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Finite element modeling (FEM) has been used to predict forming limit diagrams (FLDs) of thin 
sheets based on two-dimensional (2-D) finite thickness defects. The local growth of these defects 
is simulated until an arbitrary failure criterion is reached. Many aspects of  this simulation re- 
produce the standard Marciniak-Kuczynski (M-K) results. For example, the plane strain inter- 
cept, FLD0, is sensitive to the material work hardening, n, and the strain rate sensitivity, m, 
but is not affected by the normal anisotropy, r. The positive side of the FLD was characterized 
by a line of logarithmic slope P. The value of P decreases sharply as n and m increase. The 
effect of r depends on the choice of yield function. The absolute location of the FLD, as given 
by the FLD0, depends not only on the material properties, but also on the choice of failure 
criterion, defect geometry, and details of  the simulative model (mesh size, number of defect 
dimensions, etc.) .  This is true of any measurement or simulation of the FLDs. Therefore, we 
propose that the FLD0 be used as the single "fitting parameter" between modeling and experi- 
mental results: a more realistic approach based on what is actually measured in the FLD ex- 
periments. This method allows clarification of the role of  material plasticity properties (e .g . ,  
n, m, and r) vs fracture properties (contained in the FLD0) in determining the shape of the 
FLDs. 

I. INTRODUCTION 

FLOW localization during sheet stretching limits metal 
formability. A sheet necks and eventually fails in loca- 
tions where critical limit strains are exceeded. A repre- 
sentation of all combinations of  such critical major and 
minor strains gives rise to a forming limit diagram (FLD). 
The concept of  forming limits was first introduced by 
Keeler and Backofen m and Keeler, t2,31 and the standard 
form of the FLD was later presented by Goodwin. [4] 
Hecker tS] presented a detailed procedure to measure the 
FLD from large negative to large positive minor strains. 
Azrin and Backofen [6] introduced a new testing tech- 
nique to determine the in-plane FLD. The current state 
of  art on both the experimental and theoretical FLDs is 
reviewed in a recent book edited by Wagoner et  al.[7] 

Theoretical calculations of the FLDs were initially based 
on Hill 's  criterion for localized necking along a direction 
of zero extension, t8] Hill 's criterion does not allow for 
localized necking of materials with smooth yield sur- 
faces under biaxial stretching (e2 > 0) conditions. 
Marciniak and Kuczynski (M-K) [91 and Marciniak 
et al. ,[10] by introducing a thickness imperfection of in- 
finite length normal to the principal stress, developed the 
first analytical model to predict localized necking in biaxial 
stretching of sheets. They showed that the presence of 
even slight intrinsic inhomogeneities in load bearing ca- 
pacity throughout a deforming sheet can lead to unstable 
growth of strain in the weaker regions and subsequently 
lead to localized necking and failure. Since then, several 
researchers have used M-K analysis to predict localized 
necking during biaxial stretching (with e2 > 0). The 
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variants of M-K analysis for predicting localized necking 
have been reviewed in the past. [11,L2,t3] 

In establishing the original theory, M-K [91 considered 
a material element with uniform mechanical properties 
but with a notch in thickness extending across it, along 
the minor principal stress direction, X2, as represented 
in Figure 1. The geometrical notch serves as a mechan- 
ical analog for a hypothesized initial local weakness. The 
ratio of  the thickness of the notch to that of  the bulk was 
defined as the weakness factor, f .  

thickness of  notch 
f = [1] 

thickness of  bulk 

The source of an intrinsic inhomogeneity in a real ma- 
terial is not clear, but suggestions have been made re- 
lating it to material property v a r i a t i o n s ,  [l~ local prestrains, 
thermal notches, and thickness v a r i a t i o n s .  B4] In real sheet 
forming applications, strain localization can be initiated 
and developed without material or thickness inhomo- 
geneities. Friction and contact conditions existing during 
the sheet forming control the development of  non- 
uniform strain distribution and the eventual strain local- 
ization process, leading to splitting failures. Such a process 
is only approximately modeled by in-plane representa- 
tions like the M-K or the finite element modeling (FEM) 
approach presented here, and the complex boundary 
conditions initiating the localization process are usually 
contained in a single parameter of unknown origin, such 
as the weakness factor, f ,  in Eq. [1]. 

