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F I N I T E L Y  A D D I T I V E  M E A S U R E S  

ON G R O U P S  AND RINGS 

SOPHIE FRISCH - MILAN PASTI~KA 

ROBERT F. TICHY - REINHARD WINKLER 

On topological groups a natural finitely additive measure can be defined via 
compactifications. It is closely related to Hartman's concept of uniform distri- 
bution on non-compact groups (cf. [3]). Applications to several situations are 
possible. Some results of M. Pagt6ka and other authors on uniform distribution 
with respect to translation invariant finitely additive probability measures on 
Dedekind domains are transferred to more general situations. Furthermore it is 
shown that the range of a polynomial of degree > 2 on a ring of algebraic 
integers has measure 0. 

1. Introduction. 

A sequence x = (Xn)nc N of  integers x n E Z is called uniformly 

distributed i f  it is uniformly distr ibuted mod  m on each of  the finite 

rings Zm = Z / ( m ) ,  (m) = mZ .  To this concept  there corresponds a 

finitely addit ive measure  on a certain subsystem of  the power  set of  Z.  It 

is the complet ion of  the system o f  finite unions o f  remainder  classes of  

the form k +  (m) with respect to the finitely additive probabil i ty measure 

/z generated by the requirement  / z ( k - I - ( m ) )  = m -1 . There is a vast 

literature on generalizat ions of  these concepts to more  general  classes o f  

rings R (cf. references).  Instead of  (m) ___ Z one considers  ideals I <__R 

(I  < R if  the inclusion is strict) with finite index # R / I  and assigns to 

the classes r + I the measure (or norm) ( # R / I )  -z ,  cf. [10], [11], [12]. 

Here we cont inue such invest igat ions but take the fol lowing point o f  
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view. To each family Ij, j ~ J ,  of ideals with finite index (norm) there 
corresponds an embedding 

t " R --+ I--I R / I j ,  r ~ (r + Ij)j~j,  
j~J 

of R into a compact topological ring. Let C ---- t(R) be the topological 
closure of t(R) which is again a compact topological ring. C has a 
natural measure theoretic structure given by the Haar measure # on the 
compact group (C, +) .  For the theory of uniform distribution the suitable 
concept of measurable sets is that of /z-continuity sets M which are 
defined by the property /z(~M) = 0 for their topological boundary 6M. 
The preimages t - l ( M )  of /z-continuity sets M form a set algebra (in 
general not a o--algebra) which essentially coincides with the system of 
measurable sets from the first paragraph if all ideals with finite index 
occur in the product. This is part of Theorem 4 which also asserts that 
the measures induced by the two constructions coincide. 

Note that the embedding t is not necessarily injective. As an exam- 
ple take any infinite field F ,  where the only ideal with finite index is 
F itself. Hence the embedding is the trivial map onto the one element 
ring and the concept is trivial. 

By Pontrjagin's duality (for the structure theory of locally compact 
abelian groups cf. [4]) this cannot happen if one considers compactifi- 
cations of the additive group. In terms of  projective properties one may 
compare compactifications in such a way that there is a maximal com- 
pactification, the well known Bohr compactification. Among all compac- 
tifications the Bohr compactification gives the maximal system of  measu- 
rable sets. Theorem 1 shows that compactifications, measures and mea- 
surability fit together in a natural way. All these ideas are carded out in 
section 2. 

In section 3 the concept is compared with other approaches. In 
Theorem 2 we show that in the case that R is the ring of integers each 
set which is measurable in the sense of compactifications has a density 
equal to its measure. The converse is not true as Theorem 3 implies. 
There are sets having a density which are not measurable. 

Theorems 4, 5 and 6 are devoted to the equivalence of  the approa- 
ches via ideal measures and via compactifications for rings with unity. 
We conclude section 3 with some examples, especially with a detailed 
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investigation of completion of a ring with unity with respect to a natu- 
ral metric. This is closely connected with questions concerning uniformly 
distributed sequences in such rings. In the final section 4 the ideal mea- 
sures of special sets are computed. This includes the result that the range 
of a polynomial of degree at least 2 on an algebraic ring of integers has 
measure 0. 

Our results are related to invariant means on topological groups. A 
deeper understanding of the connection of both approaches should be the 
aim of investigations in the future. 

As a general agreement we suppose all topological spaces to satisfy 
the Hausdorff separation axiom. 

2. Compactifications and measures. 

2.1. Several notions and facts on compactifications 

In the following we present a brief outline on compactifications of 
topological groups. (Generalizations to a larger class of algebraic struc- 
tures are possible.) For a more detailed description of  the constructions 
see for instance [2], page 71. Note the analogies with arbitrary compac- 
tifications of completely regular topological spaces, especially with the 
Stone-(~ech compactification which is the maximal one. 

