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In this paper we consider nonlinear-dependent systems with multivalued 
perturbations in the framework of an evolution triple of spaces. First we 
prove a surjectivity result for generalized pseudomonotone operators and then 
we establish two existence theorems: the first for a periodic problem and 
the second for a Cauchy problem. As applications we work out in detail a 
periodic nonlinear parabolic partial differential equation and an optimal control 
problem for a system driven by a nonlinear parabolic equation. 

1. Introduction. 

The purpose of  this paper is to prove two existence theorems for 
evolution inclusions defined in the framework of an evolution triple of 
spaces. The first existence theorem referes to a periodic problem, while 
the second referes to a Cauchy problem. 

In the past most of  the works on the existence of  periodic solutions 
for evolution equation deal with semilinear systems. The assumptions are 
such so as guarantee uniqueness of  the solution, which of course implies 
single-valuedness of  the corrisponding Poincar6 map. If  we have a sin- 
glevalued Poincar6 map it is easier to apply one of  the classical fixed 
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point theorems, while if the Poincar6 map is multivalued then most of 
the known results require convex or in the most general case acyclic va- 
lues, a condition which in general is difficult to verify. In this respect we 
should mention the important work of Cellina [6], who illustrated that 
for finite dimensional differential inclusion, the restrictive requirements of 
convexity or acyclicity are not necessary and the usual fixed point tech- 
niques can work using some approximation arguments (see Cellina [6], 
part II). The first major result on the periodic problem is that of Browder 
(cf. [5]), who considered semilinear systems in a Hilbert space driven by 
a monotone operator and with a single-valued perturbation term f ( t ,  x) 
which is also monotone in x. Browder's result used the fixed point theo- 
rem for nonexpansive maps in a uniformly convex space (in particular a 
Hilbert space; cf. [4] and [7]). The next major result on the periodic pro- 
blem can be found in the paper of Pruss (cf. [20] ). Pruss drops the mo- 
notonicity condition on f ( t ,  .) and instead assumes a Nagumo-type tan- 
gential condition. First he proves a result under a uniqueness assumption 
for the solution of the Cauchy problem and then a result without that 
uniqueness assumptions. The first theorem is based on Schauder's fixed 
point theorem applied on an invariant closed convex set whose existence 
is a result of the assumed tangential condition. The second theorem uses 
the Leray-Schauder continuation principle applied on a suitably defined 
family of operators. All his results require that the time-invariant linear 
unbounded operator governing the equation generates a compact semi- 
group or alternatively that the single valued perturbation term f ( t ,  x) is 
compact. Also we should mention that in the context of finite dimensio- 
nal differential and functional inclusions the Nagumo tangential condition 
was used by Haddad [9]. Subsequently Becker (cf. [3]), considered semi- 
linear evolution equations driven by a closed densely defined linear ope- 
rator which generates a compact semigroup. Using a perturbation term 
of special form and an extra condition amounting to saying that A -  ~.I 
is m-accretive for some L > 0, he proves the existence of a unique pe- 
riodic solution. More recently we have the works of Vrabie (cf. [25]) 
and Hirano (cf. [12]) which considered non linear evolution equations. 
Vrabie's work can be viewed as a nonlinear extension of Becker's re- 
sult. He also assumes a rather restrictive asymptotic growth condition for 
his perturbation term which is assumed to be a single valued. Vrabie as- 
sumed that the nonlinear operator generates a compact semigroup. Hi- 
rano considers an evolution equation defined in a Hilbert space, driven 
by a subdifferential operator generating a compact semigroup and with 
a single-valued Caratheodory perturbation term of sublinear growth. We 
should also mention the recent multivalued work of Hu-Papageorgiou (cf. 
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[13]), who, considered evolution inclusions in an evolution triple of Hil- 
bert spaces and using a tangential condition and Galerkin approximations 
proved the existence of a periodic solution. Related is also the work of 
Lakshmikantham-Papagergiou (cf. [14]) and Papageorgiou (cf. [18]), who 
extend in a multivalued setting the work of Vrabie. 

For the Cauchy problem, related to our work here are the papers of 
Attouch-Damlamian (cf. [1]), Vrabie (cf. [23] and [24]), Gutman (cf. [8]), 
Hirano (cf. [11]) and Papageorgiou (cf. [17]). Of these works Attouch- 
Damlamian consider evolution inclusion driven by a time-invariant sub- 
differential operator generating a compact semigroup and a multivalued 
perturbation F(t ,  x) u.s.c, in both (t, x). Similarly Vrabie considers ge- 
neral maximal monotone operator (not necessarily of the subdifferential 
type). Gutman assumes that the time-invariant m-accretive operator ge- 
nerates an equicontinuous semigroup of contractions and the perturbation 
term is single valued and compact. Hirano treats time-invariant systems 
with single-valued perturbation and finally Papageorgiou assumes that the 
multivalued perturbation term is defined on all T • H.  

Our work here (both the periodic and Cauchy problems) goes 
beyond the above mentioned papers. We treat time-dependent systems 
with multivalued perturbations defined within the setting of an evolution 
triple of spaces (X, H, X*). We only assume that X embeds compactly 
in H.  This hypothesis does not means that A(t, .) generates a compact 
semigroup or that the perturbation term (assumed to be mutivalued and 
defined only on T x.X) is compact. 

2. Mathematical preliminaries. 

Let (fZ, E) be a measurable space and (X, I1" II) a separable Banach 
space. Throughout this paper, we will be using the following notations: 

Pf(c)(X) = {A C X : A nonempty, closed (convex)}, 

P(w)k(c)(X) = {A C X : A nonempty, (weakly)compact(convex)}. 

With X~, we denote the space X equipped with the weak topology. 