In the M-K theory, instability is viewed as a process 
in which the strain state in a region of local weakness 
evolves to one of plane strain as deformation proceeds 
uniformly in the bulk. While this characteristic agrees 
with that observed for many sheet failures, the M-K 
analysis is based on an unrealistically simple model. The 
M-K defect (Figure 1) is infinite in length, with no end 

METALLURGICAL TRANSACTIONS A VOLUME 22A, NOVEMBER 1991--2655 



from the defect. Necking during biaxial stretching is 
simulated automatically, and failure is declared using three 
failure criteria. The analysis improves on M-K analysis 
in three ways: (1) introduces finite-extent defects which 
are more physically reasonable; (2) eliminates the uniform- 
minor strain boundary conditions; and (3) allows varia- 
tions of field quantities in two principal directions. 
However, the need for a single fitting parameter cannot 
be avoided. The sensitivity of the predicted FLD on the 
work-hardening exponent (n), strain-rate sensitivity (m), 
and anisotropy parameter (r) is calculated. The FEM re- 
suits are compared to the predictions obtained from the 
M-K analysis. A new framework for understanding and 
analyzing FLDs is proposed. 

Fig. 1 - - S c h e m a t i c  of  the M-K model  for a sheet element "A"  with 
a thickness inhomogenei ty  "B" aligned parallel to the minor  stress 
axis, X2 .19] 

effects taken into account; such defects do not exist in 
real sheet materials. The M-K analysis, therefore, im- 
plicitly imposes nonphysical boundary conditions by way 
of the uniform minor strains throughout the sheet sam- 
ple. These two simplifications allow the closed form one- 
dimensional (l-D) solutions (that is, those which allow 
variations in field quantities in one direction only) that 
M-K sought but overstate the impact of a real material 
defect. Finite element modeling allows relaxation of these 
two restricting assumptions by solving for nonuniform 
internal stresses and strains under prescribed displace- 
ment boundary conditions. Bate and Wilson t~51 used FEM 
to analyze the development of strain localization in a 
biaxially stretched sheet of work-hardening material which 
contained a regular array of interacting, axisymmetric 
defects. They consider, in detail, the effect of shape and 
distribution of the defects on strain localization and FLDs. 
They have also shown that in the case of finite (compact) 
defects, the magnitude of strains within the finite defect 
can be much larger than within the M-K defect so that 
failure may, in fact, occur by fracture inside the defect 
rather than by flow localization. In this paper, we con- 
sider the effect of material parameters on the FLD0 and 
shape of the FLD. 

More than 80 pct of industry failures occur near plane 
strain conditions, t16~ Therefore, the limit strain, in plane 
strain conditions (FLD0) is the quantity usually sought 
in experiments. It is possible to "predict" the experi- 
mentally observed FLD0 by a suitable choice of the 
weakness factor, f .  In fact, s incefhas  an unknown phys- 
ical meaning, it is simply a fitting parameter that allows 
a model to predict the experimentally measured FLD0. 
The choice o f f  depends on the details of the model and 
the material. Therefore, it is not meaningful to identify 
f with specific material characteristics. 

This paper analyzes the development of in-plane strain 
localization in sheets containing isolated, noninteracting 
finite defects. The analysis is based on a two-dimensional 
(2-D) rigid viscoplastic FEM program with deformation 
imposed by displacement boundary conditions remote 

II. F INITE E L E M E N T  M O D E L  

The finite element program was developed on the basis 
of rigid viscoplastic theory for in-plane deformation under 
plane-stress conditions I17~ using a formulation presented 
by Wang. I181 Constant strain triangular elements are used. 
This program has been used to analyze sheet tensile 
necking, tl9,im and three-dimensional (3-D) membrane 
versions have been developed t2~,221 to analyze sheet 
stamping operations. Other effects, such as non- 
isothermality, have also been introduced into the in- 
plane t23,24~ and 3-D versions t25~ of the FEM program. A 
brief review of the program features and the application 
to biaxial forming limit is presented next. 

The work-hardening and strain rate sensitivity models 
incorporated in the present analysis may be expressed as 
follows: 

[;0] m = k(go + i)"  [21 

In Eq. [2], the parameters represent effective stress (~), 
strength coefficient (k), effective strain (g), prestrain 
(go), strain-hardening exponent (n), current effective strain 
rate (~), reference effective strain rate (~0), and strain 
rate sensitivity index (m). 

Currently, effective stress and strain may be defined 
by either Hill's nonquadratic yield theory [261 for normal 
anisotropy or Hosford's nonquadratic yield theory t271 for 
normal anisotropy. More standard yield functions, such 
as the yon Mises teSl or Hill 's quadratic theory, t291 are sub- 
sets of both Hill's and Hosford's nonquadratic theories 
and are, therefore, immediately available in the pro- 
gram. The quantities for both nonquadratic theories are 
defined in terms of principal stresses and strain increments. 