Let G be any topological group. A pair (C, t) is called a compac- 
tification of G if t �9 G -+ C is a continuous homomorphism, C is a 
compact group and t(G) is dense in C. (In this context we do not re- 
quire that t is a homeomorphic imbedding.) The compactification is cal- 
led injective if t is injective. If one likes, one can force injectivity by 
considering G/ker t  instead of G. (C1, q)  is called smaller than (C2, t2) 
(we write (C1, ta) < (C2, t2) via ~o) if there is a continuous epimorph- 
ism q) �9 C2 ~ C !  such that q)t2 = tl .  The relation < is reflexive and 
transitive. Hence there is a natural notion of equivalence of compactifi- 
cations: (C1, tl) and (C2, t2) are called equivalent if there exist q9 and 
7z such that (C l , t l )  _< (C2, t2) via ~o and (C2, t2) _< (Cl, q)  via ~ .  In 
this case ~p = ~o -1. (Obviously this could also be expressed in terms of 

categories.) 

By standard cardinality arguments on appropriate systems of filters 
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on G the equivalence classes of compactifications of G can be represen- 
ted by a set. Hence we are allowed to fix a set C which contains exactly 
one representative of  each equivalence class of compactifications of  G. 
Any compactification may be identified with its equivalent copy in C. 

The relation < is a partial order relation on C. But far more is true: 
If (Ci, ti), i ~ I, is any family of compactifications we may consider the 
direct product. Let P = I 1  Ci and define the continuous homomorphism 

i t l  

t �9 G --+ P by g w-~ (ti(g))iel. If C is the closure of t(G) in the compact 
group P then (C, t) turns out to be the least common upper bound of 
the (Ci, ti). Note that the trivial compactification onto the one element 
group is the least upper bound of the empty set. Thus (C, <) in fact 
is a complete lattice. (Since we do not need this fact in full generality 
we do without the somewhat tedious proof.) In particular there is a 
maximal compactification, called the Bohr compactification (bG, bt). It 
follows from Pontrjagin's duality that, if G is a discrete abelian or, more 
generally, a locally compact abelian group, the Bohr compactification is 

injective and can be obtained by taking the dual Gd of the discretely 
topologized dual Gd of G. 

For us there is a second compactification of special interest. If one 
considers compactifications (C, t) of the additive group (R, +)  of a ring 
it might be convenient to extend the ring multiplication from R to C in 
a continuous way. If this is possible, the continuation of ring multiplica- 
tion (as addition) is, by density, uniquely determined by t. We then call 
(C, t) a ring compactification. The maximal ring compactification - we 
denote it by rbR- may happen to be not injective as the extreme exam- 
ple of an infinite field F shows where rbF  = {0}. This follows from 
the fact that finite fields are the only compact topological rings that are 
fields, because compact rings with identity have an ideal topology, cf. 
[17] 32.3 and 32.5. This means that there is a neighbourhood base for 
0 E R consisting of clopen (= closed and open) ideals. 

2.2. Compactifications and finitely additive measures. 

On every compact group C there is a unique regular probability 
measure which is a left and right invariant Borel measure. Let /Zc denote 
its completion which is called the Haar measure. For our purposes this 
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gives rise to the following notions: 

Let G be any topological group and (C, t) a compactification of  G. 
Then we call a subset T _c G measurable with respect to (C, t) if it 
is the preimage under t of  a /zc-continuity set M,  i.e. T = t - l ( M )  

with #c(.~l f3 (C\M))  = 0. Thus a set M _ C is a /zc-continuity set 
if and only if its topological boundary 8M is a zero set. It is easy to 
check that the system Sc of  all #c-cont inui ty  sets in C and the system 

S(c,0 of their preimages T _ G which we call the sets measurable 
with respect to, for short w.r.t., (C, t) - form a set algebra (in general 

not a a-algebra)  on C resp. on G. Obviously every T ~ S(c.,) satisfies 
T = t - l ( t (T)) .  Note that T E S(c,,) implies that t(T) E Sc but that 
the converse is not true. (Consider for instance the compact group G = 
C = R / Z , t  the identity and T a dense set which is not a continuity 
set.) Considering the open kernel of  t(T) and of  its complement  which, 
together, form the complement of  its boundary, we observe for T = 
t - l ( t (T))  " T E S(c,o if and only if there are disjoint open sets O1, 

02 _ C with t (T)M02 = ~J, t (G\T)NO1 = ~ and tzc(Ol)-Ftzc(02) = 1. 
The definition /Z(c,,~(T) = l~c(l(T)) or, equivalently, /Zr = 
Izc(M), transfers the measure /Zc on Sc to the system Stc,o, and gives 
the natural finitely additive measure on G w.r.t. (C, t), defined for all 
T ~ S(c,o. A similar situation is investigated in the papers of  Pa~trka. 

