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I. Abstract

Bateman’s principle states that male fitness is usually limited by the number of
matings achieved, while female fitness is usually limited by the resources available
for reproduction. When applied to flowering plants this principle leads to the expec-
tation that pollen limitation of fruit and seed set will be uncommon. However, if male
searching for mates (including pollen dissemination via external agents) is not suffi-
ciently successful, then the reproductive success of both sexes (or both sex functions
in hermaphroditic plants) will be limited by number of matings rather than by
resources, and Bateman’s principle cannot be expected to apply. Limitation of female
success due to inadequate pollen receipt appears to be a common phenomenon in
plants. Using published data on 258 species in which fecundity was reported for natural
pollination and hand pollination with outcross pollen, I found significant pollen
limitation at some times or in some sites in 159 of the 258 species (62%). When
experiments were performed multiple times within a growing season, or in multiple
sites or years, the statistical significance of pollen limitation commonly varied among
times, sites or years, indicating that the pollination environment is not constant. There
is some indication that, across species, supplemental pollen leads to increased fruit set
more often than increased seed set within fruits, pointing to the importance of gamete
packaging strategies in plant reproduction. Species that are highly self-incompatible
obtain a greater benefit relative to natural pollination from artificial application of
excess outcross pollen than do self-compatible species. This suggests that inadequate
pollen receipt is a primary cause of low fecundity rates in perennial plants, which are
often self-incompatible. Because flowering plants often allocate considerable re-
sources to pollinator attraction, both export and receipt of pollen could be limited
primarily by resource investment in floral advertisement and rewards. But whatever
investment is made is attraction, pollinator behavioral stochasticity usually produces
wide variation among flowers in reproductive success through both male and female
functions. In such circumstances the optimal deployment of resources among
megaspores, microspores, and pollinator attraction may often require more flowers
or more ovules per flower than will usually be fertilized, in order to benefit from
chance fluctuations that bring in large number of pollen grains. Maximizing seed set
for the entire plant in a stochastic pollination environment might thus entail a
packaging strategy for flower number or ovule number per flower that makes pollen
limitation of fruit or seed set likely. Pollen availability may limit female success in
individual flowers, entire plants (in a season or over a lifetime), or populations. The
appropriate level must be distinguished depending on the nature of the question being
addressed.

I1. Introduction

An important question in plant reproductive ecology is whether female reproductive
success is frequently limited by insufficient receipt of pollen. The adequacy of pollen
deposition is expected to affect selection for floral traits relating to male and female
function (Bawa & Beach, 1981; Queller, 1987; Waser, 1983; Willson, 1979), the
potential for microgametophyte competition (Snow, 1986; Walsh & Charlesworth,
1992), the evolution of breeding systems (Jain, 1976; Stebbins, 1957), the potential
for plant-animal coevolution (Feinsinger, 1983), the packaging strategy for ovules
(Burd, 1994), and the demography of plant populations.
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It is sometimes thought that flowering plants commonly receive sufficient pollen to
fertilize all ovules, and only the availability of resources for flower production and for
fruit and seed maturation limits female reproductive success. Bateman’s (1948)
principle is often invoked as the theoretical basis for this supposition. A strict
dichotomy between resource and pollen limitation may seldom occur (Haig &
Westoby, 1988; Campbell & Halama, 1993), but the assumption that pollen limitation
is infrequent appears often in theoretical and empirical work on plant reproduction
(Burd & Head, 1992; Charnov, 1979; Kunin, 1992; Stanton & Preston, 1988b; Willson
& Burley 1983). In this article I wish to reconsider Bateman’s principle and examine
the empirical evidence for pollen limitation of fruit and seed set.

There is no doubt that resources are sometimes insufficient to mature all fertilized
ovules, while in other cases resources are adequate but pollen deposition is not {and
that in other cases seed set is limited by predation or damage from weather). The
question of pollen limitation is one of relative frequency. I suggest in this article that
pollen limitation of female reproductive success is common, and that we should expect
this as the outcome of optimal resource investment strategies in a stochastically
fluctuating pollination environment. Insufficient fertilization may affect individual
ovules, flowers or inflorescences on a plant, the whole plant (in a single season or
during a lifetime), or enire populations (that is, different sites may differ in pollinator
activity). The modular gamete packaging characteristic of plants leads to different
consequences of pollinator limitation at the different levels. No single scale is the true
scale, and the appropriate level or levels depend on the question being asked.

Support for a revised understanding of pollen limitation comes from a compilation
of published data comparing reproductive performance under natural pollination and
artificial selfing and outcrossing. The data come from 258 species in 77 families.
Although it is difficult to assess how representative this sample is of angiosperms in
general, the large sample size and the taxonomic, morphological, and habitat diversity
of the species in the sample provide confidence that pollen limitation is not an
occasional phenomenon of unusual circumstances.

I will review Bateman’s (1948) paper on sexual selection and argue that resource
limitation of female success does not follow necessarily from Bateman’s principle,
because males may not find all available females or female gametes. I then consider
how Bateman’s principle applies to plants, and argue that it may not be a safe
assumption that male and female gametes are highly effective in locating each other.

Next I describe the compilation of published data on female reproduction under
natural and artificial pollination. I then analyse these data to extract the among-species
patterns of overall pollen limitation, the variability of pollen limitation from site to
site or year to year, and the differences between fruits and seeds in the degree of pollen
limitation. By using data on self-compatibility I consider the hypothesis that low rates
of ovule success in some plants may be due to high mutational or recombinational
load.

