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A THREE-DIMENSIONAL WEAKLY NONLINEAR 
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In recent years, studies of the environmental hydrodynamics in coastal seas and tidal estuaries have placed 

focus on the processes which determine the "fate" of longer-term transport. The lagrangian residual current has 

been recognized as an important factor which affects the longer term transport processes since it is more 

relevant to use a Lagrangian mean velocity rather than an Eulenan mean velocity to determine the origin of 

Water masses. In the present paper, an attempt is made to formulate a three-dimensional dynamics on the tide- 

induced Lagrangian residual current and mass-transport based upon a three-dimensional weakly-nonlinear 

model of tides. The Lagrangian residual velocity is shown to be the sum of the mass-transport velocity, which is 

the sum of the Eulerian residual velocity and the Stokes' drift velocity, and the Lagrangian residual drift 

velocity which is dependent on the tidal current phase. This reveals that it is the mass-transport velocity which 

is the tidal cycle Eulerian mean of the Lagrangian residual velocity and that the mass-transport velocity is 

correct to the second order of approximation rather than to the first order. And then, a new longer-term 

transport equation which correctly describes the Lagrangian nature of transport processes without introducing 

the Fickian hypothesis for tidal dispersion is derived. In fact, the convection can be correctly represented by'the 

Eulerian mean of the Lagrangian residual velocity, as the convective velocity in the longer-term transport 

equation is nothing but the mass-transport velocity. 

INTRODUCTION 

As well known, studies of the environmental hydrodynamics have put focus on the 
longer-term transport processes of suspended matter and dissolved substances in estuaries, 
coastal embayments, shallow seas and continental shelf seas. In fact, transports of solutes, 
salinity, nutrients, sediments and other tracers are really fundamental to the interactive 
physical, chemical, biological processes in an ecological system. We also know that tides 
dominate the circulation in the coastal seas and the apparent dominating transport 
mechanism is tidal convection. Thus the nature of the longer-term transport processes 
mentioned above is strongly Lagrangian and it has been generally agreed on that these 
longer-term transport processes are determined by the Lagrangian mean velocity of a 
marked water parcel and not by the Eulerian mean velocity at a point, or the Eulerian 
residual current. The Lagrangian mean velocity of a marked parcel may lead to a concept of 
Lagrangian residual current. It should be pointed out that the study on Lagrangian residual 
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currents is a relatively recent undertaking, and thus any further investigation of the 
Lagrangian residual current may be a valuable contribution. 

It has been revealed recently that, unlike the Eulerian residual current, the Lagrangian 
residual current depends not only upon the point in space where the marked water parcel is 
released but also ~ upon the' tidal phase at the time when the marked water parcel is released, 
and the Lagrangian residual velocity describes an ellipse over a complete tidal cycle on a 
hodograph plane (Feng et al., 1984a)*. In fact, a numerical simulation of South San 
Francisco Bay, california, was used in an attempt to define the relation between the 
Lagrangian residual current and the tidal phase (Cheng, 1983), and similar modeling of the 
Lagrangian residual circulation in the Jiaozhou Bay have been made by Yu and Chen 
(1983). However, these proposed models have certain weakpoint as they are two- 
dimensional and depth-averaged. The Lagrangian residual current should be rigorously 
treated in a three-dimensional space from the point of view of dynamics (Aifrink and 
Vreugdenhi!, 1981; Feng et al., 1984a), although the Lagrangian residual current can be 
defined in a horizontal, two-dimensional space when the two-dimensional barotropic flow 
has the property of vertical rigidity (Stern, 1975). A study on the three-dimensional 
Lagrangian residual circulation is of much importance from both the theoretical and ti~e 
practical points of view. In the present paper, we propose a three-dimensional model for the 
Lagrangian residual current and investigate the three-dimensional structure of the 
Lagrangian residual circulation. 