A multifunction F : f2 ~ Pf (X)  is said to be measurable if, for 
all x e X, the function w ~ d(x,  F(w)) = inf{llx - z l l  : z �9 F(o~)} 
is measurable. A multifunction F : f2 ~ Pf(X)  is said to be graph 
measurable if G r F  = {(o9, x) �9 f2 x X : x �9 F(og)} �9 E x B(X),  with 
B(X) being the BoreI o'-field of  X. For Pf(X)-valued multifunctions, 
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measurability implies graph measurability, while the converse is true, for 
istance, if there is a a-f ini te  measure /z(.) on (ft ,  Z)  with respect to 
which E is complete. 

We define SF p (1 < p < ~ )  to be the set of  all LP(f2, X)-selectors 
of  F( . ) ;  i.e. S p = { f  6 LP(g2, X) �9 f(o)) E F(og) /z-a.e}. Note that for a 
graph measurable multifunction F �9 ~ ~ P f (X) ,  SPF is nonempty if and 
only if the function 09 --+ inf{llzll "z ~ F(~o)} belongs to LP(g2, R+). 

Let Y, Z be Hausdorff  topological spaces. A multifunction G �9 Y --+ 
2z\{0} is said to be lower semicontinuous (1.s.c.) (resp. upper semicon- 
tinuous (u.s.c.)), if for all U C Z open F - ( U )  = {y ~ Y �9 F(y)  N Ur 
(resp. F+(U) = {y ~ Y �9 F(y)  C U}) is open in Y. 

Now let H be a Hilbert space and let X a dense subspace of  H 
carrying the structure of  a separable, reflexive Banach space, which em- 
beds into H continuously. Identifying H with its dual (pivot space), we 
have X ~ H ~ X*, with all embeddings being continuous and den- 
se. Such a triple of  spaces is known in the literature as "evolution tri- 
ple" or "Gelfand triple" (cf. [26]). We will also assume that the embed- 
ding of  X into H is also compact (in fact, this implies that H '--+ X* 
is compact too). To have a concrete example in mind, let m be a po- 
sitive integer and 2 < p < 00. Let Z C R N be a bounded domain and 
set X = W~'P(Z, R), H = L2(Z, R) and X* = w - m ' q ( z ,  R) where 

1 1 
- - + -  = 1. Then from the Sobolev embedding theorem, we know that 
P q 

(X, H, X*) is an evolution triple and all embeddings are compact. By 
1 ] (resp. 11-II.) we will denote the norm of  H (resp. of  X*). Also 
by (., .) we will denote the inner product of  H and by (-,-) the duality 
brackets of  the pair (X, X*). The two are compatible in the sense that 

(-,->x• = (-, "). 
1 1 

Let 1 < p , q < o o ,  - - + - - = 1 ,  T = [ 0 ,  b]; we define: 
P q 

Wpq(T) = {x E LP(T, X) "Jc E Lq(T, X*)}. 

The derivative involved in this definition is understood in the sense 
of  vector valued distributions. Equipped with the norm 

1 

IIxllw.. = [llxll  + ij ll ] , 

the space Wpq(T) becomes a separable, reflexive Banach space. It is well 
known that Wpq(T) embeds continuously in C(T,  H);  i.e. every element 
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in Wpq(T) has a unique representative in C(T, H). Since we have assu- 
med that X ~ H compactly, we have that Wpq(T) ~ LP(T, H) com- 
pactly (cf. [26], p. 450). 

Now let Y be a reflexive Banach space, L �9 D(L)  C Y ~ Y* be 
a linear densely defined maximal monotone  operator and let T �9 Y 

inf [ (v ,x)  "v ~ T(x)]  
P(Y*). T(.) is said to be coercive if ~ +oo ,  as 

Ilxll 
Ilxll ~ c~. 

We say that T(.)  is a "generalized pseudomonotone  operator with 
respect to D(L)"  if: 

a) Yy ~ Y, T(y)  ~ P, vkc(Y*); 

b) T(.)  is u.s.c, f rom every finite dimensional subspace V of D(L) 
into Y~ (with the symbol y,~ we mean the space y* equipped with 
the weak topology); 

c) if {Yn}n>_l C D(L),  with Yn ~ Y weakly in Y, y ~ D(L),  Lyn ~ Ly 
weakly in Y*, y* e T(yn), n > 1, y* ~ y* weakly in Y* and 
l imsup(y*,  Yn) < (Y*, Y), then [y, y*] ~ GrT and (y~, Yn) ~ (Y*, Y) 
n----~ -Foo 

(here (., .), denotes the duality brackets of the pair (y, y*)). 

The proofs of our existence theorems are based on the following 
surjectivity result for a particular class of  generalized pseudomonotone  
operators. An analogous result for singlevalued operator can be found in 
[15] and in [22]. 

THEOREM 2.1: I f  Y is a reflexive, strictly convex Banach space, L : 
D(L) C Y -+ Y* be a linear densely defined maximal monotone operator 
and T : Y -+ P(Y*) is a multivalued operator, which is bounded, 
generalized pseudomonotone with respect to D(L) and coercive. Then 
R(L + T) = Y*. 

Proof. We introduce on D(L) the graph norm, that is 

IIx II D~L) = IIx II + II Zx II., 

so D(L) is a reflexive Banach space. 

Denoted with J : Y ~ Y* the duality map of  Y, for every m ~ N,  
we define Mm : D ( L )  ~ D(L)*, as 

(Mm(u), v) = 1---(J-1Lu, Lv) + (Lu, v), Vv ~ D(L).  
m 
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It is easy to see that Aim is bounded, hemicontinuous and monotone 
and so pseudomonotone. 

Now let Pm: D ( L )  --+ P ( D ( L ) * )  be defined by 

Pro(u) = mm(u)  -Jr T(u) ,  Yu ~ D ( L ) .  

We observe that 

Yu ~ D ( L ) ,  Pro(u) E Pwkc(O(L)*);  

and 

Pm(.) is u.s.c, from every finite dimensional subspace V of  D ( L )  
into D ( L ) * .  Now let [Un, Pn] E GrPm, n > 1, with Un --+ u weakly 
in D ( L ) ,  Pn --+ P weakly in D(L)*  and lim sup(pn, Un - u )  < O. Let 

n---~ ~ 

Pn E T(un)  such that 

Pn = Mm(un)  q'- Pn, Vn ~ N.  