Finally, I consider the implications of the trends identified in the analysis. When
pollen receipt is highly variable, the fitness-maximizing allocation of resources may
be one that involves an over-stocking of flowers, or ovules within flowers, relative
to the average levels of pollination. As a result, we would expect that fitness
through both sex functions would often be limited by mating success. Pollen
limitation may occur at many levels, and has been well demonstrated at some but not
at other levels.
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IIL. Theoretical Considerations

A.BATEMAN’S PRINCIPLE

Bateman’s principle has been restated often, in ways that give emphasis to different
features of the argument. Bateman himself provided two summaries of his main point.
He first gives what might be called the “resources versus access” argument: “In most
animals the fertility of the female is limited by egg production which causes a severe
strain on their nutrition . . . In the male, however, fertility is seldom likely to be limited
by sperm production but rather by the number of inseminations or the number of
females available to him” (Bateman, 1948, p. 364). He also states a “numerical excess”
principle: “The primary cause of intra-masculine selection would thus seem to be that
females produce much fewer gametes than males. Consequently there is competition
between male gametes for the fertilisation of the female gametes” (Bateman, 1948,
pp. 364-365, italics in original).

These two components of Bateman’s principle coincide particularly well in animal
species in which the male invests little beyond sperm in the production of offspring.
Nonetheless, the differences between the two components reflect genuinely separate
features of sexual reproduction, and these differences are important for interpreting
the nature of sexual reproduction in plants.

Bateman was interested in showing that mating systems resulted from intra-mascu-
line sexual selection, rather than, as Darwin supposed, that sexual selection occurred
because of the mating system. Bateman sought a cause of sexual selection acting on
males that was “independent of mating system and probably inherent in the mechanics
of sexual reproduction” (1948, p. 352). The numerical superiority of small, usually
motile sperm relative to larger eggs is a matter of common observation. Then in
sexually reproducing species some males could, in principle, achieve vastly more
fertilizations than any female. Only access to eggs limits the success a male realizes,
and competition and high variance in success among males follows readily. Anisog-
amy provided the inherent cause of sexual competition that Bateman sought.

Anisogamy is not a guarantee that female fitness will be limited by resources,
however. Competition of three different kinds may occur among males: (1) to locate
receptive females, (2) to exclude other males from access to mates, and (3) to be
accepted by choosy females. Resources can limit female success only if available
female sex cells are found by the searching males. The “resources versus access”
argument depends on the outcome of this first kind of competition. Bateman recog-
nized that the motility of male gametes and the searching behavior of males may be
due to competition among males (1948, p. 365), but did not consider the potential for
failure in searching. If the densities of males and females are chronically low, or if the
searching is inefficient for other reasons, then some female gametes may remain
unfertilized for want of being found. Fewer than sufficient encounters between eggs
and sperm makes the fertility of each sex limited by availability of the other sex (cf.
Queller, 1987). It is important to note that availability refers to “effective’” or “func-
tional” access, since the numerical difference argument still holds, in principle.

The failure to locate available females or female gametes might be rare in animals,
which are usually mobile and can respond behaviorally to sensory cues concerning
female location (but see Levitan, 1993). It would also be unusual in animals for only
a portion of a female’s eggs to be fertilized for want of sperm once she has accepted
a male and copulation has occurred. But flowering plants are sessile organisms that
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ordinarily rely on external agents for export and receipt of pollen from many, often
multi-ovulate flowers. Thus some flowers might remain unpollinated, or un-
derpollinated. In plants the adequacy of male “search” for females is not certain. This
is an indication that additional nuance may be required when applying Bateman’s
principle, and particularly the resources-access argument, to plants.

Bateman’s principle was extended and modified in an influential paper by Trivers
(1972) in which he considered the effect of parental investment on sexual selection.
Ecological circumstances may provide greater ultimate reproductive success to males
if they invest in parental care of offspring rather than invest in additional matings.
Male parental care may even become a limiting resource for female reproductive
success in some species (Clutton-Brock, 1991), accompanied by the evolution of
competitive mating behaviors on the part of females and discrimination by males
among potential mates (Gwynne, 1991).

Male parental care does not obviate the numerical excess principle, which is based
on anisogamy, but it can clearly moderate or eliminate the resources-access argument.
Likewise in many flowering plants, the need to invest resources in pollinator attraction
(and the imperfect control over pollen transfer that such investment brings) may
require a modification of the resources-access component of Bateman’s principle.

B. THE TRANSFER OF BATEMAN'’S PRINCIPLE TO PLANTS

Bateman worked with Drosophila but suggested that his argument would apply to
plants as well. He noted the tendency for microspores to far outnumber megaspores,
and suggested that the brightly colored male catkins and inconspicuous female catkins
of insect-pollinated Salix caprea resulted from sexual selection (1948, p. 366).

An enormous amount of data indicates that pollen donors compete to fertilize
ovules, and there seems little reason not to attribute this to Bateman’s numerical excess
principle. As noted above, three types of competition can occur among males:
competition to locate females, to exclude other males, and to be accepted by females.
Bateman’s principle does not provide that all three mechanisms of competition are
equally likely to occur, however.

Seed abortion or style-pollen tube interactions can result in differential success of
individual pollen donors (Bertin, 1988a; Cruzan, 1990; Marshall & Ellstrand, 1988;
Stephenson & Winsor, 1986), and this corresponds in some ways to female choice of
mates in animals (Willson, 1990) [although Queller (1987) has pointed out the limits
to the analogy]. But sometimes ovule fertilization seems to be random with respect to
pollen donors (Sork & Schemske, 1992).

Similarly, faster growth of pollen tubes may give some males access to ovules while
others are excluded (Snow & Spira, 1991), an analogy to male behavioral contests in
animals. However, differences in pollen tube growth rate need not have a genetic basis
(Young & Stanton, 1990) or at least need not be heritable (Snow & Mazer, 1988), and
the evolutionary interpretation of pollen tube competition is unclear at present
(Queller, 1987; Walsh & Charlesworth, 1992).