A longer-term transport equation, namely, a convection-diffusion equation for the 
tidal cycle, averaged concentration of any conservative and passive tracer, describes a 
balance of conveL~n and diffusion or dispersion. In the classical longer-term transport 
equation, the convection velocity is the Eulerian residual velocity. As stated above, 
however, the longer-term transport processes are Lagrangian, so the transport of any tracer 
should be determined by the Lagrangian residual current rather than by the Eulerian 
residual current. Therefore, the use of the Eulerian residual velocity to represent 
convection needs further examination. On the other hand, in the classical longer-term 
transport equation an assumption of ~tidal dispersion" had to be made, the coefficients of 
which have been estimated based upon data from concurrent measurements of the tidal 
velocity and the concentration over an extended period of time (Dyer, 1973, 1974; Fischer, 
1976; Uncles and Jordan, 1979; Uncles and Radford, 1980; Winterwerp, 1983; Lewis and 
Lewis, 1983), upon arguments of dimensional analysis (Stommel and Famer, 1952), upon 
computations of the actual Lagrangian water mass movements in a tidal current field by 
means of a numerical model (Awaji, 1982), or upon ql~Mm4stical approach (Zimmerman, 
1978). Sometimes, the so called '~tidal dispersion" terms were simply neglected (Pritchard, 
1954; Bowden, 1965; Fischer et al., 1979). Of course, the "tidal dispersion" terms in the 
longer-term transport equation are the results of a hypothesis in a mathematical average of 
the governing equation, but their physics and dynamics are not well understood. In fact, 
the alternative to the classical longer-term transport equation has been proposed recently 
(Feng et al., 1984b), but it is a two-dimensional, depth-averaged equation. Obviously, a 
corresponding three-dimensional equation is expected, and in the present paper, we have 
proposed such an equation, which describes the Lagrangian nature of convection transport 
without introducing the ~tidal dispersion" terms. 
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The Lagrangian residual circulation and the longer-term transport processes are to be 
driven by tides, storm or wind, and density and open boundary forces. To avoid confusing 
the main issues, however, the effects of surface wind stress, variations of barometric 
pressure and baroclinic variations are not included. Thus the present study is confined to 
the tide-induced Lagrangian residual circulation and longer-term transport processes. 

FORMULATION 

Based on a nonlinear three-dimensional tidal model (Feng, 1977) with an additional 
equation for a streakline and a convection-diffusion equation for the concentration of any 
conservative and passive indicator substances in the water, a nondimensional dynamic 
problem is presented as follows: 

V. u = O, (1) 

au & a ( au'\ 
 u.Vu-fv= + (2) a--~+ 
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t ,  denotes time; (x., y . ,  z~  form Cartesian coordinates on an f-plane with 
corresponding unit vectors (e'l, e2, e 3); (u., v.,  w.)are the velocity components in the (x., 
y . ,  z.)-directions; E, is the displacement of the free surface from the undisturbed sea 
surface; h .  is the water depth measured from the undisturbed sea surface, g is the 
gravitational acceleration; f ,  is the Coriolis parameter; v. is the eddy viscosity, k,  is the 
eddy diffusion coefficient; S ,  is the concentration of solute or any conservative and passive 
tracer; (~,, t/., ~.) are the Lagrangian displacements in the (x., y . ,  z,) directions of a water 
parcel at time t. ,  of which the initial condition is (~., t/., ~.) = 0 when t ,  = t.o, and thus 
the position of the marked water parcel can be exp~C'~L~[ as (x,, y. ,  z.) = (X,o, Y.o, Z.o) 
+ (~., t/., ~.); L and hc denote the horizontal and vertical scales, respectively; r ~ is the 
time scale; the quantities with the subscript "c" indicate the characteristic values of 
corresponding dimensional quantities, the meaning of N with n will be explained later in 
the section "Discussion on the Lagrangian Residual Circulation" (see Fig. 1), and n will be 
given in the operator (27); and then, N is assumed to be the order of 1 here, namely 

~(N) = 1. (13) 

In fact, the nonlinear three-dimensional dynamic problem, (1)--(9), is a further extension of 
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the nonlinear two-dimensional dynamic problem proposed by Feng et al. (1984a, 1984b). It 
should be pointed out with emphasis that the extension of the two-dimensional dynamics 
for the Lagrangian residual current to the three-dimensional one is of much importance 
from both theoretical and practical points of view. 