From our conditions, we can assume that Pn ~ P weakly in D(L)* .  
Moreover we have that 

(2.1) l imsup[(Mm(un) ,  Un -- U) + (Pn, Un -- U)] < 0, 
n ----~ 0 o  

from which we obtain that lim sup(pn, Un - u )  < 0. Indeed, if lim sup(pn, 
n----~ o o  n----~ Oo 

u, - u) = d > 0, passing to a subsequence, if  necessary, we have that 
lim (Pn, Un--U) = d. But from (2.1) it follows that l imsup(Mm(un) ,  Un - 

n----~ o o  r/----~ o o  

u) < - d ,  so, from the pseudomonotonicity of  M m, w e  obtain that 
l iminf(Mm(u, , ) ,  Un - u) >_ O, which is a contradiction. Therefore, l imsup 

n--~  o o  n----~ Oo 

(Pn, Un --U) < 0, then, from our assumptions on T(.) ,  we have p ~ T ( u )  
and lim (Pn, un) = (p,  u),  which implies that l imsup(Mm(un) ,  un - u) < 

n----~ Oo n----~ O0 

0. By using the pseudomonotonicity of  Mm,  it follows that M m ( u n )  

Mm(u)  weakly in D(L)* ,  so p ~ Pro(u). 

Now, since L is monotone we have that 

1 
(2.2) (p, u) > --[[Lull2. + (p, u), Yu ~ D ( L ) ,  Yp  E Pro(u), 

m 

and so 

inf[(p, u) �9 p e Pm (u)] 
-+ +oo,  as IlulID<L) -+ c~ .  

Ilull <L) 
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By applying Theorem 5.4 of [19], p. 154, we have that, for every 
f 6 Y*, there exists Um E D(L)  such that f ~ Pro(urn) and so, it is 
possible to find Pm E T(Um) with the property 

(2.3) f ~- M m ( u m )  q- tom �9 

Therefore we obtain that 
1 

(2.4) - - ( J - 1 L u m ,  Lv) = ( f  - tom - Lure, v), Vv ~ D(L),  
m 

so J - ILum E D(L*) (L* is the adjoint map of L) and 

(2.5) 1 L * J - l L u m  + Lum + Pm = f ,  Vm ~ N.  
m 

Now, from (2.2) and (2.3) we have that (Um)m is bounded in Y; 
moreover from (2.5) it follows that 

l ( L *  j - I  L u m J - l  Lum) + (Lure, J-1Lum) + (Pm, J - l  Lum) = (f, J - l  Lum), 
m 

and, since L* is monotone, we obtain 

IILu,.ll2, <_ ( f ,  J -1Lum) - (Pro, J - 1 L u m )  �9 

But T(.) is bounded, so we can find a positive number K such that 

[ItumllZ. < g l l tum]l . ,  

then ( L u m ) m  is bounded in Y*. By passing to subsequences we get 

Um --+ u weakly in Y, u ~ D( L ), 

Lure --+ Lu weakly in Y*, 

Pm ~ P weakly in Y*. 

By (2.3) we have that 

( P m ,  Um --  U) = ( f  - M m ( u m ) ,  

Um -- u) < ( f  -- LU, Um -- U) -- I ( j - 1 L U m ,  Lure - Lu),  
m 

which implies that 
lim sup(pro, Um -- u) < O. 
m---~ q-O0 

Therefore p E T(u) and, from (2.4), we get, finally that f 
Lu + T(u).  
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3.  P e r i o d i c  s o l u t i o n s .  

Let T = [0, b], (X, H,  X*) be an evolution triple of  spaces with 
X embedding compactly into H, 2 < p < oo and q > 1 such that 

1 1 
- -  + - -  = 1. We consider the following evolution inclusion 
P q 

k(t)  + A(t, x(t)) + F(t,  x(t)) ~ h(t) ,  a.e. on T 

(1) x(O) ---- x(b). 

The hypotheses on the data of  (1) are the following: 

H ( A ) :  A : T x X - - > X *  is an operator such that 

i) Vx ~ X, t ~ A(t, x) is measurable; 

ii) Yt ~ T, x ~ A(t, x) is monotone and hemicontinuous; 

iii) 3al E Lq(T, R +) and 3cl > 0: 

IlA(t,x)ll. <_ a l ( t ) + c l l l x l l  p-l ,  a.e. on T ,u  ~ X; 

iv) 3c > 0 : (A(t, x), x) > cllxll p, a.e.on T, Yx ~ X. 

H(F): F : T x X ---> Pfc(H) is a multifunction such that 

j) u ~ X, t ~ F(t ,  x) is measurable; 

jj) Vt ~ T, x ~ F(t ,  x) is sequentially closed in Xw • Hw; 

jjj) 3a2 E Lq(T, R +) and c2 > 0: 

IF(t, x)l < az(t)  + c2llxl[ p-l ,  a.e. on T, Yx 6 X; 

jv)  3C3 ,  C4 > 0 with 2 2 P c 3  < C : 

V(t,x) ~ T • Vy ~ F(t ,x)  we have that (y,x) > -c311xllP-c4. 

THEOREM 3.1. I f  hypotheses H(A), H(F)  hold, and h ~ Lq(T, X*) 
then problem (1) has a solution. 

Proof Let L : D(L) C LP(T, X) --+ Lq(T, X*) be a linear operator 
defined by Lx = k with D(L) = {x ~ Wpq(T) : x(0)  = x(b)}. 
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Claim 1. L is a densely defined, maximal monotone operator. 

That D(L) is dense in LP(T, X) follows immediately from the fact 
that the set of  all functions C~176 X) with x(0) = x(b) is dense in 
LP(T, X). 

From integration by parts formula for functions in Wpq(T) (cf. [26], 
Proposition 23.23, p. 422), we have 

1 
((Lx, x)) = ~(Ix(b)l 2 - Ix(0)l 2) = 0 

Here ((., .)) denotes the duality brackets for the pair (LP(T, X), 
Lq(T, X*)). So L is a monotone operator. 