If the compactification is not injective then the measure /Z(c,0 is 
in general not complete. Nevertheless, since /zc is complete, the fol- 
lowing similar statement holds: If  the family T/ ~ S(c,,), i ~ I, sa- 
tisfies inf#(c ,0(T/)  = 0, then every T with T = t - l ( t (T))  which is 

contained in the intersection of  the 7],. is in S(c,O and has measure 0. 
To see this, take closed sets Mi = t(Ti) ~ Sc satisfying T/ c t -I(Mi) 
and I~c(Mi) = /~(c,0(T/). Since C is fixed we may consider the in- 
tersection M of  the Mi. M is a closed set of  measure 0 which con- 
tains t(T) D_ t(T). Thus t(T) E Sc since /Zc is complete, implying 

T = t - l ( t (M))  E S(c,,) with measure 0. 

The maximal compactification (Bohr compactification) (C, t ) =  (bG, 
bt) of  G will play a special r61e. Hence we write /xc for /x(c,,). 

2.3. Compatibility of  compactifications and measures. 

As expected, the measure lz(c,o(T) of a set T c G does not depend 
on the compactification (C, t), in the following sense: 
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THEOREM 1. Let (Cl,  q) and (C2, t2) be compactifications of  G. 
On the intersection $(Cl,~l)(q S(c2,Lz) the measures tzl = Iz(c~,q) and 
#2 =/~(c2,,2) coincide. (C1, q) < (C2, t2) via ~0 implies S(c~,q) ___ $(cz,~2). 
In this case, M ~ SCl implies qg-~(M) ~ Scz. 

Proof We proceed in several steps. Under the additional assumption 
(C1, q )  < (C2, t2) via ~o we prove the following facts. 

1. ~o-l(M) c ~p-l(ll,l) for every M ___ Cl:  Continuity of qg. 

2. 6(~o-l(M)) c ~o-l(6(M)) for all M ___ C1" Using the first fact we 
observe 

3(qg-l(M)) = ~p-l(M) f) C2\~o-1(M) c ~o-1 (M) N ~o-I (CI \M) = 

= ~o-1 (114 fq Cl\M)  = ~o-l(3M). 

3. ~cz(tp-l(M)) = #c~(M) for every measurable set M ___ CI:  The 
left hand side of the equality defines a translation invariant probability 
measure on the Borel sets of  C1, hence has to coincide with the unique 
Haar measure /zCl. 

4. M ~ Sc~ implies r 6 Sc2: By the assumption, /zI(6(M)) 
= 0, hence by 2. and 3. 

/Zc2 (~(~o - l  (M))  </Zc2 (~o - l  (3(M))) = /Zc ,  (8(M)) = O. 

5. Scl,q c_ Sc2,,2: By the criterion in Section 2.2 T ~ Sc~,, implies 
that there are disjoint open sets O1, 02 ___ C1 with t l (T)  71 Oz = 0 = 
t l (G \T)  A O1 and IZcl(Oi)+lZc~(O2)= 1. Using 4. we get that O 7 :=  
~o-1(Oi), i = 1, 2, play the same r61e in C2. kerr2 _ ker~ot2 = ker t l  and 
t l l t l (T )  = T implies t~ l t2 (T)= T. Thus, again by the same criterion, 
we conclude T ~ $(c2,,2). 

6. T ~ S(Cl,,1) implies /zl(T) = /z2(T): By 5., T E S(c2,,2)- Hence 
for both values i = 1, 2 we have the relation 

tz G (ti(T)) -F Iz G ( t i (G\T))  = 1. 

Using 1. we get 

t2(T) c ~o-I~Otz(T) ___ ~o-l(~ot2(T)) = ~o-l~l(W)), 
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hence by 3. izc2(t2(T)) < lZCl(q(T)). The same holds for G \ T  in- 
stead of T which, together with the above relations, is possible only if 

/zl(T) = / z 2 ( T ) .  