For Hill's t261 theory, they are given by 

{' 7 = 2(I + r--------~ [(1 + 2r)Icr~ - 0"2] M q- IOrl q- ~r2lMl 

[3] 

[dE1 - dsz[M/(M-I) 
1 d g -  [2(1 + r)] I/M (1 + 

2 2r) (l/(M- j) 
](M 1)/M 

+ Idel + dE2[M/(M-I) I 
3 

[41 
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where the parameters M and r characterize the anisot- 
ropy of the yield surface. For the membrane formula- 
tion, 0- 3 is identically zero. Substituting M = 2 and 
r = 1 in Eqs. [3] and [4] gives rise to the well-known 
von Mises [281 isotropic yield theory functions. With 
M = 2 and for any arbitrary r values, Eqs. [3] and [4] 
reduce to the 1948 Hill quadratic anisotropic yield 
theory. [29] 

For Hosford's yield theory, effective stress is given 
by 

@ : trio-1 - 0-21 a + I0-# + I0-# § Imla]} 
[/a 

[5] 

An explicit form for dg does not exist but may be com- 
puted numerically, p~ 

Hosford's yield function (Eq. [5]) also reduces to 
von Mises yield theory when a = 2 and r = 1 and to 
the 1948 Hill theory for a = 2 and arbitrary r. Based on 
crystallographical texture calculations for metals, the 
following values of a have been suggested: a ~- for body- 
centered cubic metals and a - 8 - 10 for face-centered 
cubic metals. 127,311 

In the (2-D) version of the FEM program, inhomo- 
geneities in material properties (e .g . ,  n, r, M ,  and go, 
as well as thickness) can be applied to any element or 
group of elements selected for evaluation. Relative vari- 
ations in k (Eq. [2]) are equivalent to introducing pro- 
portional variations in thickness. 

The majority of the calculations for predicting FLDs 
have been based on Hill's [29] 1948 quadratic, normal 
anisotropic yield theory (i .e. ,  M = 2 and r ~ 1). The 
incorporation of Hosford's theory into the FEM program 
is only a recent development.t29] As a consequence, only 
a limited number of predictions have been completed using 
Hosford's theory (a = 6). 

Figure 2 shows a mesh representing one quadrant of 
a sheet containing a region of reduced thickness. The 
mesh consists of 946 constant strain triangular elements 
and 513 nodes. The shaded region in Figure 2 represents 
72 elements of reduced thickness which form a notch 
with an aspect ratio of 1 : 1. The mesh shown in Figure 2 
represents an optimized mesh. Preliminary studies showed 
that the FEM results were sensitive to some extent to the 
following two factors. (1) The ratio of the size of the 
notch to the size of the full mesh. In this regard, it was 
found that the FEM predicted results were consistent if 
the full mesh size was at least 7 times larger than the 
notch. The mesh used in this study has this ratio greater 
than 10, ensuring isolated-defect conditions for simula- 
tion purposes. (2) The number of elements present inside 
the notch. It was found that the FEM predicted consis- 
tent limit strains if at least 72 elements were present in- 
side the notch. Defects with different aspect ratios were 
previously modeled by Burford and Wagoner. pz] They 
showed that the aspect ratio of the defect has a strong 
influence on the rate of  strain localization (Figure 3) and 
thus on the predicted forming limit diagrams. For a fixed 
weakness factor of the defect ( f  = 0.98), the rate of 
strain localization is reduced by decreasing the aspect 
ratio of the defect, and the limit strains are correspond- 
ingly increased. Similarly, for a given aspect ratio of the 
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Fig. 2 - -Undefo rmed  finite element mesh, representing one quarter 
of the sheet. The shaded region represents the location of a thickness 
defect with an aspect ratio of 1 : 1. 
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Fig. 3--The effect of the aspect ratio of defect on strain localization: 
defects with larger aspect ratios localize strain rapidly, i321 

defect, they showed that a decrease in the magnitude of 
the weakness factor, f ,  increases the rate of strain lo- 
calization, thus decreasing the corresponding limit 
strain. [32] In the present work, a thickness defect with an 
aspect ratio of 1:1 is used to maximize the differences 
between FEM and M-K analysis. The sensitivity of FLDs 
to n, m, and r is predicted using this 1:1 aspect ratio 
defect. Unless otherwise specified, the thickness defects 
are assumed to have a weakness factor, f ,  equal to 0.98. 