To prove the maximality of  L, we need to show that if  [u, u*] 
LP(T, X) • Lq(T, X*) and 0 _< ((u* - Lx, u - x)) for all x ~ D(L), 
then u ~ D(L) and u* = Lu (i.e. u* = ti). To this end let x = ~oz with 
r ~ C~(T) and z E X. 

Then . / =  ~bz and x ~ D(L). So we have ((Lx, x)) = O. Hence we 
get 

0 < ((u*, u)) - ((o(t)u(t) 4- ~o(t)u*(t), z)dt, 

for all ~o 6 C~(T)  and all z 6 X. 

/ =~ ~o ((o(t)u(t) 4- ~o(t)u*(t))dt = O, for all ~o e C~(T)  

::~ l) = l,l*, U E W p q ( T ) .  

It remains to show that u c D(L). Using once again the integration 
by parts formula for functions in Wpq(T) and the fact that x ( O ) =  x(b), 
we get 

0 _ < ((/i -- .~, U -- X)) = 21u(b) [2  
1 

- ~ ' l u ( 0 ) l  2 - ( u ( b )  - u(O) ,  x ( 0 ) ) ,  

for all x ~ D(L). 
Choose x(t) = v for arbitrary v 6 X. Exploiting the density of  X 

in H we deduce at once that u(b) = u(0),  thus u ~ D(L) and so we 
have proved the maximal monotonicity of  L. 

Next let ,4 �9 LP(T, X) -+ Lq(T, X*) be the Nemitsky (superposition) 

operator corresponding to A(t,x)  ( i . e . . 4 (x ) ( . )  = A(.,x(.)). By virtue 

of  hypothesis H(A), /~(.) is monotone, hemicontinuous, bounded and 
coercive. 
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Also let G �9 L P ( T , X )  ~ Pfc(Lq(T, X*)) be defined by G(x) = 
SF( . , x ( . )  Then let T �9 LP(T, X) ~ Pfc(Lq(T, X*)), defined as T(x)  = 

.4(x) + G(x), for all x ~ LP(T, X).  

Claim 2 .  T(.) is a generalized pseudomonotone operator with re- 
spect to D(L). It is easy to see that the values of  T are convex and 
weakly compact in Lq(T, X*) and that T is u.s.c, from LP(T, X) into 
Lq(T, X*)w. 

Now let {Xn}n>_: C D(L),  x~ ~ x weakly in LP(T, X),  x ~ D(L) ,  
Lxn ~ Lx weakly in Lq(T, X*), U n E T(Xn), n > 1, with v~ --+ v 
weakly in L q ( T , X  *) and assume that limsup((Vn,Xn -- X)) < O. Note 

n----~ o o  

that vn = ,~(x~) + gn with gn E G(xn), n > 1. 

Observe that we actually have gn E Lq(T, n ) ,  n > 1, and because 
of  hypothesis H(F)- j j j ) ,  by passing to a subsequence, if necessary, we 
may assume that gn ~ g weakly in Lq(T, H).  Also since x,, ~ x 
weakly in Wpq(T) and the latter embeds compactly in Le(T,  H),  we 
have xn--+ x in Le(T,  H).  So we get 

lim sup((,4(x~), Xn - x)) + lim ((g~, X n - -  X ) )  ---~ 
n--~  (x) n----~ o o  

= l i m  sup((Vn), X n - -  X ) )  ~_~ O. 
n----~ cx~ 

Because lim (gn, X n -  X ) =  0, we have that 
n--->oo 

lim sup((/~(Xn), X n - -  X ) )  ~_~ O. 
n----~ o o  

But .4(.) being monotone, hemicontinuous, bounded is pseudomono- 

tone (cf. [26], Proposition 27.6, p. 586) and so .4(x~) ~ A(x) weakly 
in Lq(T, X*) and 

(3.1) Xn)) X)). 

Now let ~n(t) ----- (A(t, X n ( t ) ) -  A ( t , x ( t ) ) , X n ( t ) -  x(t)) >__ 0 a. e. 

on T. From (3.1) we have ~n(t)dt --~ 0 and so ~n ~ 0 in LI(T,  R) '  

Moreover  by passing to a subsequence we can also assume that ~n(t) ~ 
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0 a.e. on T. Also by using hypotheses H(A)-i i i)  and H(A)- iv)  we have 

~n (t) ~__. cll sen (t)II p - Cl [Ix(l)II Ilsen (t)II p-1  �9 II sen (t)II (a l  ( t ) +  
(3 .2)  

+ C l l l X ( t ) l l p - 1 ) - a l ( t ) l l x ( t ) + c l l x ( t ) l l  p, a.e. on T. 

Our claim is that (3.2) above implies that for almost 
supllsen(t)ll  < cx). Let N C T ,  m N  = 0 ,  such that 
n6N 

~ ( t )  >_ cllxn(t)ll p - cl IIx(t)ll �9 Ilxn(t)ll p-1 

(3.3) - IIx~(t)l l(al(t)  + cl I Ix( t ) l lP-1)+ 

t E T,  

- aa(t) l lx( t) l l  + cllx(t)l l  p, Vt E T \ N ,  

and 

(3.4) ~ ( t )  --+ O, u  ~ T \ N .  

Suppose that there exists t ~ T \ N  such that sup llxn(t)[[ = cx~. 
n E N  

Then it is possible to find a subsequence of  {Xn(t)}n> 1, denoted also with 
{Xn(t)}n>l diverging to +e~.  But from (3.3) we obtain that ~n(t) --+ +c~ ,  
which contradicts (3.4). 

Hence if we fix t ~ T \ N  and pass to an appropriate subsequence 
(depending in general on t), we can have xn( t )  --+ x ( t )  weakly in X as 
n --+ oo. Using Theorem 3.1 of  [16] and the fact that G r F ( t ,  .) is se- 
quentially closed in X w x H w  we get g ( t )  ~ cony  w-l imsup{gn(t)}n>__l  C 
cony  w -- lim sup F ( t ,  Xn(t)) C F ( t ,  x ( t ) ) .  