We have proved everything for the case (C1, t l)  < (C2, t2). The 
general case follows since two compactifications have a common upper 

bound, for instance (bG, btc) with measure /zc: 

I.*l(T) = IZG(T) = / z 2 ( T )  �9 

Theorem 1 has the following consequence for further investigations. 
If a set T c_. G is measurable w.r.t, any compactification (C, t) then it is 

measurable w.r.t, all bigger compactifications. The value /Z(c,0(M) does 
not depend on the compactification as long as T is measurable w.r.t, it. 
Thus the Bohr compactification and the corresponding finitely additive 
probability measure /z6 =/z(bC,b,) tells us everything about measures of 
sets T __. G. Let us call /ZG the Hartman measure on G, cf. [3], and 
the corresponding measurable sets T c_ G group measurable or Hartman 
measurable. If we replace the Bohr compactification by the ring Bohr 
compactification we call the measurable sets ring measurable. 

We are interested in measurability properties of subsets T _ G. The 
concepts are nontrivial since it is possible to construct sets T ___ G which 
are not Hartman measurable, which follows from Theorem 3. Furthermo- 
re there are Hartman measurable sets that are not ring measurable. Con- 
sider for instance a ring which is an infinite discrete field. In this case 
Bohr and ring Bohr compactification are non-equivalent in an extreme 

way. 

3. Comparing several concepts. 

3.1. Sets of  integers: Hartman measurability and density. 

In the special case R ---- Z one has a further nontrivial and natural 
fni te ly additive measure, the density. For a set T _ Z of  integers 

#T VI S 
consider, for any finite set S c Z, the number A(T, S) -- #----~. If, 

for the sets SN = {n 6 Nln < N} and --SN = {--nln e SN}, both 
sequences A(T, SN) and A(T,--SN) tend, for N --+ r to the same 
limit, we denote this common limit by dens(T) and call it the density 

of T. 
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It turns out that every Hartman measurable set has a density coinci- 

ding with its Hartman measure. The converse is not true, since the den- 

sity of  Hartman measurable sets is even uniform in the following sense: 

Let T _ Z be a set o f  integers. We say that T has the (unique) 

uniform density dens(T)  (also called Banach density) if the following 

holds: For every e > 0 there is a positive integer Ne such that every 

set lkl,k2 = {n E Zlkl < n < k2} with k2 - kl > N~ fulfills 

dens(T) - e < A(T, lk~,k2) < dens(T)  + e. 

Of  course if the uniform density exists then also the density of  T 

exists and both values are equal. 

THEOREM 2. Every Hartman measurable set T c_ Z of  integers has 
a uniform density dens(T) with dens(T)=/zG(T) .  

Proof Consider the Bohr  compactification (C, t) ----- (bZ, bt) which 

can be realized by 

t(k) = (kot),~R/Z ~ C ___ 

Here every character X~ " G --+ 

H 
~R/Z 

R/Z ,  k ~ ket, of the integers 

represents a compactification. A topological base /3 is given by all sets 

B ___ C of  the type 

B = B ( ~ I  . . . . .  O~k, I 1  . . . . .  Ik) = { ( X t z ) ~ R / Z  E Clxotj E Ij, j = 1, . . . ,  k}, 

where k ~ N, otj ~ R /Z ,  and the Ij are connected open subsets (inter- 

vals) in R/Z .  Note that all these base sets are /z-continuity sets where /z 

is the Haar measure on C. The same is true if  we consider the base sets 

o f  a smaller compactification (instead of  (C, t)) where not all ot 6 R / Z  
o c c u r .  

Suppose T e S = Sic,, ) , i.e. T = t - l ( M )  for some M _ C with 

/z(3M) = 0. This means /z(M ~ = /z(M) = /Z(A,/) for the open kernel 

M ~ and the closure A~t. 

First we show, for given e > 0, that there are /z-continuity sets Mi, 
i = 0, 1, being finite unions of  base sets such that M0 _ M __c Ml and 

/z(MI\Mo) < e /2 .  To see this use regularity of  /z to get a compact  set 

K and open sets O and V with 

K c O _ c 0 _ _ _ M ~  V 
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and I~(V\K) < e /2 .  Consider a finite covering of  0 by open base sets 
nl  

Bi __C M 0, i = 1 . . . . .  nl ,  and put M0 = U Bi" Add a finite covering of  
i = 1  

h7~t\O by sets Bi c_ V \K ,  i = n l + l ,  . . . ,n lq-n2,  and put Ml = MoUU 
nlq-n 2 

with U = U Bi. Since all base sets are continuity sets M0 and MI 
i = n l + l  

have the required properties. Note furthermore that /z(U) < e /2 .  