The deformation is simulated by imposing displace- 
ment boundary conditions at the nodes along the bound- 
aries of the mesh. Different strain paths can be simulated 
using different ratios of displacements between the two 
boundaries. For example, a balanced biaxial strain path 

M E T A L L U R G I C A L  T R A N S A C T I O N S  A V O L U M E  22A,  N O V E M B E R  1991 2657 



can be modeled by imposing equal displacements at all 
of the nodes present along both X + and Y + boundaries, 
with symmetry conditions imposed at X-  and Y- bound- 
aries (Figure 2). It is thus possible to simulate all of the 
strain paths in biaxial stretching. 

I I I .  F A I L U R E  C R I T E R I A  

During the simulation of biaxial stretching of sheet, 
strain gradients within the sample grow, eventually to 
produce large strains within the notch corresponding to 
the formation of a localized neck during the actual 
stretching of a sheet. In order to predict the limit strain, 
i .e . ,  the strain far removed from the notch when necking 
occurs, a failure criterion is required. A forming limit 
diagram can then be constructed by repeating the sim- 
ulation for several strain paths and plotting the bulk strain 
when the failure criterion is reached. 

In this study, three failure criteria were evaluated and 
compared. All of  them are based on comparing the strain 
rate in the notch to that in the bulk, R. 

The ratio of the major principal strain rate in the notch 
to that in the bulk, R~, increases unstably during local- 
ized sheet stretching, as shown in Figure 4. The first 
criterion, based on major principal strain rate, is defined 
as follows: 

major strain rate in the notch 
R] = --> 10.0 [6] 

major strain rate in the bulk 

The ratio of  the minor strain rate in the bulk to that 
in the notch, R2, can also be used to describe flow lo- 
calization. During initial stages of sheet stretching, this 
ratio is approximately equal to one, but at the onset of 
localized deformation, the ratio drastically increases, as 
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Fig. 4--Prediction of localized necking by major strain criterion, minor 
strain criterion, and effective strain criterion. 

shown in Figure 4. The second criterion examined takes 
the following form: 

minor strain rate in the bulk 
R2 = ~ 10.0 [7] 

minor strain rate in the notch 

This criterion corresponds to the notch attaining near plane 
strain path, similar to the original M-K criterion. 

The third criterion is based on the scalar effective strain 
rates. Figure 4 shows that the ratio of the effective strain 
rate in the notch to that in the bulk R3, exhibits a growth 
in slope at the onset of localized deformation. This cri- 
terion may be written as 

effective strain rate in the notch 
R3 = ->- 4.0 [8] 

effective strain rate in the bulk 

FLDs based on these three criteria showed little vari- 
ance, typically less than 0.1 pct, in e2 for a given e~ 
(Figure 5). For the results presented in the remaining 
part of  this paper, the R 3 criterion (Eq. [8]) was used. 

IV. RESULTS A N D  DISCUSSION 

Finite element modeling allows one to distinguish 
conveniently the influence of material parameters on the 
simulated FLDs. For example,  the effects of the work- 
hardening exponent (n), strain rate sensitivity index (m), 
and anisotropy parameter (r) can easily be analyzed. The 
range of chosen material properties investigated repre- 
sents the range of values commonly found in metals for 
sheet forming applications. [33] The FEM predicted ma- 
terial effects are compared with the results from the M-K 
analysis. The M-K analysis is carried out by a numerical 
method provided by Lian et a1.[34] 

A typical FLD on the positive minor strain regime may 
be assumed to be well represented by the following two 
quantities: [35,36] (1) the plane strain intercept, FLDo and 
(2) the shape of the FLD represented approximately by 
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Fig. 5 - - F L D s  based on the three failure criteria of Fig. 4. 
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a line. As suggested by Lian et a l .  [351 and Graf  and 
Hosford, [36] it is convenient to separate the influence of 
material parameters on the FLDo and FLD shape. 

A. Effect of Material Parameters on the FLDo 

Finite element modeling and M-K predictions, based 
on Hill 's  yield function (M = 2), are shown in Figure 6. 
The weakness factor, f ,  is assumed to be equal to 0.98. 
Figure 6(a) shows the sensitivity of the FLDo on the work- 
hardening exponent, n. It is seen that both FEM and M-K 
analysis predict a linear increase in the FLD0 with an 
increase in n. This trend is in agreement with the pre- 
vious results reported in the literature. [37,38,39~ The sen- 
sitivity can be approximately quantified as the slope of 
the linear regression line in Figure 6(a). The FEM pre- 
dicted sensitivity of  the FLD0 with n is equal to 1.04 and 
the corresponding sensitivity as predicted by M-K anal- 
ysis is equal to 0.88. 

Figure 6(b) shows the predicted near-linear depen- 
dence of the FLD0 on the strain rate sensitivity index, 
m. The FEM predicted sensitivity of the FLD0 with m is 
equal to 6.1 and the corresponding sensitivity predicted 
by M-K analysis is equal to 4.1. 