Therefore g ~ G ( x ) .  

So finally we have that Vn --+ A ( x )  + g = v weakly in L q ( T ,  X*)  
and so v ~ T ( x ) .  

Moreover, since gn --+ g weakly in L q ( T ,  H ) ,  from (3.1), we obtain 
that 

lim ((v, ,  xn)) = ((v, x)).  
n----~ oo 

Therefore T(.)  is a generalized pseudomonotone operator with re- 
spect to D ( L ) .  

Claim 3. T(.)  is coercive; 

inf[((v, x))  �9 v ~ T(x)]  
i.e. 

Ilxllp 
--+ q-cx:), as Ilxllp ~ ~ ,  x ~ D ( L ) .  
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This is an immediate consequence of the coercivity property of  .J, 
and of  hypothesis H ( F ) - i v )  toke away. 

Now rewrite the problem (1) as the following equivalent abstract 
operator inclusion: 

(3.5) Lx + T(x) ~ h, x ~ D(L). 

Apply theorem 2.1 to get a solution for (3.5). Evidently this is the 
desired periodic solution of problem (1). 

4. The Cauchy problem. 

Now we pass to the Cauchy problem. So our object of investigation 
is the following Cauchy problem 

(2) I Jc(t) + A(t, x(t)) + F(t, x(t)) ~ h(t), a.e. on T, 

I x (0)  = x o .  

THEOREM 4.1. If  hypotheses H(A), H(F) hold and xo ~ H, then 
problem (2) has a solution x ~ Wpq(T). 

Proof First assume that x0 6 X. Let /~1 : LP( T, X) ~ Lq(T, X*) 
be defined by Al(X)(.) = A(.,x(.) + x o ) a n d  G1 �9 LP(T,X) 
Pfc(Lq(T, X*)) by Gl(X) = sq(. ,x(.)  + xo). Because of hypothesis 

H(A), we have that ,41(.) is monotone, hemicontinuous and bounded. 
Moreover it is easy to see that 

c ilxllP _ Y _ 311xllP_l, (4.1) 3fl, y > 0" ((,41 (x), x)) > - ~  

(4.2) 3/~1, Y1 > 0"  ((g, x)) > -e32p IIx I1~, - y l  - 3111xlll p-l, 
for all g ~ Gl (x)  

Now let L1 : D(L1) C LP(T, X) ~ Lq(T,X*) be defined by 
L1x = .r with D(L1) = {x E Wpq(T) : X ( 0 )  = 0}.  

Claim 1 :L1  is a densely defined, maximal monotone operator. 

It is easy to see that Ll is a densely defined operator. So it remains 
to show the maximal monotonicity of L1. First note that by the integra- 
tion by parts formula for functions in Wpq(T), we have 

((LlX, x)) = ((.r, x)) = l l x ( b ) 1 2  > 0 
2 
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==~ L1 i s  m o n o t o n e .  

Working as in claim 1 in the proof  of  theorem 3.1 let [u, u*] 
LP(T, X) x Lq(T, X*) and 0 < ((u* - Llx ,  u -- x)) for all x e D ( L t ) .  
That u* = fi follows exactly as in the proof of  theorem 3.1 (cf. claim 
1). Now to show that u e D(L1) ,  we remark that: 

1 12 0 < ((ti - ~, u - x)) = ~ [ l u ( b )  - x(b) - lu(0) - x(0)121. 

Let vn 6 X, n > 1 such that bv, --+ u(b) in H ,  as n --+ cx~. 
Set Xn(t) = tv~. Then X n 6 D(L1) and for every n > 1 we have 
lu(0)l 2 _< I b v , -  u(b)l 2 --+ 0, as n -+ c~. Hence u(0) = 0 and so 
u 6 D(L1).  

Let Tl " LP(T, X) --+ Pfc(Lq(T, X*)), defined as Tl(X) = ,41(x) + 
G1(x), for all x ~ LP(T, X).  Observe that Tl(x) = T(x  + xo), where T 
is the operator defined in the proof  of  theorem 3.1, so, also Tl(.) is a 
generalized pseudomonotone operator with respect to D(LI) .  

Claim 2. T1 (.) is coercive; 

inf[((v, x)) �9 v ~ T1 (x)] 
i.e. 

[[xl[p 
--+ +oo ,  as x e D(LI) .  

This claim follows immediately from the coercivity properties (4.1) 
and (4.2). 

Then consider the operator equation 

Llx  + Tl(X) 9 h, x ~ D(L1).  

By theorem 2.1 this has a solution ~. Let x(t) = J( t )+xo.  Evidently 
x E Wpq(T) is a solution of  the Cauchy problem (2) but  under the extra 
hypothesis that we have a regular initial condition; i.e. xo 6 X. 

Now for the general case let xo E H .  Let {x~)}n>__l C X such that 
x~ --+ xo in H ,  as n ~ (x) (recall that X is dense in H) .  Then from the 
first part of  the proof, we know that the multivalued Cauchy problem 

{ n(t) + A(t, Xn(t)) "~- F(t,  Xn(t)) ~ h(t), a.e. on T, 

X n(O) ~- X~), 

has a solution Xn e Wpq (T), n ~ 1. S o  k n ( t )  + A(t, Xn (t)) + gn(t) = h(t), 
a.e. on T, xn(0) = x~, with gn E G ( x n )  --~ SF(.,x,,(o).q From standard a 
priori estimation (cf. for example [26] or [17]) we can have that {Xn}n>_l 
is bounded in Wpq(T). 
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So by passing to a subsequence, if  necessary, we may assume that 
x,, ~ x weakly in Wpq(T) and gn ~ g in Lq(T, H) (cf. H(F) - j j j ) .  