The definition of  the involved sets uses only finitely many Bi, each 

of  them involving only finitely many otj, j = 1 . . . . .  s. Thus we may 

consider the projection Jr �9 C ---> C~ = zr(C), t~ = rrL, onto the 

occuring components corresponding to otj, j = 1 . . . .  , s. Hence (C~, re) is 

a finite dimensional compactification of  Z, generated by the characters 
X,~j, j = 1 . . . . .  s. This means that C~ ___ ( R / Z )  s is (in the topological 

sense) generated by the element ot ---- (otl . . . . .  ots) ~ C~. Write A' = rr(A) 

for arbitrary A ___ C. Since all Bi depend only on the components 

corresponding to the otj, j = 1 . . . . .  s, we have z r - t (B; )  = Bi for 

i = 1 . . . . .  nl + n 2 .  This implies r r - l ( U  ') = U and z r - l (M; )  = Mi for 
i = 0, 1. With T/ = t-l(Mi) we conclude 

tZG(To) -~ l zq(M D) < #c(T)  </ZG(T1) = t.tq(M[). 

It is known from the theory of  uniform distribution on monothetic 

groups (cf. [5], p. 269, Corollary 4.1) that the sequence (kot) is well 

distributed in C~ for every generating element a .  In our case this means 

that there is a positive integer Ne such that for all k 6 Z and all N > N~ 

we have 

1 
tzq(M~.) - e/2 < N #{n ~ Zlk < n < k q- N,  not ~ M~} < txq(M~) q- e/2 

for i = 0, 1. Furthermore we have 

. q (M[)  <_ .q (M;)  + .q(W')  < .q (M;)  + -ft. 

Thus we get for every I = Ikl,k 2 with k2 - k l  >_ N~ 

#I N T #i n T1 

# I  - # I  
< / z q ( T l )  + ~- < lzq(M~)) + e < tza(T) + e, 

#I A T  
and similarly > _ / ~ c ( T ) -  e, proving the theorem. �9 

# I  
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AS a corollary we get that sets with a density are not necessarily 
measurable. 

THEOREM 3. There are sets of  integers which have a density but 
are not Hartman measurable. 

Proof Since the density of  a Hartman measurable set is uniform 
by Theorem 2, it suffices to construct a set T which has a density but 
not a uniform density. Take Tk = {k 2, k 2 +  1 . . . . .  k 2 +  k}, T + = D irk, 

k e N  

T -  = { -n ln  ~ T +} and T = T + tO T -  then it is easy to check that T 
has the density dens(T) = 1/2 which is not uniform. �9 

3.2. Compactifications and families of  ideals of  finite index. 

In this subsection we show that the approach via ring compactifica- 
tions is equivalent to that via ideals of  finite index. 

For an arbitrary topological ring R with identity let i f  = {Ij[j ~ J} 
be a family of clopen ideals Ij ~_R of  finite index # R / I  i and suppose 
that i f  is closed under intersections. It is known (cf. for instance [10], 
[11]) that i f ,  if it is closed under finite intersections, defines a finitely 
additive measure / z j  on R in the following way: 

n 

For every subset T _c R which is a finite union T = ~ J  ri-b Iji with 
i=1  

n 

pairwise disjoint ri q-Iji the number I ~ j ( T ) =  ~ # R / I i i  is independent 
i=1  

of  the representation of  T. Let us call such sets J-definable.  The set 
function / z j  is a finitely additive measure / z j  on the set algebra of  
if-definable sets. / z j  can be uniquely extended to the so-called ideal 
measure (induced by i f )  on the set algebra of  all subsets T c_ R which 
can be approximated in the following sense: 

T is called measurable w.r.t, i f  if  there is a (unique) number l z j ( T )  
such that for each e > 0 there are /f-definable sets A~, Be _c R with 
A E _ _ . T C B e  and 

I z j (T)  - e < lz j (Ae)  <_ Izj(Be) < l z j (T )  + e. 
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We show that this approach essentially leads to the same concepts 
as the compactification (C j ,  t j )  defined by 

t j  " R --+ H R/ I j ,  r ~ (r + Ij)jej.  
jEJ 

For notational convenience call ,.7 point separating if A Ij = {0}. 
j6J 

Note that this is the case if and only if t j  is injective if and only if 
T = t ~ l t j ( T )  for all T ___ R. 

THEOREM 4. Suppose T c_ R. I f  T E S(cj , , j )  then it is measurable 
w.r.t. J .  The converse holds if  T = t~71tj(T). I f  both values t x j (T )  and 
I z (c j , , j ) J (T)  are defined they coincide. Hence l z j  = IX(cj,,j) if J is 
point separating. 

Proof First note that the J -de f inab le  sets T ___ R can be represented 
as preimages T = t - I (MT) of clopen sets M r  forming a topological 
base of  C j .  A set is clopen if and only if it has empty  topological 
border. Hence all these sets are measurable w.r.t. J as well as w.r.t, the 
compactification (C j ,  t j ) .  By translation invariance of  the Haar measure 
it is obvious that I z j ( T ) =  Id,(cj,tj)(T) for such sets. 