The anisotropy parameter, r, does not produce a change 
in the predicted FLD0 (Figure 6(c)). Both FEM and M-K 
analyses predict a zero sensitivity of  the FLD0 with r. 
This effect of r on the predicted FLD0 has been ex- 
plained by Sowerby and Duncan f39] based on the effect 
of r on the shape of the yield locus. 

B. Effect of Material Parameters on the FLD Shape 

As mentioned before, the shape of FLDs is approxi- 
mately represented by a line. The strain ratio, p, for a 
strain path is equal to ez/el. Lian et al. t351 and Graf  and 
H o s f o r d  [361 used an average slope to represent the shape 
of an FLD. In Reference 36, the average slope is defined 
in the following manner: 

~ * ( p  = 0 . 8 )  - ~ * ( p  = 0 . 2 )  
Average slope = [9] 

e2(p = 0.8) - e2(p = 0.2) 

where e*(p : 0.8) is the limiting true major strain in the 
predicted FLD when the strain ratio, p, is equal to 0.8, 
e*(p = 0.2) is the limiting true major strain in the pre- 
dicted FLD when the strain ratio, p, is equal to 0.2, and 
the e2's are the corresponding true minor strains. In this 
work, we approximate the FLD shape by a linear regres- 
sion line passing through the predicted discrete points in 
the FLD (with 0.2 -< p < 0.8). We use the following 
ratio, P, to represent the shape of the FLD for our sen- 
sitivity analysis: 

~ * ( p  = 0 . 8 )  
P = [10] 

e * ( p  = 0 , 2 )  

The above ratio is obtained from the linear regression 
line representing the FLD. The effect of material param- 
eters of  the FLD shape can now be evaluated as the ef- 
fect of  material parameters on the ratio P. 

Figure 7 shows the predicted variation of P with an 
increase in the work-hardening exponent, n. The ratio P 
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Fig. 6 - - T h e  effect, at constant f ,  of the material properties on the 
simulated FLD0: (a) work-hardening exponent, n, (b) strain rate sen- 
sitivity index, m, and (c) anisotropy index, r. 
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decreases with increasing n, implying that the predicted 
limit strains are less dependent on the degree of biaxi- 
ality for larger magnitudes of n. The sensitivity of P to 
n may be approximated as the slope of the line in 
Figure 7. The sensitivity, as predicted by FEM, is equal 
to - 2 . 3 3  and, as predicted by M-K analysis, is equal to 
-2 .41 .  

Figure 8 shows the effect of the strain rate sensitivity 
index, m, on the ratio P. A small change in m produces 
a significant change in P, although the overall change in 
P is small for the range of m considered. The sensitivity 
of  P to m is estimated as the slope of  the line in 
Figure 8, which is equal to - 1 0 . 5  as predicted by FEM 
analysis and is equal to - 8 . 3  as predicted by the M-K 
analysis. 

Figure 9 presents the effect of the anisotropic index, 
r (using Hill 's yield function), on the shape of the FLD. 
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For lower magnitudes of r, the ratio P is very sensitive 
to r. For larger magnitudes of  r, the value of P becomes 
rather insensitive to r. The predicted influence of r on 
the FLDs is also dependent on the yield theory used. 
Many of  the yield theories that have been developed re- 
cently to better describe the constitutive behavior of ma- 
terials [35,36,4~ show that r has no influence on the 
predicted FLDs. Figure 10 shows the predicted FLDs for 
a range of r values incorporating Hosford's  yield theory 
by both FEM and M-K analyses. This result confirms 
the observations of previous researchers. (35,36,4~ The 
above results show clearly that the effect of  r on the FLD 
shape is very dependent on the assumed yield theory. 

The effect of anisotropy, r, on the FLD shape has been 
explained by Lian et al. t35] by introducing a novel dia- 
gram called the yield surface shape hardening diagram. 

0.9 

0.8 

0.7 n,. 

mP 0.6 

~ 0.5 

z 0.4 ,< 
rr 
f -  
r 0.3 
n- 
O 0.2 

3E 
0.1 

0.0 
0. 

PREDICTED FORMING LIMIT DIAGRAM 

n'=O ~39" ' 
m=0.01 
R=0.7-1.8 
f = 0 . 9 8  

f 

M - K  

F.E.M. 