Competition for pollinator service is analogous to mate searching in animals.
Numerous reproductive traits have been interpreted as evidence of male competition
to export pollen, including the size of tloral displays (Sutherland & Delph, 1984;
Queller, 1983; Willson & Price, 1977; Wyatt, 1982; but see Broyles & Wyatt, 1990),
duration and floral rewards of male flowers or staminate phases of perfect flowers
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Table I
Variation in stigmatic pollen loads reported in the literature

Stigmatic Pollen

Species Xts Range Reference
Besleria triflora 3375 £ 78074 (0, 78000 Feinsinger et al. 1986
Cassia reticulata (0, 300) Snow & Roubik 1987
Daphne kamtchatica (0, 40) Kikuzawa 1989
Drymonia rubra 1366 £ 3361* (0, 22500* Feinsinger et al. 1986
Hansteinia blepharorachis 1.1 £18.6* (0, 140)% Feinsinger et al. 1986
Ipomoea trichocarpa 90.7 £51.8 (8, 292) Murcia 1990
Jepsonia heterandra 215,60 (73, 503)° Ornduff 1971
Passiflora vitifolia (<25,> 1000 Snow 1982
Pavonia dasypetala (1, 104) McDade & Davidar

1984
Psiguria warscewiczii 1029¢ (20, 5000)¢ Murawski [987
Razisea spicata 59+ 12.6¢ (0, 83)" Feinsinger et al. 1986
Staberoha banksii 1831226 (0, 196) Honig et al. 1992
Trichanthera gigantea 0, >8) McDade 1983

% Conspecific pollen only.
Pin pollen on thrum stigmas.
€ Pollen tetrads.

(Bell et al., 1984; Delph & Lively, 1992), corolla size (Bell, 1985; Stanton & Preston,
1988a) and other aspects of floral morphology (Campbell et al., 1991; Cruzan et al.,
1988; Galen & Stanton, 1989; Harder & Thomson, 1989; Stanton et. al., 1986; Young
& Stanton, 1990) (but see Wilson et al., 1994, for an interpretation of floral traits based
on selection for female function).

The numerical excess principle seems to explain why competition to locate ovules
(through a pollen vector) occurs, but Bateman’s principle is silent concerning the
outcome of this competition. In a particular population pollinators may deposit a
superfluity of pollen grains on stigmas or they may not (or, most likely, there will be
variation among flowers and plants such that some have adequate pollen and others
not, and the pattern may vary from year to year).

Table I presents distributional statistics for stigmatic pollen loads in species having
a variety of pollination vectors. Variation over several orders of magnitude is common
within populations (see also Bertin & Sholes, 1993; Cruzan et al., 1988; Elam &
Linhart, 1988; Garwood & Horvitz, 1985; Koptur, 1984). These data, especially the
regular occurrence of stigmatic loads of zero, reveal the difficulties and inefficiencies
in the search for mates. Whether resource limitation of female reproduction occurs
depends, of course, on the outcome of male competition to locate ovules through
pollen vectors.

IV. Compilation of Data

Artificial pollination is frequently used to assess self-compatibility or other aspects
of the mating system as well as to examine pollen limitation. Thus a large literature
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involving a wide variety of plants, habitats, and geographical locations is available.
Hand pollination experiments are not the only means by which pollen limitation might
be assessed. Low stigmatic pollen loads relative to ovule number (Snow, 1986), or
correlations of seed set with number of pollinator visits (Real & Rathcke, 1991) may
indicate pollen limitation. However, in order to compile a cohesive data set obtained
by similar methods, I relied solely on studies using hand pollination.

To locate relevant studies, I consulted initially my own collection of literature on
plant reproduction and the studies used by Young and Young (1992). I also surveyed
the titles of articles appearing from 1980 through 1992 in American Journal of Botany,
Bulletin of the Torrey Botanical Club, Ecology, Plant Species Biology, and Plant
Systematics and Evolution, and checked all articles that seemed likely, judging from
the title, to involve hand pollination as an experimental technique. When authors in
the sample cited other studies involving hand pollination, I consulted the cited articles.

1located articles containing usable data on 258 species in 77 families. The complete
data set is presented in Appendix L. It is impossible to know how well this sample
represents angiosperm populations in general. Young and Young (1992) suggest that
experiments in which hand pollination had no significant effect on fecundity often go
unreported in the literature. However, Wilson et al. (1994) suggest that most tests occur
in the plant populations least likely to experience pollinator limitation, so that
non-significant effects of hand pollination would be over-represented in the literature.
Many of the studies cited in Appendix I were investigations of self-compatibility rather
than pollen limitation per se, which would tend to ease any reporting bias.

Objectives of the various studies and their techniques and manner of reporting data
differed. I excluded from consideration data on cultivated plants or on greenhouse
experiments. I required that data be presented from unmanipulated control flowers
and from artificial outcrossings with (at least ostensibly) excess pollen addition to
receptive stigmas. Although I did not require it for inclusion of a study, I recorded
data from artificial self-pollinations or the authors’ indications that a plant was
self-compatible, self-incompatible, or dioecious. The data used were the mean effects
of each treatment.

When hand outcross pollinations were made to both open flowers (supplemental
pollination) and bagged flowers in a single experiment, I used the data from open
flowers (e.g., Gross & Werner, 1983). However, in some studies only bagged out-
crosses were employed, so among the various studies contributing to the data set, I
did not distinguish between bagged and open flowers. Bagging is, nonetheless, an
additional difference between experimental and control flowers that may affect
reproductive performance.

Data from outcrossings among patches were preferred over “outcrossings™ within
a patch, especially in clonal species for which intra-patch pollinations may actuallly
be selfings within a genet (e.g., Anderson & Beare, 1983). When multiple outcross
treatments were used, I took the results from the least manipulative [e.g., treatments
not involving emasculation were preferred over emasculation (Kevan, 1972)], or from
the one corresponding most closely to natural pollination [e.g., nocturnal hand
pollinations were preferred in the nocturnally moth-pollinated trees Luehea candida
and L. seemannii (Haber & Frankie, 1982)].