Assume now that T - =  L- l (Mr )  is measurable w.r.t, the compactifi- 
cation (C j ,  t j )  with IXcj(3Mr) = 0. In the same way as in the proof  
of Theorem 2 one finds, for e > 0, finite unions M0 and Ml of  clopen 
base sets such that Mo ~ MT C M1 and /zc j  (M1 \M0) < e. The  preima- 
ges Ti = t - l (Mi) ,  i = 0, 1, are J -de f inab le  and play the r61e of  AE and 
B~ in the definition of  measurability w.r.t. ,7, showing that T has this 
property. Furthermore this argument shows that in this case the measures 
I z j (T )  = IX(cj, , j)(T) coincide. 

It remains to prove that T ~ S(c j , , j ) ,  provided that T is measurable 
w.r.t. J and T = L J ( M )  with M = L j (T ) .  For each e > 0, there are J -  
definable sets A~ and BE with Ae _ T __. Be and Iz j(B~kAe) < e. They 
can be written as the preimages Ae = L-I(MA,) resp. B~ = t - l (MB,)  
of clopen sets satisfying MA~ C_ M C Ms, .  Note that 8M c Ms, kMA,. 
Furthermore their Haar measure is equal to the ideal measure.  It follows 
immediately that lZc~(SM) = 0. Thus T = t~ l (M)  is measurable with 
respect to (C j ,  t j ) .  �9 
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Remark. For each I ~ R  dl(rl, r2 )  = 0 if r l - -r2 E I and dl(rl, r2) = 
1 otherwise defines a pseudometric dt on R. To a given ,.7 there corre- 
sponds the system of all dt with I 6 ,.7. This system is point separating 
if and only if 3" is point separating. The completion with respect to the 
uniformity of this system of pseudometrics turns out to be equivalent to 
(C,7, tcr). The construction and the proof are standard. If ,9 is countable 
the system of pseudometrics can be replaced by a metric. This special 
case is discussed in detail in section 3.3. 

It is clear that the class of J -measurable  sets increases with `-7. 
This is an immediate consequence of the following theorem together with 
Theorem 1. 

THEOREM 5. "71 CC_ ̀-72 implies (C&,,j~) < (Cj2,,j2). 

Proof As one checks easily, the mapping 

q) : t j z (R  ) --+ t&(R) ,  (r + l ) l ~ j  2 ~ (r + I)i~J~ 

is well defined and can be uniquely extended to a continuous epimorph- 
ism C j2 --~ Cj~. �9 

Hence it remains to investigate the largest possible choice for ,7. 
Let ~" be the system of all ideals I ~R  with finite index. Note that Or is 
closed under finite intersections (cf. [10], [11]). The situation is explained 
by the following theorem. 

THEOREM 6. Let R be a ring with identity. Then the ring Bohr 
compactification (C, t) = (rbR, rbt) and the compactification (Cy,  t~:) 
are equivalent. 

Proof Since (C~-, t~-) is a ring compactification there is a conti- 
nuous epimorphism ~0 : C --+ C~- from the maximal ring compactifica- 
tion C onto C~- with qgt = t~-. Since C is compact, every continuous 
injection into a Hausdorff space is a homeomorphism. Thus it suffices 
to prove ker~0 = {0}. 

Let U be any open iaeighbourhood of 0 ~ C. It follows from the 
structure theory of compact rings with unity (cf. [17], Theorem 32.3 and 
32.5) that C has a topological base of clopen ideals which, since C is 
compact, must have finite index. Let I ~ C  be such a clopen ideal with 
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I c U. It follows that I0 = t - l ( I ) ~ R  with 

Io 6 ~ and ker t~  c Io. We conclude 

and thus 

IR/lol = IC/II. Hence 

t-l(ker~o) = ker(up) = kerr j: c I0 

ker~p = tt-l(ker~o) ___ t(Io) = I c U. 

Since this holds for an arbitrary neighbourhood U of  0 6 C and 
since we have adopted the Hausdorff  separation axiom we have ker~p = 

{0}, proving the theorem. �9 

Theorem 6 implies that lz~c~,,~) and /L(rbR,rbO a r e  defined on the 
same set algebra and therefore, by Theorem 1, coincide. We will call 
this finitely additive measure the ideal measure on the ring. 