Then we have: 

lim sup(( .4(x.)  + gn, Xn - x)) = lim sup((kn, x - x~)). 
n--+-k-oo n--+ q - ~  

But from the integration by parts formula for functions in Wpq(T) 
we have 

1 1 
((Xn, X - -  X n )  ) = - = I x ( b )  - x .(b) l  2 + =lx~, - x0l 2 q- ((x, x - x . ) )  

Z Z v 

1 
=~l imsup((kn ,  x - x n ) )  < tim Ix~ - x 0 1 2 +  lira ( ( k , x - x , , ) )  = 0  

n--++cx~ - -  n - - + + ~  7 n--+Wcx3 

=~ lira sup((A(x.) ,  x.  - x ) )  < 0 (because ( (g . ,  x .  - x ) )  = (gn, x.  - x )  --+ 0 
n--+-q-cx~ 

since x.  --+ x in LP(T, H) by the compact embedding of  Wpq(T) into 
LP(T, H)). 

Since .4(.) is pseudomonotone we have A(xn) -+ A(x) weakly in 
Lq(T, X*) and 

x.)) x)). 

Also working as in the proof  of  theorem 3.1, via the use of  ~,,(t), 
we can show that g ~ G(x). So in the limit as n --+ cxz we  get 

.~ + A ( x ) +  g = h with x(0) = x0. So x ~ Wpq(T) solves problem 
(2) with xo ~ H .  

A careful reading of  the above proof can convince the reader that 
the following is true: 

COROLLARY 4.2. I f  hypotheses H(A), H(F)  hold, h ~ Lq(T, X*) 
and xo ~ H, then the solution set of problem (2) is nonempty and weakly 
compact in Wpq(T) and so is compact in LP(T, H). 

5. Examples .  

We will conclude this paper with two examples. 

EXAMPLE t. A periodic nonlinear Parabolic partial differential equa- 
tion. 
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Let T = [0, b] and Z C R N a bounded domain with a Cl-boundary 
0 N 

, k 1 . . . . .  N,  D grad N Z 2 = = = (Dk)k=l and A = D k F. Let D k -  Oz~ k=l 

(the Laplacian). We consider the following multivalued periodic parabolic 
problem: 

(3) 

Ox N 
- -Ax+r  y~(sinx)Dkx + u(t, z) = h(t, z) 

at k=l 

u(t, Z) E [fl  (t, Z, x(t, Z)), fz(t, Z, x(t, Z))] 

x(O, z) = x(b, z) 

a.e. on T x Z 

a.e. on T x Z  

a.e. on Z, xlT• = O. 

Our hypotheses on /'1, f2 are the following: 

H ( f ) :  f l , f 2 : T x Z •  R are functions such that: 

i) f~(t ,Z,X) < f2(t ,Z,X),  V(t,Z,X) E T • Z x R; 

ii) for every x : Z --> R measurable, ( t ,z )  k+ f i ( t , z , x ( z ) )  is 
measurable, i = I, 2; 

iii) V(t, z) 6 T x Z, x ~ f l  (t, z, x) and x ~ - f 2 ( t ,  z, x) are 1.s.c.; 

iv) 3a2 E LE(T,  L2(Z ,  R+) )  and c2 6 L ~ ( T ,  Rff) :  

Ifi(t ,  z ,x ) l  _< a2(t, z)+c2(t)lxl ,  a.e. on T • Z, Yx E R, i =  1, 2; 

iv) 3fl > 0: fi(t ,  z , x ) x  > - f l ,  a.e. on Z , V ( t , x )  e T x R, i = 1, 2. 

Remark 1. Problems like (3) arise when we deal with partial dif- 
ferential equations whose perturbation term f ( t ,  z, x) is discontinuous 
in x. Then in order to obtain solutions, we need replace the original 
single-valued problem by a multivalued one in which we have filled 
the gaps at the discontinuity points. Namely we introduce f ( t ,  z, x) = 

l i m i n f f ( t ,  z, y) and f(t, z, x) = l i m s u p f ( t ,  z, y) and replace f ( t ,  z, x) 
y--+x y--+x 

by the interval [f( t ,  z, x), f ( t ,  z, x)].  Under suitable assumptions on f ,  
we are within the framework of  problem (3) with conditions H ( f )  (cf. 
[21]). 

THEOREM 5.1. I f  hypothesis H ( f )  holds, N < 3, 161rl < ~ ,  
1 -~X  1 

where ;k t is the first eigenvalue of  ( - A ,  H~(Z, R)) and h ~ LZ(T x 
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Z, R), then problem (3) has a solution x ~ L2(T, HI ( z ,  R))NC(T, L2(Z, 
Ox 

R)), with ~ L2(T, H - I ( z ,  R)). 
3t 

Proof In this case the evolution triple is X = HI(Z,  R), H = 
L2(Z, R) and X* = H - I ( z ,  R). 

From the Sobolev embedding theorem we know that X embeds 
compactly in H .  Also note that, since we have assumed N < 3, we 
actually have that X embeds compactly in La(z, R). Let A " X --+ X* 
be defined by 

(A(x), y) = fz (Dx(z), D(y(z)))dz. 

Evidently A(.) is linear, continuous, monotone and 

(A(x),x) IIDx 2 ~1 = IIL2(Z,RU) > - - I l x l [  2. 
- -  l + L l  

Next  let v �9 X --+ H be defined by 

N 

v(x) (z) = r E ( s i n  x (z)) Dkx (z). 
k = l  

We claim that v(.) is sequentially continuous from X~ into Hw. To 
this end view v(.) as an X*-valued function. We will show that v(.) is 
strongly continuous. Indeed let Xn --+ x weakly in X. Then, because X 
embeds compactly in Ln(z,  R), we have xn --+ x in L4(Z, R). We will 
show that v(xn)--+ v(x) in X*. 

Suppose not. Then by passing to a suitable subsequence, if  neces- 
sary, we may assume that there exists e > 0 and {Yn},>_l C X with 
[ly~ II < 1 such that 

(V(Xn) -- V(X), Yn) >-- e, for all n > 1. 