I I ! J I I I I 

0 .1  0 . 2  0 . 3  0 . 4  0 . 5  0 . 6  0 . 7  0 . 8  0 . 9  

MINOR STRAIN (TRUE STRAIN) 

Fig. 1 0 - - T h e  effect, at constant f ,  of  the anisotropy parameter,  r, on 
the predicted FLD using Hosford 's  yield theory by FEM and M-K.  
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The horizontal coordinate of  this diagram is the strain 
path, P(=~yy/exx), and the vertical axis is the ratio of  the 
corresponding biaxial flow stress to the balanced biaxial 
flow stress (o-xx/~b). They have shown that even though 
the plane stress yield surface shapes are different for dif- 
ferent r values, the corresponding yield surface shape 
hardening diagrams are very similar, giving rise to sim- 
ilar FLDs. Therefore, they I351 have concluded that dif- 
ferences in predicted FLDs arise from differences in the 
corresponding yield surface shape hardening diagrams. 

C. Comparison of FEM and M-K Analyses 

A similar trend in the effect of  material properties (n, 
m, and r) on the FLD (both the FLD0 and shape) is pre- 
dicted by both FEM and M-K analyses. Finite element 
modeling predicts larger magnitudes of  FLDo and P (for 
a given weakness factor, f = 0.98) for all of the tested 
combinations of material parameters. For f = 0.98, the 
FLD0's computed by FEM are on average 25 pct larger 
than those computed by M-K analysis. This is an ex- 
pected result as the assumed M-K defect is more severe 
for a given sheet thickness than the defect assumed in 
the FEM analysis and hence would localize plastic de- 
formation earlier. FEM predicted P values are slightly 
larger (on average by 8 to 10 pct) than those predicted 
by the M-K analysis. The higher magnitude of P pre- 
dicted by FEM may be caused by the resulting larger 
FLD0 rather than a real difference in the model. In order 
to investigate the role of  the FLD0 on P, the weakness 
factor of  an M-K defect was varied for a given combi- 
nation of material parameters (n, m, and r) and the cor- 
responding FLD0 and P were calculated. Figure 11 shows 
the variation of P with respect to the FLD0. This result 
suggests that for any combination of material properties, 
the ratio P increases with the FLD0. Therefore, it ap- 
pears that the shape of the FLD (represented here simply 
by P) depends not only on n, m, and r, but also on the 
FLD0, the formability of the material itself. (Of course, 
the FLD0 may well be considered as a material property, 
but we distinguish between continuum plasticity prop- 
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Fig. 11 - - T h e  calculated variation of the ratio P (FLD shape param- 
eter, see text) with the FLD0 using M-K analysis. 

erties like n, m, and r and the failure limit represented 
by the FLD0). 

For comparison with the work of previous researchers, 
we have so far compared FLDs computed using constant 
f values and notch geometries. As mentioned earlier, there 
appears to be no physical reason to do so, since f and 
notch geometry are unknown for real materials (worse, 
their origin or corresponding physical quantities have not 
been unambiguously identified). Therefore, the weak- 
ness factor, f ,  is merely a fit parameter convenient for 
normalizing a given model to the physical situation. It 
seems more instructive to us to compare the predicted 
FLDs for a given FLD0, which is the experimentally de- 
termined quantity. The weakness factor must, therefore, 
be adjusted to achieve the specified FLD0 with the spec- 
ified material properties. For example, to obtain the FLDo 
that was obtained by M-K analysis (with f - -  0.98), a 
weakness factor o f f  = 0.935 must be used in the FEM 
analysis (with 1 : 1 defect). The weakness factor required 
in FEM to predict the same FLDo obtained in M-K anal- 
ysis is defined as ffe,,. 

Figure 12 compares the predicted FLDs computed from 
M-K analysis ( f  = 0.98) with ones computed by FEM 
analysis ( f  = ffem = 0.935 a n d f  = 0.98). The material 
properties are assigned various values for this compari- 
son: n = 0.15 or 0.39, m = 0.01 or 0.02, and r = 0.7 
to 1.5. Table I presents the pertinent P values for these 
simulations. The result is perhaps surprising and inter- 
esting in two regards. 

(1) The shapes of  M-K and FEM FLDs are nearly iden- 
tical for a given n, m, r, and FLD0, except very near the 
balanced-biaxial region. Bate and Wilson I15] showed 
similar results in their comparison for FEM analysis of 
a sheet containing interacting axisymmetric f'mite defects. 
(2) The ffem required in the FEM simulation to achieve 
the same FLD0 as predicted by M-K analysis (for the 
same n, m, and r) does not depend on the material pa- 
rameters n, m, or r, at least in the ranges tested in this 
work. The severity of the defect was shown not to have 
any influence on the required from by Bate and Wilson. [15] 
These results imply that the ffem required depends only 
on the starting geometry of the finite defect and does not 
depend on either the material properties or the severity 
(i.e., thickness) of  the assumed defects. 