3.3. Examples. 

Let us investigate subsets T c__ Z of  the integers and their measura- 
bility w.r.t, several compactifications. Take any a 6 R and consider the 
compactification (C, X,~) where C < R / Z  is the torus group and X,~ is 

the unique character with X,~(1) = o t + Z .  If  ot = p is rational with inte- 
q 

gers q > 0 and p relatively prime, then the measurable sets are exactly 
the unions of  residue classes w.r.t, the cyclic factor group Z/(q)  modulo 
q. One gets the concept of  uniform distribution modulo q. 

If one looks at the supremum of  all (C~, t,~) where ot runs through 
1 

all - -  where p is a prime number one gets the injective p-adic com- pn 
pletion of the integers. All singletons are measurable zero sets. But also 
all powers of  p form a measurable zero-set w.r.t, this compactification. 

1 
If n ~- - -  runs through all positive integers one gets the classical 

ot 
concept of  uniform distribution in Z, cf. [8]. This compactification coin- 

cides with the ring Bohr compactification and is closely related to the 
Banach-Buck measure on the positive integers (cf. [1], [5] p. 313-315, 

[6], [9], [10] and [11]). 

In the following we discuss in more detail the situation where R is 

a ring with t and ..7" Ii ___ 12 D 13 . . .  _ In _ . . .  is a sequence of  ideals 
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satisfying 
OO 

In = {o}. 
n=l  

A metric d(x, y ) =  [ I x -  yll can he introduced by the usual norm 

--~1 - XI, (x)  
I lx l l  = 2 n  , 

n = l  

where Xe denotes the characteristic function of  a set E.  If  f f  is uncount- 
able one has a system of  pseudometrics inducing the corresponding uni- 
form structure, cf. section 3.2. 

Obviously d(xn, Yn) ~ 0 if and only if for every N ~ N there 

exists an no = no(N) such that for all n > no the relation Xn = 
Yn rood IN holds. This yields that the ring operations are continuous. 
Denote by (f2, d) the completion of  the metric space (R, d).  (A standard 
construction as it is carried out in the last section, paragraph 170, in 
the second volume of  van der Waerden's book [16] shows that ring 

operations can be uniquely extended to [2 continuously.) Denote by S 
the closure of  a set S in ft .  Then the following elementary properties 
can be established. 

(i) For any ideal I in R the closure [ is an ideal in f2. 

(ii) X + In  : x - t - I n  for x ~ R, n =  1 , 2 , . . .  

(iii) For every at ~ ~ there exists an x ~ R such that a~ + In = x + I,,. 

(iv) For all al ~ f2, n = 1, 2 , . . .  the set ot + I,, is open and closed. 

(v) (X+In) NR = x + I , ,  for all x ~ R, n = 1,2 . . . .  

o o  

(vi) S = N ( S  + ~ )  for every S c ~ .  
n = l  

(vii) The system {x + In lx ~ fZ,n = 1, 2 , . . . }  is a closed open base in 
ft .  

(viii) f2 is compact if and only if each factor ring R/In is finite. 

In the following we suppose that each factor ring is finite, i.e. f2 

is compact. Following the general approach of  section 2 we consider 
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the group (f2, + )  with Haar measure /za. Furthermore we define for 
arbitrary S c__ R a set function /2.7- by /2 j (S )  = / z a ( S ) .  / 2 j  is a finitely 
additive outer measure and is called the covering density induced by ,.7. 
It can easily be seen that for A, B ___ R 

/ 2 j ( A  [J B) q - / 2 j ( A  (3 B) < / 2 j ( A )  q - / 2 j ( B ) .  

It follows f rom measure theoretic and topological standard arguments 
that the system 

79`7 = {S ___ RI/2`7(S) + f ~ j ( R \ S )  = 1} 

is a set algebra and the restriction / 2 j  to D j  is a finitely additive 
measure on 797. (Note that in the finitely additive case the arguments are 
in fact simpler than in Carath6odory's theory of a -addi t ive  measures. We 
may omit  details.) Denoting by [S �9 In] the number  of  different residue 
classes s + In with s e S and putt ing N U n )  = # R / I ,  we clearly have 

1 
~a(o~ + In)  - 

N(In)  

for ot 6 f2, n = 1 ,2  . . . . .  Hence for S _ R the covering density of  S 
can be computed  by the limit formula 

[S " In] 
/ 2 j (S )  = l im 

n-~c~ N( In)  

m 

Remark. Since every class ot + In is a /za-continuity set the basic 
notions of  the abstract theory of uniform distribution of  sequences can be 
applied to our situation, and general results in the flavour of  [5], chap- 
ters 3,4,5 can be shown. For m o r e  recent results concerning distribution 
problems in rings and submeasures we refer to [12]. For instance, a se- 
quence (Xn) in R is called ,7-well distributed if and only if for each 
ideal In e 3" and x ~ R the relation 

l im ~ l # { k l h + l  < k < h + m, xk - x mod In} - 
1 

r n - - - ~ o o  m - - N(In )  

holds uniformly in h = 1, 2 . . . .  (cf. also subsection 3.1). Fol lowing the 
ideas of  [12] we establish 

THEOREM 7. Let ,7 be an ideal system as above and S cc_ R with 

/ 2 j ( S )  = 1. Then a ,7-well distributed sequence can be selected f rom S. 