We may assume that Yn ~ Y weakly in X and so Yn ~ Y in 
L4(Z, R). Then we have 
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(U(Xn)  - -  U(X), Yn)  = 

r y ~  sinxn(z)Dkxn(Z) -- r Z sinx(z)Dkx(z) 
k=l  k=l 

f 
r ~ J [sin X n ( Z  ) - -  sinx(z)]Dkxn(Z)yn(z)dz-~- 

k l "z 

r ~= fz sinx(Z)DkXn(Z)[yn(Z)- y(z)]dz+ 

r ~1= fz sinx(z)[Dkxn(Z) -- Dkx(z)]y(z)dz+ 

r~lfzsinx(z)DkX(Z)[Y(Z)-Yn(Z)]dz'= 

y n ( z ) d z  - -  

Recall that I sinxn(z)-sinx(z)l < [Xn(Z)-X(z)l. So applying H61der's 
inequality with three factors we have 

fz [sin xn (z) - sin x (z)] DkXn (Z)Yn (z)dz < 

IIx. - x I I L 4 ( Z , R ) I I x .  II IlY~ IILa(Z,R) 

5_ MIIIx~ --XIIL4(Z,R) ~ O, as n --+ ~X~, 

fzSin x (z) Dkxn (Z) [Yn (Z) -- y (z)]dz 

M21lxnll [[Yn --YIIL4(Z,R) 

< 

M3llYn - YlIL4(Z,R) ~ 0, as n ~ oo, 
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fz  sinx(z)[Dkxn(Z) -- Dkx(z)]y(z)dz O, 

since OkXn ~ OkX weakly in Le(z ,  R), and 

a s  F/ -----~ (2x~ 

I f z  x (Z) Dkx (Z) [y (Z) -- Yn sin (z)]dz 

since Yn ~ Y weakly in L2(Z, R). 
Thus finally we have 

(v(xn) - v(x), y.) --+ O, as 

O, a s  rt ---+ 0 0 ,  

a contradiction to the choices of yn'S. Hence o(.) is strongly continuous 
from X into X* as claimed. Now note that 

Iv(x~)l 2 = r (sinxn(z))D~xn(Z) dz, 
k=l  

therefore Iv(xn)l _ Mal[xnl[ < Ms, for all n > 1. So by passing to a 
subsequence,  if it is necessary, we may assume that v(xn) ~ w weakly 
in H .  But, since v(xn) --~ v(x) in X* for the original sequence, we 
conclude that w = v(x) and v(xn) ~ v(x) weakly in H ;  i.e. v(.) is 
sequentially continuous f rom Xw into Hw, as claimed. 

Now note that 

x I I(v(x), x)l <__ Irl ~ _< 
k = l  

< Irl ~ ]DkX!z)]Zdz Ixl 
k = l  

<__ Irlllxll 2 

(v(x) ,x)  >_-Irl Ilxll 2. 

Also let F1 " T • X -~ Pfc(H) be defined by 

Fl ( t , x )  : {u ~ H " f l ( t ,Z ,X(Z))  <_ u(z) <_ f2 ( t , z , x ( z ) )  a.e. on Z}. 
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Now we want to prove that t ~-~ F1 (t, x) is measurable from T into 
H.  To this end we fix y ~ H,  and we observe that (cf. [10], Theorem 
2.2) 

[d(y, F t ( t , x ) ) ] 2 = i n f { f z l y ( z ) - h ( z ) 1 2 d z  " h 6  F , ( t , x ) } =  

fz in f { ly (z ) -  vl2 " v 6 Fo(t,z,x(z))}dZ = f zd(y(z ) ,Fo( t , z ,x (z ) ) )2dz ,  

where Fo : T x Z • R --+ Pfc(R) is the multifunction defined by 

Fo(t, Z, x) = [f l  (t, z, x), f2(t, z, x)]. 

Since from H ( f ) - i i )  we have that (t, z) w-> Fo(t, z, x(z)) is mea- 
surable, by using Fubini's theorem we obtain that t ~ d(y, Fl( t ,x))  is 
measurable and so it is measurable the multifunction t w-> Fl(t, x). 

Then define F( t , x )  = v(x) + Fl(t, x). Evidently F(t, x) satisfies 
hypothesis H(F).  

Rewrite the problem (3) in the following equivalent evolution inclu- 
sion form: 

I ~c(t) + A(t, x(t)) + F(t, x(t)) ~ fz(t), a.e. on T 
(5.1) / x (0) = x (b). 

Here /~(t) = h(t, .)  ~ H. Applying theorem 3.1 on (5.1) we 
Ox 

get a solution x ~ L2(T, H i ( z ,  R)) A C(T, L2(Z, R)), with Ot E 

L2(T, H - I ( z ,  R)), of (3). 

Example 2. In this example we consider an optimal control problem 
for a system driven by a nonlinear parabolic equation. So let T = [0, b] 
and Z C R N a bounded domain with a Cl-boundary F.  Fixed p >_ 2, 

1 1 0 
let q >  1 such that - - + - - =  1. As before D k - -  , k = l  . . . .  , N ,  ot 

p q OZk 
will denote a multi-index (by which we mean an N-uple  of  nonnegative 
integers), D ~ D~I aN -~ . . . D  k , loci is the length of the multi-index, i.e. 

N 

I~1 = ~'-~Otk, for x ~ Wm'P(Z, R), rl(x) = (D~x " I~1 _ m) and 
k = l  

~(x) = (D~x : Ifll < m -  1). 
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(4) 

We consider the fol lowing nonlinear optimal control problem: 

f o b f z L ( t , z , x ( t , z ) , u ( t , z ) ) d z d t - - + i n f = m  

such that 

Ox 

Ot 
(-1)tal D=A~(t, z, rl(x(t, z) ) )+ 

lal<_m 
f (t, Z, x ,  ~(x( t ,  Z)))u(t, Z) = h(t ,  z) 

a . e o n  T • Z 

[u(t, z)l < M,  a.e. on T x Z,  u(.,  .) measurable. 