As might be expected, the nondimensional parameter x is small for most coastal seas 
(Tee, 1976; Elliott and Hendrix, 1976; weisberg, 1976; Heaps, 1978; Unles et al. 1980, 
Sun et al., 1981; Cheng and Gartner, 1984). For example, for Bohai Sea, ~(tc) = 10-l(Zc 
,,~ 2m, he "-~ 20m). Thus, we shall reasonably suppose 

~(~;) < 1. (14) 

In view of the nondimensional parameter K being a measure of the nonlinearity of the 
dynamic problem (1)--(9), the condition (14) implies that the dynamic system is weakly 
nonlinear, so a weakly nonlinear theory on the Lagrangian residual circulation will be 
treated in the present paper. Here, of course, the nonlinearity due to the turbulent viscocity 
has been excluded, with a hypothesis of the linearized form of the eddy viscosity- 
coefficient, or v = v(x, y, z; t). 

The parameter e is a measure of the relative importance for eddy diffusion. If to is 
taken to be 1.5 x 10 -4 (sec-1) (Corresponding to the circular frequency of M2), hc is 20m, 
and kc is taken to be 10(cm2/sec) (K.B. Bowden, 1965), then the nondimensional parameter 

is the order of 10-2; thus e will be assumed to be a parameter smaller than x, or 

~(e) = K 2. (15) 

The equality (15) implies that the transport mechanism of solutes in the interior of a 
tidal system is strongly convection dominated and the diffusion effectsare relatively small 
(Leendertse, 1970; Leendertse and Gritton, 1971; Fishcher et al., 1979). 

Noting the scale of tidal excursion, ~c = tcNL, and the conditions (13) and (14), the 
velocity of a marked water parcel can be expanded in Taylor series expansions about x o, or 

02g 
+ 2(N ) + + 

where the notation ( )o indicates that the term is evaluated at X o. 
Of course, the displacement of the marked water parcel can be expressed as 

(16) 
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fo 
N~ = -gCo + ,~N(, o'),~o', (i7) 

% 

where 0o = tom. 
As pointed out by Feng (1977) and by Feng et al. (1984a), using a perturbation 

technique, all of the dependent variables can be expanded in ascending series of the small 
parameter, x, as follows 

~= ~ d % ;  (18) 
j =  ~... 

where % are the j-th order perturbation solutions of ~ and ~ = (u, E, ~', S). 
A substitution of (18) into (1)--(9) with (16) and (17) yields the j-th order model, 

where the tedious and complicated expressions and equations derived from the equations 
(1)--(3) and the conditions (6)--(9) can be found in the previous paper (Feng, 1977). Here 
we shall show the additional ex[~ressions for the streakline and the convection-diffusion 
equations only. The former is 

fo 
N$j = gj(Xo + ,~N~'~, o')ao', (19) 

0 o 

where 

. . . .  Jk i. 
u j(Xo + xN~s,O)= u j(xo, O) + ,.-o N$i-  1-m'(V~m)~ "11- 

+ 2 i, -7 Uo + 2 

j - 3  

+ ~ o  ...... (20) 

and the latter 
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where 
~ F./K 2. 

The subscripts indicate the order of the perturbation solution; when the subscript is 
less than zero, the variable is defined to be zero. Noting (15), there is ~9.(~)= 1. 

If the higher order tides coming from the external ocean have been excluded, the 
zeroth order model represents the astronomical tides and the higher order models represent 
the higher order constituents which are generated from the nonlinear coupling between the 
astronomical tides and their associated higher order constituents. It is noticed that the 
Eulerian residual current is embedded within these higher order models. 

