ c ~ g l t u b ( n A t )  

[ K~S K~b l ' u~ (nA t )  Ps(nAt)  

K~s K ~ S J { u b ( n A t ) } :  {pb(nAt )}  

(13)  

where 

MS+S s + M~ b r s bb = Mbb , ~bb = C~b +C~b, 

KS*g = /Cbb + K~ b bb 

pb ( nAt ) s ".f g "f = Mbbub(nAt ) + C~bub(nAt) + 

g f Kbbu b (nAt) - rfb ( n A t  ) - 

n-2 
~-rn E Gbb((n - k)At)  ~ ( k A t )  - 

k=O 

1 ~ t n  ~176 ~-Gbb( At) u~( ( n - 1)At)  

with M~b = 1G~b (At) .  

(14a) 

(14h) 

As shown in Eq. ( 1 3 ) ,  for the dynamic response 
of the structure, the effects of unbound soil are char- 
acterized by the matrices M~b , C~b and K~ (see  
Eq . (14a ) )  and the additional external load 
(see Eq.(14b)  ). If only external load is considered, 
Eq. (14b)  can be rewritten as 

p~ (nat) 
n - 2  

6b~( (n k)at) =~ 
n-2 

-m = -  - Ubb, k_t A ) - 
k = 0  

1 ~-m "'a ~-Gb~(At)ub((n  - 1)At)  (15)  

6 Numerical examples 

The coupling procedure presented in this paper 
can be applied to the seismic analysis of soil-structure 
interaction systems directly in time domain. To verify 
the validity of the present model, the scattering of 
plane P, SV and SH waves by a hemi-spherical can- 
yon in an elastic isotropic half-space is addressed. 

As shown in Fig. 6,  the radius of the hemi-spheri- 
cal canyon is signed by a,  a normal vector of wave 
front is defined in the xOz plane and ~5 is the incident 
angle. 

\\\Xx\•'•. 

i~ a ~ 1  j////// Y 

Fig. 6 Hemi-spherical canyon subjected to incident waves 

As shown in Fig. 7,  a hemi-spherical shell (with 
thickness 0. 273 a)  of the soil adjacent to the canyon 
wall is selected as the structure and discretized by 108 
twenty-point hexahedral elements, while the remai- 
ning medium is modeled by SBFE. Correspondently, 
the soil-structure interface is discretized with 108 
eight-point quadrangular isoparametric elements. 
Therefore, there are 1410 degrees of freedom for the 
entire coupling system, in which 1047 referred to the 
interface. The excavation is modeled by 216 twenty- 
point hexahedral elements as pictured in Fig. 8. Pois- 
son~ ratio is selected as 0.25 and 1/3 for the P wave 
and S wave incidence cases, respectively. The seis- 
mic analysis time step At = 0. 0005 s is used herein. 

The resulting dimensionless amplitude of surface 
displacement along the x-axis for plane harmonic inci- 
dent waves are plotted together with those of previous 
researchers in Figs. 9 to 13, The dimensionless fre- 
quencies are defined as ~/v = aw/wcp and ~/s = aw/~Cs 
where % and c are respectively the dilatational and 
shear wave velocity, and u, v and w corresponds to 
the components in the direction of x, y and z, respec- 
tively. It is clear that the results from the procedure 
described herein approach those obtained by S6nche- 
Sesma and Eshraghi et al. when the values of ~t and 
Ptol are within the selected range. 
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Fig. 7 Finite e lement  mesh  of  a quarter  of  structure Fig.  8 Finite e lement  mesh  of  a quarter  of  excavat ion 
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It should be noted that the cut-off times t~ for the 
P and S wave incidence cases are determined as 
0.0184s and 0. 0175s, respectively, when 6t = O. 
0001s and Ptol = 0. 001 are adopted. These values of 
t c are very small when compared with actual earth- 
quake time histories, thus the computational effort 
can be dramatically reduced while also insuring suffi- 
cient accuracy. 

The sensitivity of the computational accuracy with 
respect to the selection of time step ~t is examined 
next. In low frequency case, high accuracy can be 
achieved even if a relatively large value of ~t is se- 
lected (see Fig. 9 ( a ) ) ,  however this is not true in 
high frequency cases ( see Fig. 9 ( b ) ). Generally, 
with the same FE discretization, the input seismic 
motion of high frequency component can be accurately 
expressed by using an earthquake time step At of 
0. 0005s. However, this same value does not effi- 
ciently represent the local fluctuation of the unit-im- 
pulse response function of the unbounded medium. 
Since the local flucluation would be more important in 
the high frequency case, large errors could still oc- 
cur. 

The effects of the tolerance parameter Ptol on the 
computational accuracy for two different frequency ca- 
ses are evaluated. As shown in Fig. 10, the solution 
to problems under high frequency wave incidence is 
more sensitive to the selection of Ptol than that in low 
frequency cases. This is due to the fact that the static- 
stiffness matrix of the unbounded soil K~b is calculated 
exactly while the inertial and damping coefficient ma- 
trices (M~b and C~b ) are evaluated approximately with 
a prescribed parameter Ptol. It is well known that the 
low frequency response is mainly controlled by the 
stiffness of the system while the high frequency re- 
sponse also depends on the inertial and damping prop- 
erties. 

As a consequence, for low frequency dominating 
problems as encountered in practical seismic analysis, 
excellent results can be obtained with relative large 

parameters of 8t and Ptol, which implies pronounced 
economy in computational implementation. 

7 Conclusions 

A seismic free field input formulation is presented 
for the coupling procedure of FE and SBFE. With a 
sequence decomposition-truncation implementation 
and time step harmonization scheme, high efficiency 
can be achieved. The balance between accuracy and 
efficiency can be controlled by the prescribed parame- 
ter. Validity of the model is verified by numerical ex- 
amples. The coupling procedure proposed here can be 
applied to the dynamic response of unbounded soil- 
structure interaction of large scale systems in time do- 
main. The procedure proposed is especially economi- 
cal in low frequency dominating systems as frequently 
encountered in practical seismic analysis. 
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