338 SOPHIE FRISCH - MILAN PASTI~KA - ROBERT F. TICHY - REINHARD WINKLER 

Remark�9 Specific distribution results on linear recurring sequences in 

Dedekind domains are shown in [13] and [14]. 

4. Special sets. 

In the last section we restrict our investigations to commutative rings 

with identity. Assume J1, J 2 , - . .  to be a sequence of  coprime ideals and 

put In = J~ A . . . N J n .  A set S _ R is called multiplicative if [S �9 IN J] = 
IS �9 I ] .  [S �9 J]  holds for arbitrary coprime ideals I, J .  From the Chinese 

Remainder Theorem we have N(In )=  N ( J l ) . . . . . N ( J n ) ,  hence the limit 

formula in section 3.3 for the computation of  the covering density yields 

[S" Jn] 
t z j ( s )  = 1-I N(Jn) 

n = l  

for any multiplicative set in R. 

As an example of  a multiplicative set let us consider a mapping 

f �9 R --+ R such that for each ideal I we have f ( x )  -- f ( y )  mod 
I provided that x = y mod I .  Due to the Chinese Remainder Theorem 

the mapping f ( x )  + I N J w-~ ( f ( x )  + I, f ( x )  + J) is a bijection between 
R / ( I  f-)J) and R / I  @ R / J ,  and so the image set f ( R )  is multiplicative. 

Therefore the image set o f  each polynomial in R[x] is multiplicative. 
Let R k denote the set o f  k-th powers of  elements of  R. Then R k is 

multiplicative, too. 

Let J be a maximal ideal with finite norm N(J) .  Then the mul- 
tiplicative group of  the field R / J  is cyclic; let g + J be a genera- 

tor. The elements xk-I  - J,  x q~ J form a cyclic subgroup generated 

by gk + j .  The order of  this element is N(J )  - 1 and we have 
(k, N(J )  - 1) 

[R k J ] =  N ( J ) - I  �9 + 1. Thus we have shown 
(k, N(J)  - 1) 

THEOREM 8. Let Jn, n = l, 2 .. . . .  be maximal ideals in R (commu- 
tative ring with identity). Then 

~176 ( N ( J n ) -  N(Jn) - 1) ) 1N(Jn) Izj(Rk) = [I + 1 �9 . 
n=l 

COROLLARY 1. I f  (k, N ( J n ) - l ) =  1, n = 1, 2 .....  then I~:z(R k) = 1. 
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COROLLARY 2. I f  (k, N(Jn) - 1) > 1 for  infinitely many n, then 
tz T(R k) -~ O. 

Our final result is devoted to the ideal measure of  the image set 

f ( R )  for nonlinear polynomials. Note that the ideal measure is defined 
via all ideals of  finite index as in section 3.2. 

THEOREM 9. Let R be the ring o f  algebraic integers in a number 

field and let f ~ R[x] be a non-linear polynomial. Then f ( R )  is o f  
ideal measure O. 

Proof Let n = deg f .  By a theorem of Niederreiter and Lo [7], 
there are infinitely many maximal ideals P in R such that f is not a 
permutation polynomial mod P i.e., the function induced by f on the 
(finite) residue field R / P  is not bijective. For each such P of index 
[R : P] = q, the value set f ( R )  is contained in the union of at most 

q - 1  
q residue classes of P ,  by a theorem of Wan [18]. 

n 
For different maximal ideals P1 . . . . .  Pk of  index [R : P/] = qi, 

the ideal measure of  the set of  elements of R that are for each i in 
k 

/ v i ,  by the Chinese one of  Ni given residue classes rood Pi is I"I  
qi i--~l 

Remainder Theorem. Thus, if f is not a permutation polynomial mod 

P i  for i = 1 . . . . .  k then the image of  f is contained in a set of  ideal 
measure at most 

'( ) (  )' 1 q i - - 1  1 < 1 -  
.= nqi - 2n 

This value can be made arbitrarily small by considering an infinite 

sequence of  different maximal ideals mod which f is not a permutation 
polynomial. �9 
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