The linearity of the j-th order model implies that the solutions for each tidal 
constituent of the j-th order model can be solved independently in terms of the related 
lower order tidal constituents. In fact, the dynamic problem of any tidal constituent that we 
are interested in can be reduced to a boundary-value problem of the elliptic differential 
equation for tidal elevation and an expression for the vertical distribution of tidal current, 
particularly, of Eulerian residual current, the details of which can be found in the previous 
papers (Feng, 1977; Sun et al., 1981; Feng and Sun, 1983; Feng, 1984; Sung, 1986a, 1986b). 
In the present paper, we suppose that the problems of tidal elevation and tidal currents, 
particularly that of Eularian residual current, have been solved, and the Lagrangian 
displacements of the labelled water parcels and the concentration of solutes are obtained 
respectively using the equations (19)--(21). Thus the basis has been laid for the solution to 
solve the Lagrangian residual current and the longer-term mass-transport. 

LAGRANGIAN RESIDUAL CURRENT 

For clarity, a nonlinear M 2 tidal system is used (instead of a complicated tidal system 
including several astronomical tides and associated shallow water constituents) to examine 
the Lagrangian residual current. As well known, the first order constituents of the M 2 tidal 
system contain the M4 tide and the first order Eulerian residual current, and the second 
order constituents of the M 2 system include the M 6 tide and the others with frequencies 
being equal to the frequency of the M 2 tide. The harmonics of the order of O.(~cJ)(] " 
= 3, 4, ...) are not considered. It is natural to select the circular frequency of M2 as the 
characteristic circular frequency, and thus the nondimensional circular frequency and the 
period of M 2 are 1 and 2n respectively. The j - th order perturbation solutions have been 
supposed to be solved as mentioned above and are written as follows. 

The zeroth order model, or M 2 tide: 

~ ~' u'2 sinO, u o = u ocos0 + (22) 
go = g'ocos0 + g"sin0; 

the first order model, or M4 + first order Eulerian residual: 

u~ = u', cos(20) + u ,  sin(20) -4- tt erA, 

Z 1 = g'cos(20)+ g"sin(20) + ge,.1; 
(23) 
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the second order model, o r  M 6 + the other harmonics 

3 

u2 = u 2cos(30) + u 2sin(30) -4- (u 2.icos0 + u 2.1s,n0), _-% i 
3 

Z 2 = Z~cos(30) + Z~sin(30) + ~1 (Z2"ie~ + Z~'isinO); 
i = . 

(24) 

where the superscripts ..... and ...... indicate the harmonic coefficients and the summation 
3 

i~,_ contains the Other constituents of the second order model. Substituting (22)--(24) into 

(18), the solutions are obtained to correct to the second order, or ~(K 2) approximation: 

2 
-  xju u = # + ~(K3), (25) 

l = 

2 

Z = j-~-'b xjZ~ + ~(s:3); (26) 

where u j  and Z i are expressed by (22)--(24). 
Introduce a time-averaging operator of a variable ~ over one or more tidal periods, 

namely n tidal cycles, as 

1 ['~ + 2~tn 
<~> = ~ j 0  ~ 'UdO', (27) 

where n = 1, 2, ... which means that n is introduced into (11). 
By putting the time-averaging operator (27) on the Lagrangian velocity, u(X(Xo, 0), 0), 

the result is called the Lagrangian residual current, u , , = < u ( x ( x o ,  0),0)>. The 
Lagrangian residual current is different from the Eulerian residual current Ue, in that the 
time-averaging is to be evaluated by following the water parcel. This averaging procedure 
leads naturally to an equivalent definition of the Lagrangian residual current as 

0 o + 2 z n  

- 1 f u(x(xo, 0'), O')dO' u l, - 2nn  

0 o 

= 1 N-~(Oo + 2rcn); 
2~n 

(28) 

where the equation (4) is used to derive (28). 
The Lagrangian residual current is also expressed as the net Lagrangian displacement 

over n tidal cycles (N~--~(n = 1, 2, ...) divided by the n tidal periods (2nn), as shown in 
(28). 