Various measures of female success were reported. The most common was percent
fruit set, followed by seed number per fruit. Other commonly used measures were
percent seed set (the fraction of ovules maturing to seeds) and number of seeds per
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flower (similar to seed number per fruit but accounting for aborted flowers as well).
Multiple measures were sometimes given for a single experiment. In such cases the
data provide an indication of how supplemental pollen affects fruit set vs. seed number
within fruits. In total I identified nine standard types of data, along with some
ideosyncratic measures (see Appendix I). Even within a standard type there may exist
variation. For example, percent fruit set may refer to the fraction of all flowers in a
treatment setting fruit (taking each flower as a replicate of the experiment), or to the
mean of fruit set from several plants (taking plants as replicates). Distinctions such as
this were not always made clear (even implicitly, as by the inclusion of standard
deviations), so I have not attempted to further divide the categories. When initial fruit
development was distinguished from final maturation (e.g., Rathcke, 1988), I used
only the data for final fruit set.

When multiple sites, years, or other samples were used, I preserved the subsets of
the authors. This provides a valuable indication of the variability of pollen limitation.
Most studies reported data from samples of entire populations for entire growing
seasons. For seven species in Appendix 1 percent fruit set data were given for
individual plants or population subsets such as morphs in a way that allowed totalling
for the entire population. For these seven species I calculated the totals [Argyroxiphium
sandwicense (Compositae), Raphanus sativus (Cruciferae), Andira inermis
(Leguminosae), Leptospermum scoparium (Myrtaceae), Oncidium variegatum (Or-
chidaceae), Eichornia crassipes (Pontederiaceae), Mitchella repens (Rubiaceae)].
Thus, to the extent possible the data in Appendix I are population samples for a
reproductive season. Where data represent my totalling, this is indicated.

I employed the taxonomic nomenclature of the authors, and I have largely preserved
the format in which data were given in the original references.

Appendix I indicates the results of statistical tests contrasting female success from
natural pollination and hand outcrossing treatments. When the authors of a study
performed a test, I used their result. When no test was made, but data were presented
as percent fruit based on individual flowers as replicates, I performed a %2 test of
independence between treatment (natural vs. hand outcrossing) and outcome (fruit vs.
no fruit), using a continuity correction due to a single degree of freedom in the test
(Steel & Torrie, 1960). Often no statistical test was performed and the reported data
were not appropriate for my test of independence, but the author(s) concluded that
pollen limitation did or did not occur based on the magnitude of the difference between
natural and hand pollination. Results based on these conclusions or on my test are
distinguished in the Appendix and in all figures.

V. Analysis

A. PATTERNS AMONG SPECIES

A breakdown of results by type of data reported is presented in Table II. For all
measures of female performance, pollen limitation seems common, involving at least
a third of the species in the sample. Pollen limitation is especially apparent in the
overall sample and in the percent fruit set data (which make up most of the overall
data).

Of 258 species in the sample, 159 (62%) were significantly pollen limited in female
reproductive success at some times or sites. Nine of the 159 species showing some
pollen limitation presented data for morphs within a population or periods within a
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Table II

Summary of the data in Appendix I. Entries give the number of species
showing each pattern of natural pollination vs, hand outcrossing, categorized
by the type of data reported.

Type of No. of No. of Outcome of Treatments 2

Data Species Families Outcross <Nat. NS Outcross > Nat.
All data 258 71 10° (4%) 90 (35%) 159 (62%)

%f 207 70 5(2%) 79 (38%) 123 (59%)

Jos 29 16 0 16 (55%) 13 (45%)

s/fl 17 12 1 (6%) 6 (35%) 10 (58%)

s/fr 86 39 5(6%) 57 (66%) 24 (28%)

s/pl 8 7 0 1 (12%) 7 (88%)

f/pl 4 4 0 1 (25%) 3(75%)

%oi 6 3 0 0 6 (100%)

4NS indicates a non-significant difference between natural pollination and hand outcrossing. The
other two categories are for significant differences in the direction indicated. Species contributing to the
“Outcross > Natural” category showed significant pollen limitation at some times or sites, but not
necessarily in every experimental test performed.
Notation is the same as that used in Appendix I.
€ Includes Allium tricoccum (Liliaceae), which also contributes to the “Outcross > Natural” category
from resuits in a second year (see data in the Appendix).

growing season (e.g., Copeland & Whelan, 1989; Dudash, 1993) for which I could
not calculate results for the whole population or season from the data given. This does
not imply that the combined data would not indicate pollen limitation, merely that the
data, as presented, could not be directly totalled to give results for the whole season
or whole population. Nonetheless, even if one excludes all nine ambiguous species,
there still remain 150 species, or 58% of the total sample, having pollen-limited fruit
or seed set at the whole-population level in some sites or years.

The magnitude of differences between natural and hand pollination is displayed in
Figs. 1-3. In each figure, the result of natural pollination is given on the abscissa and
of hand outcrossing on the ordinate. Each plotted symbol represents the outcome for
a population in a growing season. Symbols in the upper left indicate that supplemental
outcross pollen increased female reproduction over natural levels, while symbols in
the lower right indicate the opposite.

The fruit set data in Fig. | reveal that the magnitude of pollen limitation is often
large. Not only is fruit set enhanced by hand outcrossing in the great majority of cases,
the output is often many times greater than that obtained under natural pollination.
Data for percent seed set or seed number per fruit in Figs. 2 and 3 are less dramatic,
but still show occasional large effects of supplemental pollen.

Hand outcrossing resulted in significantly reduced female performance relative to
controls in || species in the sample. [Clintonia borealis (Lileaceae) is not included in
this category in Table 1I because percent fruit set increased (significantly) by 41%
even though seed number per fruit declined (significantly) by 23%, relative to
controls.] For some species the data showing a decline are ambiguous. Clintonia
borealis seems to benefit overall from extra pollen, even though seed number per fruit
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Percent Fruit Set from Hand Outcrossing