While the relationship between the f values required in 
the M-K and FEM analyses to obtain a specified FLD0 
does not depend on either plasticity properties or relative 
defect severity, it does clearly depend on the geometry 
of the assumed notch. The dependence of required ffem 
on the aspect ratio of the notch is shown in Figure 13. 
For a larger aspect ratio, perhaps greater than 1:20, the 
FEM and M-K simulations would be nearly equivalent. 
Wilson and Ascelrad [43] have demonstrated similar re- 
suits in a systematic set of experiments where they tested 
sheet materials with different defect lengths correspond- 
ing to different aspect ratios in the present FEM analysis. 
Burford and Wagoner [32] demonstrated the role of  the de- 
fect aspect ratio in determining the FLD0. Figure 14 shows 
the near correspondence between the FEM and M-K cal- 
culations when a large aspect-ratio notch (1:16) is em- 
ployed. In this case, to match the FLD0's, the requisite 
fva lues  are 0.98 for M-K and 0.973 for FEM. The above 
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Fig. 12--Comparison of the predicted FLDs by M-K and FEM using constant f and required flora: (a) through (d) show the comparisons for 
different combinations of material properties. 

results show that the f required in a theoretical model to 
match with an experimental FLD0 depends not only on 
the cont inuum material properties (n, m, and r), but also 
on the assumed notch geometry and boundary conditions. 

V. D I S C U S S I O N  

In the first part of  the presented s imulat ions,  we fol- 
lowed the usual procedure of  selecting model  parametric 
values (n, m, r, and f )  and used these values to compute 
FLDs. We did this using both M-K and FEM analyses 
and compared the two results. We found that there was 
little correspondence of the curves, their m i n i m u m  val- 
ues, or their shapes, Detailed results were presented under 
these condit ions.  As previous researchers reported, each 
of these parameters affects the height and shape of the 
FLD under these simulation rules, although the role of 

Table I. Comparison of the Predicted 
Magnitudes of P for Different Material Property 

Combinations Before and After Matching the FLD0's 

P 

FEM FEM 
Before After 

Matching Matching 
the the 

Material Properties FLDo FLDo M-K 

n = 0.15, m = 0.01, 
and r = 1.5 2.12 2.07 2.06 

n = 0.39, m = 0.01, 
and r = 1.5 1.40 1.30 1.30 

n = 0.39, m = 0.02, 
and r = 1.5 1.32 1.24 1.24 

n = 0.39, m = 0.01, 
and r = 0.70 1.83 1.73 1.74 
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a 1:16 aspect ratio notch and required from. 

the r value depends on the choice of plastic yield 
function; Hill 's yield function (with M = 2) produces a 
strong r dependence while several other yield func- 
tions [35'36'4~ do not. In all cases, the FEM calculation 
showed a higher forming limit than the M-K calculation, 
because the finite defect is less deleterious for a given 
weakness factor, f .  The same trend was also found by 
Bate and Wilson f~5] in their FEM analysis of sheet con- 
taining finite, interacting, axisymmetric defects. Pre- 
vious work by Burford and Wagoner, t321 along with 
Figure 3, supports this reasoning. In fact, as the aspect 
ratio of  the FEM notch approaches values in the range 
of 1 : 20, the FEM results approach the M-K ones, as also 
observed in the detailed experiments conducted by Wilson 
and Ascelrad. ~43j 

The underlying assumption in the foregoing discus- 
sion is that the parametric set (n, m, r, and f )  is phys- 
ically measurable and thus has meaning external to the 
simulation model. In fact, the subset (n, m, and r) sat- 
isfies this condition, but the parameter f does not. Al- 
though numerous attempts have been made to reconcile 
the M-K parameter, f (they conceived it as a pure thick- 
ness ratio), with various spatial variations of physical 
properties or variables (thickness, grain orientation, yield 
stress, temperature, etc.), it remains very much an ar- 
bitrary quantity introduced to allow M-K analyses to 
proceed. Finite element calculations [21,221 have shown that 
even mathematically homogeneous sheets (within the 
discreteness of  the elements) are subject to consistent strain 
localization initiated by the usual frictional and geomet- 
ric constraints found in actual forming operations. (It is 
only by chance that in-plane deformation under uniform 
boundary conditions, such as those envisaged by M-K, 
can proceed uniformly). Therefore, it appears hopeless 
to assign a physical meaning tofindependent of the model 
used for calculating the FLD. 