Differing from the Eulerian residual current which is a function of the spatial 
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coordinate, say xo, only, the Lagrangian residual current is the function of not only spacial 
coordinate x,, but also the temporal coordinate of tidal phase 0o when the marked water 
parcel is relea.,~d (Feng et al., 1984a; Cheng and Casulli, 1983; Zimmerman, 1979). In fact, 
/he Lagrangian residual current should depend also on the number of tidal cycles, n. This 
matter needs further examination and discussion in the next section. 

A substitution of (19)--(20) and (22)-(25) into (28) yields the Lagrangian residual 
velocity induced by the M2-tidal system to be correct to the second order harmonics, ~(tc2}, 
as tbllows 

all, = I~(Uer "~- ~sd) "~ K2 ~ld "~- ~(/~3). (29) 

Of course, the Lagrangian residual velocity should be properly normalized by U,c 
= ~uc, and with this correct scaling, the Lagrangian residual current becomes 

u , ,  = Ue, + U~a + gU ,a + ~(K 2), (30) 

where the Eulerian residual velocity u~, is generated by the nonlinear coupling of M2 with 
M 2 and is correct to the order of ~(s: 2) since the next order of nonzero Eulerian residual is 
on the order of ~(K3). The Stokes' drift velocity u~a is given as 

= < (31) 

and the Lagrangian (residual) drift velocity u ta is expressed as 

U Id ~--- U ldCOSOo "4- 1~ tdSmOo, (32) 

u ':, =Uo-". V(h'e.  + --  f i e .  + o. 

- + + 

The first order Lagrangian residual velocity expressed as the sum of the Eulerian 
residual and Stokes' drift velocities, Uer + U~a, refers to the mass transport velocity, which 
was first introduced by Longuet-_Higgins (1969) and called Stokes' formula. The 
Lagrangian (residual) drift velocity, u la, was first revealed and named in two-dimensional 
space, or in the problem of a vertically integrated model (Feng et al., 1984a). In the present 
paper, a generalization of the Lagrangian (residual) drift velocity from the two-dimensional 
to the three-dimensional problem has been made and expressed in the formula (30) with 
(32). It is important to note that the Lagrangian (residual) drift velocity shows really the 
distinct Lagrangian property because it is the function of 0 o, the tidal phase when the 
marked water parcel is released from a fixed point, xo. In the previous two.dimensional 
problem of a vertically integrated model, the two-dimensional Lagrangian (residual). drift 
velocity traces out an ellipse on a hodograph plane as the initial phase angle 0 o varies from o 
to 2n; or, when the marked water parcels are released from a fixed point x o continuously 
over a tidal period, the terminus of the marked water parcels after a tidal cycle form an 
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ellipse in space (Fent et al., 1984a). The Lagrangian residual velocity derived in three- 
dimensional space (30), or the Lagrangian (residual) drift velocity (32), has a similar 
behavior. The two horizontal components of Lagrangian residual velocity can be expressed 
as follows 

Ulr ~ Uer "3 I- l~sd -4- K1Xed , (33) 

Utr = Uer + Usa 4- K~)ed; (34) 

where Uer, V~, and usa, Vsa and Ula, via are the horizontal components of the Eulerian residual 
velocity, Stokes' drift velocity, and the Lagrangian (residual) drift velocity, respectively, 
and 

.~.  = <~V~'o-(V~o)o>, (35) 

Vsd = < N ~ o ' ( V v o ) o ) ;  (36) 

uta = ujacosOo + ui'dsinOo, (37) 

vu  = ~acosOo + v~'dsinOo, (38) 

where 

Uldt = U--tt'o V (uer  -Jr- Usd) - -  (/'~ er -t- Usd)  " VUO,t' 

.,~ ~';. V(ue. + u~,) + (~'~. + "~a)" Vuo. 

v,, = Uo" V(ve, + vs~) -  ( ; e ,  + "s,)" VVo. 

t r  ~ t  ~ ! 

u,a = - U o V(v~, + vsa) + ( ~ ,  + usa)" Vvo. 