0 20 40 60 80 100

Percent Fruit Set from Natural Pollination

Fig. 1, Comparison of natural pollination and hand outcrossing for 207 species in 70 families with data
reported as percent fruit set. Each plotted symbol (N = 278) represents the outcome of an experiment for a
population in a single growing season. The x =y line is given for reference. Points above the line indicate
that hand outcrossing yielded higher fruit set than natural pollination. Points below the line indicate the
opposite. Open symbols indicate statistically non-significant differences; filled symbols indicate statistically
significant differences. Circles: statistical test given by author(s) of study. Squares: tests of independence
calculated when appropriate data were given and authors(s) do not provide a test (see Compilation of Data
for further explanation). Triangles: author(s) did not perform a test and data are not appropriate for a test
of independence, but pollen limitation (filled triangles) or absence of pollen limitation (open triangles) is
assumed based on the magnitude of the difference between natural and hand pollination treatments.

declined. In Allium tricoccum (Liliaceae), a significant decrease in fecundity from
hand outcrossing in 1984 was followed by a significant increase in 1985 (Nault &
Gagnon, 1987). In Saxifraga oppositifolia (Saxifragaceae), an emasculation, outcross
treatment (not reported in Appendix I} did not produce lower fruit set, even though
the non-emasculation treatment did (Kevan, 1972). In Espeletia neriifolia (Com-
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Percent Seed Set from Hand Outcrossing

L 1 1 1 1. 1

0 20 40 60 80 100

Percent Seed Set from Natural Pollination

Fig. 2. Comparison of natural pollination and hand outcrossing for 29 species in 16 families with data
reported as percent seed set. Interpretation of symbols (N = 38) is as in Figure 1.

positae), the significance of the decrease is surmised, and the reported values are
medians from distributions the authors describe as highly skewed (Berry & Calvo,
1989). It is not clear that the appropriate non-parametric test would indicate a
significant decline.

A potential explanation of apparently detrimental effects of extra pollen is statistical
Type I error. Even with the ambiguous cases noted above, only 4% of the species show
significant declines in fecundity from pollen addition. Spurious significance may be
expected by chance in 5% of all experiments when a 5% significance level is used.
This generalization does not demonstrate that any particular result is erroneous, but
Appendix I does not support the idea that detrimental effects from pollen addition are
common.
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Fig. 3. Comparison of natural pollination and hand outcrossing for 84 species in 36 families with data
reported as number of seeds per fruit. Note the logarithmic scale on both axes. Interpretation of symbols (N
= 110)is as in Figure 1.

This conclusion differs from that of Young and Young (1992), who suggest that
maximal reproductive success might frequently occur at intermediate pollination
levels (although two examples of a detrimental effect of hand pollination in that paper,
Kalmia latifolia and Viscaria vulgaris, were misclassified, H. Young pers. comm.).
The discrepancy stems in part from different criteria for incorporating data. For
example, many studies employ statistical techniques that control experiment-wide
Type 1 error when analysing, say, comparisons from multiple dates (e.g., Gross &
Werner, 1983), and I use these original results in Appendix I. Post-hoc selection and
statistical testing of individual comparisons isolated from larger tables of data, as in
Young and Young (1992), can draw attention to patterns overlooked by the original
authors, but may inflate the statistical significance because of selection bias. More
thorough experimental techniques of the sort recommended by Young and Young
(1992) are necessary to determine experimentally whether adverse effects of high
pollen loads are common in nature.
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Table III

Variation in pollen limitation within a season and among sites or years. Each entry indicates
the number of species with the corresponding pattern of pollen limitation

Difference between Natural Pollinationand Hand Outcrossing

Consistently Pollen- Consistently Not Variable
Limited Pollen-Limited
Tested Multiple Times within | 2 10
Growing Scason
Tested in Multiple Sites or Years 15 6 17

B. PATTERNS WITHIN AND AMONG SEASONS AND SITES

Thirteen species in the sample were explicitly tested at multiple times within a
growing season. Table ITI shows that most species experienced fluctuating levels of
pollen limitation within a season.

Thirty-eight species had data from more than one site or year. Of these, 15 species
showed consistent pollen limitation in all sites and years, 6 showed consistently
non-significant differences between natural and hand pollination, and 17 species
showed both significant and non-significant results among years or sites (Table III).
In addition, one species not included in Table II1, Allium triccocum, had a significant
increase one year and a significant decrease the following year, as previously noted.

C. PATTERNS OF FRUIT AND SEED MATURATION

Fruit abortion has received more attention than seed abortion within fruits (Stephen-
son, 1981; Sutherland & Delph, 1984). This may reflect a genuine biological effect of
modular gamete packaging in plants. Seed maturation requires fruit maturation, and
the most efficient use of reproductive resources in a multi-ovulate fruit may be to
mature as full a complement of seeds as possible. Thus, ovules might usually be
matured or aborted as packages. If this is true, we would expect pollen limitation to
show more strongly in patterns of fruit set than in number of seeds per fruit.

Seventy-three species had data on both percent fruit and seed number per fruit from
the same experiment. With these data the effect of additional pollen on fruits set can
be compared with the effect on seed set. Table IV shows the pattern of effects on fruit
and seed production of hand outcrossing. Each entry in this table represents the results
for a population in a growing season. A single species can be represented multiple
times if multiple sites or years were used, and, inasmuch as results sometimes varied
among sites and years, a single species may contribute to more than one cell of the
table.

In only seven cases did hand pollination produce any significant increase in seed
number per fruit without an increase in the rate of fruit set. In contrast, four times as
many cases occurred in which fruit set increased significantly but seed set per fruit
did not. Eleven instances in which both fruit set and seed number per fruit increased
significantly occurred, while the most common outcome was to have no significant
change in either measure. The data in Table IV suggest that variation in fecundity in
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Table IV

Effect of hand outcrossing on fruit vs. seed maturation for experiments reporting both fruit
and seed data. Each entry in the table is the number of experiments having the results for that
cell. A species may contribute more than once (and to more than one cell) if experiments
occured in multiple sites or years (multiple tests within a season were not used).