In Section I V - C  of this article, we proposed to re- 
place the nonphysical parameter f with the experimen- 
tally measured forming limit at the plane-strain condition, 
FLD0. The corresponding set of pertinent parameters that 
affect the shape of the FLD then becomes (n, m, r, and 
FLD0). Note that in this context, although the FLD0 is 
used as a parameter independent of  n and m, it is im- 
portant to realize that FLD0 itself (at constant defect shape, 
for example) strongly depends on both n and m. This 
approach implies that the FLD0 should be experimentally 
measured and used along with n and m to predict the 
shape of the FLDs. While the FLD0 is by no means an 
easy-to-measure or consistently obtainable quantity, it at 
least has a physical meaning defined by various kinds of 
sheet formability tests. We choose to interpret the FLD0 
as a measure of  the material formability in plane-strain 
tension, which depends on the nature of the test, material 
continuum behavior, and perhaps, flaw content and 
sensitivity. 

In a rather idealized comparison, the FLD0 plays the 
role of the critical stress intensity factor in fracture me- 
chanics tests. As for the case of fracture mechanics, there 
is always a need for a parameter to represent, in an av- 
erage sense, the roles of  continuum and noncontinuum 
contributions to failure. By collecting such parameters 
in a physically significant way, one can proceed to pre- 
dict real failures which depend not only on material 
properties, but also on boundary conditions and defect 
distributions. This usage does not violate the common 
observation that the FLD0 or Kit depends on material 
properties (n, m, and r, for example). 

Using the FLD0 as a basic material/ test/geometric 
property, some of the FEM FLD simulations of the 
Section I were repeated with the FLDo held constant. 
The results provide a much more orderly and revealing 
comparison with respect to the M-K results. First, the 
shapes of the FLDs computed from FEM and M-K are 
nearly identical, implying that the results are not model- 
dependent as long as FLD0 is chosen independently. The 
only exception appears to be near the balanced-biaxial 
symmetry line, where the FEM results often show a re- 
duced slope, similar to some experimental results. 144-47] 
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Second, the relationship between the weakness  factors 
required between the two models does not seem to vary 
with other material properties. That is, for the range of  
material properties tested, a n f  = 0.98 (M-K) appears to 
be equivalent to an f = 0.935 (FEM with 1:1 defect). 
It is rather surprising that the two models would not be 
more different in the way various material parameters 
interact to produce the final FLD. 

With the adoption of  the FLD0 as a specified param- 
eter in the simulations, it becomes clear that the "pre- 
dictions" of the FLD0 by various models are not physically 
motivated predictions at all. Rather, the model  in ques- 
tion should be evaluated for shape of  the predicted FLD 
(in comparison with the experimental one) at a specified, 
and fit, FLD0. 

VI.  C O N C L U S I O N S  

Forming limit diagrams have been computed using M-K 
I-D analysis and 2-D FEM for a range of  material prop- 
erties. The FEM results were based on a notch of  1:1 
aspect ratio with remote displacement boundary condi- 
tions. The fol lowing conclusions were reached. 

1. At a given weakness factor (thickness of  notch/  
thickness of  bulk), f ,  FEM FLD0's are 20 to 25 pct 
higher than M-K FLD0's for all choices of  material 
properties. Finite isolated defects are, therefore, less 
deleterious (at a given weakness factor) than the in- 
finite channel M-K defects. 

2. At a given weakness  factor, f ,  the shape of  the FLDs 
computed by the two methods are different because 
of  the FLD0 differences. 

3. The shape of  FLDs at a constant weakness  factor, f ,  
depends strongly on material strain hardening and strain 
rate sensitivity, but the role of  the r value depends 
on choice of  yield function, as found by previous 
researchers, t35,36.40-42] 

4. The weakness factor, f ,  was interpreted to be not a 
physical quantity but rather a simulation parameter of  
little interest in comparison with physical FLDs. 

5. The plane-strain forming limit, FLD0, was proposed 
to replace the role of  the weakness factor, f ,  in sim- 
ulations and comparisons with experiments. 

6. With the FLD0 held constant, the shapes of  FEM FLDs 
and M-K FLDs are nearly indistinguishable for a wide 
range of  material properties. The FEM FLDs often 
show a maximum near the balanced-biaxial limit that 
does not appear in the M-K FLDs. 

7. With the FLD 0 held constant, a constant relationship 
between the simulation weakness factors for the FEM 
and M-K simulations was found. The M-K defect with 
a weakness factor o f f  = 0.98 corresponded to the 
FEM 1 : 1 defect with a weakness factor o f f  = 0.935. 
This relationship depends only on the aspect ratio of  
the FEM defect and not on the material parameters. 
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