The expressions (37) and (38) say that the horizontal components of Lagrangian 
(residual) drift velocity, Uea and Vea, trace out an ellipse on a hodograph plane as the tidal 
(current) phase 0o when the marked water parcels are released from the point Xo 
conhnuously varies from O to 21t. The properties of the Lagrangian residual ellipse can be 
given explicitly. The semi-major ( + sign) and semiminor ( -  sign) axes are indicated as a 
and b in the expression 

bt  = ~ . 2  ,2 ,,2 . 2  ,2 ,,2~2 

- 4(u'uv'[a --  u'[av'u) 2] ,/2} 1/2; (39) 
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wherc the angle between the major axis of the residual ellipse and the x-axis is denoted by 6, 
and 

1 - ' [ 2  u'ta v"a + u~'a v}'d 1 = ~ t ,  (u',~ + u',~ ~) - (v':~ + v;~ ~) ; (40) 

and the phase angle 0,.,= which gives the Lagrangian (residual) drift velocity a maximum 
magnitude is 

1 _ [  u'~d u'/a + v'~, v'~'d l 
0.,.,, = ~ t o ' 2 (u,2 - T 2 ~  -r~ - - u , ,  j + (v:, - v','~ 2) (41) 

The Lagrangian residual ellipse in the three-dimensional model differs from that in 
the horizontally two-dimensional model because the former is the function of not only the 
horizontal coordinates (Xo, yo) but also the vertical coordinate (Zo), and thus is a three- 
dimensional structure. 

In addition to the horizontal components of the Lagrangian residual current, the 
vertical component of the Lagrangian residual current wt, is given, or 

(.Oir = Wet. + Wsd + K W e d ;  (42)  

where we,, w~ and wea are the vertical components of the Eulerian residual, Stokes' drift, 
and Lagrangian (residual) drift velocities, respectively, and 

w~ = <N~o.(Vwo)>, (43) 

! It ~. Wla = WtdCOSOo -4- Wld~lnO o, (44 )  

where 

= ~'~- V(w~, w; + ~ , , )  (~'~, + ~ ' ~ ) .  Vw:, 

w , ,  - ,o .V(w, ,  + .w~) + (,,~, + u,) .Vw'o,  

Finally, the Lagrangian residual velocity (to be correct to the order of ft.(K2)) can be 
summed up in words to read 

/Lagrangian~ ~EulerianN~ ~/Stekes '~ | /  Lagrangian 

Residual ] = ~ R e s i d u a l ]  + _Drift ] +K ~Drift  
Velocity / I  \ Velocity / ',,Velocity/ \Velocity 

In 3-D (Longuet-Higgins, 1969) 
In 2-D (Feng et al., 1984a) 
In 3-D (The present paper) 

(46)  
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; ' J -  - 

(F ig .  1) N = 1 + (n  - 1):r x = u,c/u  ~ 

DISCUSSION ON THE 
LAGRANGIAN RESIDUAL CIRCULATION 

The ~nce~?t of Lagrangian residual current was first introduced into the large scale 
currents and waves in the ocean from the theory of surface waves by Longuet-Higgins 
(1969), who showed that the mass transport velocity equals the sum of the Eulerian residual 
velocity and Stokes' drift velocity (the Stokes' formula). The term "Lagrangian residual 
current" was used by Tee (1976) in his numerical model for tidal and residual circulation 
based on the Stokes' formula. The Lagrangian residual current has been defined as the 
mean velocity of a marked water parcel, or as the net displacement of a marked water parcel 
divided by the averaging period over one or more tidal cycles as pointed out by 
Zimmerman (1979) and Cheng et al. (1982). The tide-induced Lagrangian residual current 
is expected to be a function of the tidal phase when the marked water parcel is released 
since the net displacement of a marked water parcel is evidently expected to be a function 
of the flow field in the neighborhood where the marked water parcel is released, which has 
been illustrated by Cheng (1983) and by Yu and Chert (!983) in their numerical models for 
tidal and residual currents respectively. Specifically, a quantitative relation between the 
tide-induced Lagrangian residual current and the tidal phase is further derived based upon 
a weakly nonlinear tidal and residual current theory (Feng et al., 1984a and the formula 
(30) in the present paper). In accordance with the definition of Lagrangian residual current 
expressed by the formula (28), however, the Lagrangian residual current should be pointed 
out to be usually also dependent on the number of averaging tidal cycles, n. An attempt will 
be made to discuss it below. 