Fruit Production®

Seed Production® Qutcross < Nat. NS Qutcross > Nat.
QOutcross < Natural I 0 {
NS 1 38 28
Outcross > Natural 0 7 11

 Data for some species could not be totalled to give results for a whole population. These cases are
resolved as follows: Agalinis strictifolia (Scrophulariaceae): FM 1985 is entered as “NS” for fruit
production and “Outcross > Natural” for seed set, because four of the five weeks showed this result; all
other site-year combinations are entered as “NS” for both fruit and seed set. Ipomopsis aggregata
(Polemoniaceae): entered as “Outcross > Natural” for fruit production and “NS” for seed set, because 2
of the three test periods showed this result. Physalis longifoliu (Solanaceae) and Sabatia angularis
(Gentianaceae): small and large plants are entered separately because they showed different patterns.

most species is more often due to maturation or abortion of whole fruits rather than of
individual seeds within fruits.

Using only those studies containing data on both fruit and seed maturation could
involve a reporting bias. However, a bias is likely to underrepresent the importance
of fruit set relative to seed set within fruits. Fruit set may commonly be the only type
of datareported because it is the “obvious” or “natural” measure (i.e., because variance
of fruit set or the effect on fruit set from experimental treatments is many times larger
than that of seeds per fruit). Nonetheless, effects of polien loads on seed number occur
with reasonable frequency, and are not to be discounted.

D. GENETIC LOAD HYPOTHESIS

It has been noted that percent seed set tends to be higher in annuals than perennials,
and in selfing than in outcrossing species (Wiens, 1984). There is considerable overlap
in these categories, with perennials commonly being outcrossers and annuals often
selfing.

Genetic load in outcrossers has been suggested as a source of these low fertility rates
(Wiens, 1984; Wiens et al., 1987, 1989; cf. Charlesworth, 1989). A higher genetic
load in perennials might arise from the maintenance of genetic polymorphisms under
the selective pressure imposed by parasites and pathogens, and from less frequent
purging of harmful recessive mutations than occurs in self-fertilizing plants (but see
Dole & Ritland, 1993). The zygotes of outcrossers would more frequently suffer the
lethal selective effects of genetic load, leading to low rates of seed set.

Another explanation of patterns of low seed set involves pollen limitation. A
self-incompatibie (SI) plant cannot make use of pollen transfers inside a single flower
or among flowers on the same plant, while a self-compatible (SC) plant can benefit
from such pollinator visits, since geitonogamous pollen will produce zygotes. Thus
SC plants might have higher rates of seed set largely because they receive pollen from
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an additional source—themselves—not available to SI plants. Indeed, any incompat-
ibility system reduces the pool of potential pollen donors, and this should increase the
probability of inadequate fertilization. Incompatible pollen might also clog stigmas or
trigger stigmatic reactions that further reduce the chances of ovule fertilization
(Ockendon & Currah, 1977; Shore & Barrett, 1984).

Both genetic load and pollen limitation might simultaneously reduce a plant’s
fertility and, as with pollen limitation generally, the question is one of relative
importance. The question can be addressed with the data in Appendix 1, because the
two explanations make different predictions about the effect of supplemental outcross
pollen. If receipt of compatible pollen is the main limit on seed set, then supplemental
outcrossing should increase female success (relative to natural poliination) far more
in SI than in SC species. However, if genetic load is the more important cause of low
fertility, addition of outcross pollen should have similar (and small) effects relative to
natural pollination for both SI and SC species. If anything, SC species would tend to
benefit somewhat more than SI species if a past history of selfing means that outcross
pollen carries fewer deleterious alleles as a result of purging the mutational load.

I compared the effect of hand outcrossing in SI and SC species using percent fruit
set data, because that is the most common measure of fecundity. In the studies 1
consulted, authors sometimes performed experimental selfings, which provides a
quantitative measure of compatibility, but in other cases reported only a classification
of a species as ST or SC. I created three different measures of compatibility: (1) When
experimental self-pollinations were performed, I used percent fruit set to provide a
continuous metric of compatibility. (2) Using the same data, I designated populations
as SLif female success was zero upon hand selfing, and as SC otherwise. This converts
measure | to a categorical measure of compatibility. (3) Still using the same data, I
created a broader definition of incompatibility by categorizing a species as SI if fruit
set was 0-5% in selfing experiments, and as SC if fruit set was greater than 5%. That
is, a species could be Iabelled SI if it showed some, but slight, fruit set upon selfing.
To these data I then added species that were designated SI or SC in studies that did
not employ experimental selfings.

The relative benefit from addition of outcross pollen was measured by the ratio of
mean success from hand outcrossing to mean success from natural pollination. Thus,
when natural rates of ovule fertilization are high, additional pollen can provide only
a small relative benefit. Relative benefit of hand outcrossing is plotted against percent
fruit set from selfing (compatibility definition 1 above) in Fig. 4. The pattern conforms
more closely with the expectations of a pollen limitation hypothesis than of the genetic
load hypothesis. Highly self-incompatible species sometimes improved female repro-
ductive success more than 10-fold upon hand outcrossing, while more compatible
species seldom benefited so greatly from pollen additions. The Spearman rank
correlation for these data is negative and highly significant (R =-0.38; p < 0.001).

When compatibility is classified by the second criterion above (zero or non-zero
reproductive success from selfing) the relative benefit from supplemental outcross
pollen can be compared between SI and SC species using the U-test of Mann and
Whitney (1947). Self-incompatible species tend to receive a greater relative benefit
from hand outcrossing (U = 1687; Ngj = 46, Ngc = 117; p < 0.001). Using the third
criterion above to classify compatibility also shows that SI species benefit more from
additional outcross pollen than SC species (U= 5159.5; Ngy=111,Ngc=117; p <0.01).