We will need the fol lowing hypotheses on the data of (4), 

H(A)I  As T x Z • RNm ---~ R (Nm - (N  + M)!  ) �9 - are function such that 
N ! m !  

i) VO ~ R N", (t, z) v-+ As(t ,  z, O) is measurable; 

ii) u z) ~ T x Z,  rl --+ As( t ,  z, O) is continuous; 

iii) ~ ( A s ( t , z ,  0 ) - A s ( t , z , o ' ) ) ( r l ~ -  rf~) > O, V(t, z) ~ T • Z,  
[~L<_m 
Vrl, rf E R Nm ; 

iv) Bal 6 Lq(T  • Z,  R~))  and cl ~ L~176 R+): 

Iaa(t,  z, 0)[ < al(t ,  z) + cl(t)HOlf - l ,  

a.e. on T • Z, VO ~ R N', 'qot "l~l ~ m, 

v) 3c > 0 �9 ~ Aot(t, z, rl) > cllr/ll p, a.e.on T x Z,  Vrl e R Nm . 
Ic~l_<m 

H ( f ) l :  f : T • 2 1 5 2 1 5  N:" ~ R, where N , ~ = N m _ I - I =  

is a function such that 

(N + m - 1)! 

N!(m -- 1)[ 

j) u ~) 6 R x R N~., (t, z) v-+ f ( t ,  z, x ,  ~) is measurable; 

jj) V(t, Z) ~ T x Z,  (x, ~) ~-+ f ( t ,  z, x ,  ~) is continuous; 

, 
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jjj) 3a2 �9 Lq(T, LE(z, R+)) and c2 �9 L~176 R~-): 

I f ( t ,  z, x, ~)1 < a2(t, z) + c2(t)(lxl (p-l)/2 + I]~[I (p-1)/2, 

a.e. on T x Z .  

jv) 3~ > 0: f ( t ,  z ,x ,  ~)x >__ - ~ ,  a.e. on T x Z, 'r �9 R, u �9 R N'. 

H(L) :  L : T x Z x R x R --> R U {+oo} is a function such that 

l) (t, z, x, u) ~ L(t, z, x, u) is measurable; 

2) u z) �9 T x Z, (x, u) e-> L(t, z, x, u) is 1.s.c.; 

3) V(t, z, x) �9 T x Z x R, u e-~ L(t, z ,x ,  u) is convex; 

4) 3 v � 9  R) and fl > 0 :  

L(t, z, x, u) >_ v(t, z) - #(Ixl + lul), a.e. on T x Z. 

THEOREM 5.2. I f  hypotheses H(A)I,  H ( f ) l ,  H(L)  hold, xo �9 
L2(Z, R) and h �9 L2(T • Z, R), then problem (4) has an optimal solu- 
tion 

[x, u] �9 (LP(T, w:'P(z, R)) 0 C(T, L2(Z, R))) x L~176 • Z, R). 

Proof In this case the evolution triple consists of  X = Wo'P(z,  R), 
H = LE(z, R) and X* = w-m'q ( z ,  R). Again the Sobolev embedding 
theorem tells us that X embeds compactly into H.  

Let A : T x X --> X* be defined by 

(A(t, x),  y) = ~ A~(t, z, rl(x(z)))D"y(z)dz. 
I~l_<m 

Using hypothesis H(A)I  it is routine that A(t, x) satisfies hypothesis 
H(A).  

Then we define F : T x X --> Pfc(H) by 

F( t , x )  = {v e H : v(z) = f ( t ,  z ,x(z) ,~(x(z)) )u(z)  

a.e. on Z, u meas., lu(z)] < M, a.e. on Z} 

then we can easily see that F(t, x) satisfies hypothesis H(F) .  

Finally let /, : T x H x H ~ R U {+cx~} be defined by 

L(t, x, u) = f L(t, z, x(z),  u(z))dz. 
Jz 
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From our conditions it is possible to find a sequence of Caratheo- 
dory integrands Lk : T • Z x R x R ~ R such that ~(t, z) - / 5  (Ix I + l u 1) < 
Lk(t, z , x ,  u) < k (where ~( t ,z )  = min{v( t , z ) ,  1}) and Lk 1" L.  Set 

f Lk(t, x,  u) = Lk(t, Z, x(z),  u(z))dz. Evidently by Fubini 's  theorem and 
z 

by the dominated convergence theorem, (t, x,  u) ~ Lk(t, x, u), k > 1, 
is a Caratheodory function, hence jointly measurable.  Since by the mo-  
notone convergence theorem we have that L t  1" L as k --~ eo,  we de- 
duce that ( t ,x ,  u) ~ L ( t , x ,  u) is measurable. Also by Fatou's  l emma 
(x, u) --+ L(t ,  x, u) is lower semicontinuous and u ~-~ L(t, x, u) is con- 
vex (cf. hypothesis H(L) -3 ) .  Moreover  

L,( t ,x ,u)  > ~ ( t ) - ~ ( l x l + l u l ) ,  a.e. on T with ~ e LI(T,  R), ~ > O. 
Then the cost functional of  (4) is equivalent  to 

fo b J(x ,  u) = [.(t, x(t) ,  u(t))dt 

which, by theorem 2.1 of  Balder (cf. [2]), is sequentially lower semicon- 
t inuous on LI(T,  H) x LI(T,  H)w. 

Now let [x~, u , ] ,  n > 1, be a minimizing sequence of  admissible 
state-control pairs of  (4). But xn ~ LP(T, Wo'P(z ,  R))71C(T, L2(Z, R)), 
n > 1, are solutions of  the equivalent evolut ion inclusion 

(5.2) { 2(t)  + A( t , x ( t ) )  + F( t , x ( t ) )  ~ h(t), a.e. on T 

x (0) = Xo, 

where h(t)( . )  = h(t, .). 

Since the solution set of  (5.2) is compact  in LP(T, H) we may 
assume that x,, ~ x in LP(T, H).  Also we can say that u,, ---> u weakly 
in LI(T,  H). 

Thus J(x,  u) < l i m i n f J ( x ,  un) = m =:~ J(x ,  u) = m, i.e. Ix, u] is 
n----~ i x )  

optimal. 
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