A sketch (Fig. 1) shows the relations between n and N and the scales of tidal excursion, 
~c, and net Lagrangian displacement, ~,c, over n tidal cycles (n = 1, 2, ...). If we select a 
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typical value of X to be 0.1, the corresponding values of n, N and several ratios of scales for 

lengths are exhibited in the following table. 

Averaging Period 
of Time 

N =  1 + ( n -  1)to 

r t  

N 

- ~ =  ~N 

~rc 
~ - N  ~: 

- s  K2/7,  

Day 

I ,  

0.1 

0.1 

0.01 

Week 

10 

1.9 

5.3 

0.19 

0.53 

0.10 

Month 

30 

3.9 

7.7 

0.39 

0.77 

0.30 

Season 

100 

10.9 

9.2 

1.09 

0.92 

Year 

300 

30.9 

9.7 

3.09 

0.97 

3 

It is naturally shown that the net Lagrangian displacements of a marked water parcel 
for a month or a season can be greater than one that over a tidal cycle in the order of 
magnitude, and thus the Lagrangian residual drift which traces out an ellipse over a tidal 
cycle plays a more considerable role in the dispersion, for example, of pollutants, for the 
former than for the latter though the Lagrangian (residual) drift velocities are in the same 
order of magnitude in both cases. However, we should point out that, if the assumption that 
~(N) = 1 is valid in the cases of such averaging period of time as a day, a week or a month, 
but is not valid for longer periods then the theory on the Lagrangian residual current 
proposed in the present paper seems to be false and the averaging period of time in the 
problem on the Lagrangian residual current should be extended to about a season or a year. 
Unfortunately, in reality, there is of course always some residual motion, which adds up 
cycle after cycle and produces water parcel displacements over such longer terms as a 
season or a year that are much larger than the diameter of the tidal ellipse. It is worth while 
to use the following approach to solve these problems on the longer-term processes just 
mentioned. In fact, 
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0 o + 2~n 

u,, = ~,(-;o, Oo; n)- 2,~nl I ~(~(;o, o'), O')dO' 

1 " 1 ~176 + 

= ~_-Z12~ J 
Oo + (j-112n 

u(-;(x~ o'), o')do' 

1 ~1 u t,(x ~-1, Oo + (j  1)21r; 1); (46) 

where 

[ x~ + tc22nl--~ u~,(x~_l, O o + ( i - l ) 2 n ;  1), ( j = 2 ,  3, ...) 

x j - i  = '~-o. ( j =  1) 

It is worthy of note that we come to the conclusion that the Lagrangian residual 
velocity generated by averaging the marked water parcel over such long period of time as a 
season or a year, ut,(Xo, 0o; n), where n >> 1 and ~ ( N ) >  1, can be constructed as an 
arithmetic mean of the Lagrangian residual velocities, u,,(x~_,,0o + (1"- 1)2mr; 1)(]" 
= 1,  2 ,  . . .  n) .  