These patterns cast doubt on the overriding importance of genetic load for low rates
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Fig. 4. Test of the genetic load vs. pollen limitation hypotheses for low female fecundity in outcrossers.
Compatibility is measured by the percent fruit set from hand selfing. Plotted points on the left-hand side of
the graph represent more self-incompatible species, while points on the right-hand side represent more
self-compatible species. Ordinate values represent the ratio of fruit set under hand outcrossing to fruit set
from natural pollination, that is, the relative benefit of additional outcross pollen. The Spearman rank
correlation for the plotted data is negative and highly significant (R =~0.38; p 0.001), supporting the pollen
limitation hypothesis. Interpretation of symbols is as in Figure 1.

of ovule success. Difficulties in the pollen limitation hypothesis remain, however. For
species having more than about 15% fruit set from selfing the relative benefit of hand
outcrossing is low (Fig. 4). One might expect the decline to be more linear with
increasing self-compatibility if higher levels of self-compatibility produce equiva-
lently higher rates of natural ovule fertilization. Much would depend on the frequency
of geitonogamous pollinations in any population. An additional difficulty is that
neither genetic load nor actual selfing rates (as distinct from self-compatibility) were
measured. Only detailed information of this sort can resolve the issue.

V1. Discussion

The prevalence of pollen limitation among the species in Appendix I might seem
surprising, if, following Bateman, we expect female reproduction to be limited by
resources and not by access to males. For flowering plants, however, the search
component implicit in Bateman’s argument seems frequently to be unsatisisfied, due
to the vagaries of pollen dissemination and pollen receipt using external agents.

Investments in pollinator attraction are frequently a large fraction of a flower’s
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biomass investment (Pleasants & Chaplin, 1983; Southwick, 1984), an indication,
perhaps, of the difficulty in acquiring adequate pollinator service. Even large floral
rewards provide incomplete control over pollinators, and considerable resource ex-
penditure on male competition to locate ovules frequently results in incomplete
success (Table I). This evidence reinforces the impression that lack of success in
“searching” for each sex by the other is a factor that frequently obviates Bateman’s
resource limitation argument in flowering plants.

Chronic pollen limitation is expected to create selective pressures that would alter
resource allocations and other features of reproduction (Charnov & Bull, 1986;
Stanton & Preston, 1988b), leading to a reduction in pollen limitation. Why, then, is
pollen limitation so common? Can pollen limitation represent a selective equilibrium?
I suggest that pollen limitation may often be the consequence of adaptive resource
allocation strategies in a pollination enviroment characterized by large stochastic
variation in pollen delivery and ovule fertilization.

A. ALLOCATION STRATEGIES AND POLLEN LIMITATION

Haig and Westoby (1988) presented a graphical model proposing that at an evolu-
tionary equilibrium female fecundity would be limited by both pollen and resources.
When pollen limits seed set, selection would favor increased allocation to pollinator
attraction at the expense of ovule investment, but in species receiving excess pollen,
a shift from attractive investment to ovules would be favored. An equilibrium is
achieved when both pollinator attraction and ovule investment limit seed output to the
same degree.

The argument of Haig and Westoby implicitly divides a plant’s mating effort into
what may be called spore investment (pollen and ovule production) and pollination
investment. Evolutionary stable strategy models (cf. Maynard Smith, 1982) of alioca-
tion involving a trade-off between male, female, and attractive investments have been
well studied (e.g., Charlesworth & Charlesworth, 1987; Lloyd, 1987; Lloyd &
Venable, 1992). In general, these models make predictions corresponding to the Haig
and Westoby argument: at equilibrium, any benefit from small shifts in allocation that
increase, say, the number of pollinator visits are balanced by a decrement in some
other component of fitness—number of ovules available to be fertilized, for example.

Viewing mating effort as both spore investment and pollination investment makes
clear why some nuance is required in any botanical application of statements like
“male fitness should be limited by access to females and not by resources.” Since
access to females requires the investment of resources in pollinator attraction, male
fitness could be limited by resource investment even when microspores vastly out-
number megaspores. At an evolutionary stable equilibrium, increased investment in
pollinator visitation might be expected to require a loss in fitness from having fewer
pollen grains to export when the pollinators arrive (cf. Lloyd, 1987; Lloyd & Venable,
1992).

The argument thus far suggests only that a plant should produce just enough ovules
and invest just enough in pollinator attraction so that all ovules are fertilized (Haig &
Westoby, 1988). Chronic or even frequent pollen limitation of seed output is not
predicted by this view. However, if the effect of attractive investment on fertilization
is stochastic, a plant cannot adjust the complement of zygotes each flower will have
with such precision. In arandom pollination environment one expects pollen limitation
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to occur often. Haig and Westoby (1988) made this suggestion, and models of
stochastic pollination confirm it. Cohen and Dukas (1990) model a situation in which
greater floral investment produces an increase (but with diminishing marginal effect)
in the probability that a flower will be pollinated. Given a trade-off between attractive
investment in individual flowers and the total number of flowers that can be made, the
fitness-maximizing strategy occurs with fewer than all flowers being pollinated.

The model of Cohen and Dukas (1990) assumes that individual flowers are un-
pollinated or completely pollinated. I have modelled pollination intensity as a stochas-
tic variable that allows partial fertilization of multi-ovulate flowers (Burd, 1994). This
model suggests that the optimal ovule number per flower will often be above the mean
number of successful pollen tubes per flower. This counter-intuitive result occurs
because of variance among flowers in pollination intensity. Flowers that are “over-
supplied” with ovules have a non-zero probability of achieving very high seed set
because they may, by chance, fall in the upper end of natural variation in pollen receipt.
The greater the variance, the more likely some flowers are to achieve very high seed
set, although a plant cannot predict which of its flowers will be successful. In such
circumstances, the expected number of ovule fertilizations on a plant is greater if many
ovules are present in each flower than if additional costly flowers must be produced
with fewer ovules in each.

These arguments suggest that pollen limitation of female success should be com-
mon. Many other components of plant reproduction may obviate the selective pres-
sures assumed above. For example, the need to disperse seeds effectively may favor
low ovule numbers (and therefore infrequent pollen limitation) in order to maintain a
low seed-to-pulp ratio or low wing loading in the fruits (cf. Augspurger & Hogan,
1983; Lee, 1984). Thus, “excess” flowers and “excess” ovules need not be universal
among angiosperm species. But the prevalence of pollen limitation in the data set
suggests that among-flower variance in pollination might frequently shape floral
strategies in a way that results in chronic pollen limitation.

B. MULTIPLE SCALES OF POLLEN LIMITATION

Explicit consideration of the scale of ecological entitites and processes is becoming
common (e.g., Allen & Hoekstra, 1992; O’Neil, 1989), and it is useful to apply this
perspective to pollen limitation.

1. Individual Ovules

At the most fundamental level, pollen limitation occurs when individual ovules go
unfertilized. Packaging of ovules in flowers may make the individual ovule an unreward-
ing level of analysis in most cases, but ovule position effects are known (Mazer et al.,
1986; Rocha & Stephenson, 1991) and serve as a reminder that interesting phenomena
may be associated with differences among ovules within a flower.

2. Individual Flowers

As noted above, among-flower variation in stigmatic pollen deposition can be great,
and from this we can infer that inadequate pollination at the level of individual flowers
is even more common than Table I would suggest. That is, the least pollinated flowers
tend to be the ones aborted when abortion occurs (Stephenson, 1981), so that end-of-
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season measures of reproductive success may not reveal the low end of the among-
flower distribution in pollen receipt.

If a plant must abort some fertilized ovaries, the total female success of an entire
plant need not be affected by having some flowers less thoroughly pollinated. The
whole plant is often the level of greatest interest to pollination ecologists because of
the evolutionary significance of individual fitness. But variation among individual
flowers is nonetheless of evolutionary importance because it can affect whole plant
fitness by affecting such things as the optimal ovule packaging (Burd, 1994). Variation
among flowers in pollen limitation could also be relevant for microgametophyte
competition in styles. Even when overall seed output is pollen limited in a plant, some
proportion of flowers may have unusually heavy stigmatic pollen loads and selection
among pollen tubes could occur (Snow, 1986). If these seeds are of higher quality than
in fruits where no competition occurred, flowers from the upper end of a pollination
distribution may contribute disproportionately to fitness.

3. Whole Plants

Pollen limitation of whole plant fitness has been difficult to assess. Zimmerman and
Pyke (1988) argue that the methods typically used to test for pollen limitation are
inadequate at the whole plant level. Improved performance by experimentally polli-
nated flowers may come at the expense of other flowers, due to reallocation of
resources for fruit and seed maturation. Total female success may not increase even
if additional pollen increases seed set in any flower receiving it.

Zimmerman and Pyke (1988) found just such an effect in Polemonium folio-
sissimum. However, observing this effect is not sufficient to establish that whole plant
female success was not pollen limited: the decrease in unmanipulated flowers must be
greater than the increase brought about in hand pollinated flowers. In P. foliosissimum
whole-plant seed set averaged about 7% higher on experimental plants than on
unmanipulated, naturally pollinated plants, despite the reduced performance of some
flowers on the experimental plants. This increase was statistically significant.

Zimmerman and Pyke then estimated the seed contribution of flowers that had
opened and whithered before, between, or after experimental pollinations, and for
which seed set was not directly counted. Including these estimates, experimental plants
had about 9% higher seed set, although now the increase was not statistically
significant. Although their experiment is not conclusive, as Zimmerman and Pyke
(1988) note, their data tend to suggest some degree of pollen limitation in P. folio-
sissimum (even though they conclude that resources probably limit female output, an
indication, perhaps, of the common expectation of resource limitation.)

4. Lifetime Fitness

A similar problem confronts investigators over the effect of pollen limitation on
lifetime fitness in iteroparous plants. Female reproductive output may increase dra-
matically upon supplemental pollination, but years of high reproductive investment
are frequently followed by reduced vegetative and reproductive performance in
subsequent seasons (¢.g., Snow & Whigham, 1989, and references therein). A reduced
output in following years does not itself establish that lifetime reproductive output is
resource limited. The fitness decrease must be greater than the benefit provided by
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additional pollen in the initial season for pollen limitation of lifetime fitness to be ruled
out (Calvo, 1993).

Primack and Hall (1990) compared hand-pollinated plants with unmanipulated
controls of the orchid Cypripedium acaule. Supplemental pollen produced fruit set
from 8496%, compared with 06% in controls, but imposed a growth and flowering
cost over the four years of the study. However, the 64 experimental plants in one site
produced 158 fruits in four years, while an equal number of control plants produced
7 fruits, and similar results occurred in a second site (Primack & Hall, 1990, Table 7).
It seems possible that hand-pollinated plants had higher average fitness than controls,
despite the apparent low growth rates and possibly higher mortality that ensued.

Calvo (1993) used a matrix stage model with data on growth and reproduction in
the orchid Tolumnia variegata to assess the fitness consequences of increased polli-
nation. His analysis suggests that the benefit of high fruit set from additional pollen
receipt (about 88 times higher than natural rates of fruit set) would outweigh the cost
to future growth and reproduction.

Thus, although pollen limitation may not be conclusively demonstrated in any study
using iteroparous plants, it is equally true that resource limitation has not been
demonstrated. Both empirical and theoretical work in this direction would be useful.

VII. Conclusion

The very showiness of flowers might suggest that pollinator service is not obtained
easily. If it were, advertising resources would be better spent on microspores and
megaspores, or on fruit and seed maturation. Even with alarge investment in pollinator
attraction, it is not surprising that the vagaries of the environment or natural behavioral
stochasticity of the pollinators themselves often produce pollen-limited seed set.

Even when resources are not sufficient to mature all flowers, it is likely that many
aborted flowers are incompletely pollinated (Stephenson, 1981). Thus, inadequate
pollinator service to individual flowers is probably more common than indicated by
the data in Appendix I, which represent post-abortion female success.

Our theoretical understanding of plant reproductive strategies probably should not
rely on the assumption that only resource investment limits female success. Incorpo-
rating randomness into models of female mating success (e.g., Cohen & Dukas, 1990)
is likely to describe more fully the pollination environment of flowering plants.
Long-term experiments are needed to fully assess the role of pollen limitation on
lifetime reproductive success, including attention to the magnitude of immediate gains
from additional pollen vs. the magnitude of costs in subsequent years.
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