LAGRANGIAN RESIDUAL VELOCITY 

AS AN EULERIAN FIELD VARIABLE 

The Lagrangian residual velocity derived above, and expressed by formula (30), has 
really shown the distinct Lagrangian property because it is the function of 0o, the tidal 
phase when the marked water parcel is released from a fixed point, Xo. Noting that Xo and 
0o are to be selected arbitrarily, the Lagrangian residual velocity could be reasonably 
described as an Eulerian Field variable and the aggregate of such local velocities may be 
specified as an Eulerian field of flow. Using (x, 0) instead of (xo, 0o) in the flow field of 
Lagrangian residual circulation, the Lagrangian residual velocity is described as the 
function of position in space (x-) and time (0), 

u,, = u,,(x-') + u ~ ( ~  + ~u,,(~', 0) (47) 
where 

-- = --' u td(x--')sm0; u,~ u,~(x-')cos0 + - -  " (48) 

particularly, the horizontal components of Lagrangian residual velocity can be expressed as 

u,, = ue,.(x~ + u~(x-') + tcut,~(x,O), (49) 
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v,. = v.r(x-') + v~,(x-') + ,~v,.(-~, 0). (50) 

where 

u,~ = ~, . (x  )cos0 + u,.( x )sin0, (51) 

v,~ = v, .(x )cos0 + v, .(x )sin0. (52) 

It should be pointed out that the Lagrangian residual velocity of Eulerian type can be 
really constructed as an incompressible flow field because it satisfies the continuity 
equation for the incompressible flow. In fact, (i) a direct substitution of the notation for the 
time-averaging operator (27) to the continuity equation (1) yields V" ue, = 0; (ii) noting 
that V" Uo = 0 and introducing (19) ~j = 0) and the first expression of (22) into the formula 
(31), we obtain V" u ~ = 0 in terms of taking the divergence of the Stokes' drift velocity; 
(iii) by taking the divergence of (32) and using V ' u  ~, = V ' u , z  = 0 just derived, then 
V" u~a = 0 is shown; and thus it is demonstrated that V" u~, = V" u ~  = V" u ~d = 0 or 

V" u l, = 0. (53) 

By applying the time-averaging operator (27) on the Lagrangian residual velocity 
expressed by the formula (47), the mass-transport velocity, u tM, is derived to be as 

u tM = < u , , > ;  (54)  

where 

u,. ,  = u . . f f )  + u ~ f f ) .  

This reveals that it is the mass-transport velocity which is the Eulerian mean of the 
Lagrangian residual velocity over one or a few tidal cycles and the mass-transport velocity is 
correct to the second order of approximation rather than to the first order. Thus (47) can be 
rewritten as 

~, .  = u , . , f f )  + ~u ,~ (x ,  0); (55) 

where 

~,~,(x-3 = <u,.(~'. 0)> = u . . C )  + u~,(~'). 

u ,~ = u ,,( x )cosO + ~';:,(x )slnO. (56) 

The formula (55) shows that the Lagrangian residual velocity is similar to the tidal 
current velocity as a sum of the tidally periodic fluctuation part and the tidal cycle average, 
but the tidally periodic part, Utd, is smaller than the tidal cycle mean, UiM, in the order of 
magnitude for the Lagrangian residual current. As well known, however, the tidally 
periodic part of the tidal current is typically greater than the residual part in the order of 
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magnitude. It should be emphasized that the Lagrangian residual velocity field is diflhrent 
from the Eulerian residual velocity field which is a steady field because the Lagrangian 
residual velocity field is a time-dependent field as mentioned above. 

In particular, the horizontal components of Lagrangian residual velocity become 

~,, = u,M(~') + ~ ,d(~' .  0). (57) 

v,,. = v ,~ , (x )  + ,~v,,,{~. 0); t58) 

where 

u,M(x) = <u,,(x, 0)> = ~,~(~') + u~(~'), (59) 

v,M(x) = <v,,(x, 0)> = ve,.(x) + v,,,(x). (60) 

By integrating the equations (57), (58) the horizontal mass-transports are easily 
obtained, or 

where 

u,, = u~,(x, y) + u,~(x, y) + K u,~(x, y, 0), 

v,r = v~,(x, y) + v,~(x, y) § K v,~(x, y, 0); 

(1.1,,., v , , )=  
o 

~ (u,,, v,,),tz, 

o 

(ue,, ve,) = _f (u,,, Ve,.)az, 

(U,d, Ed)= 

o 

~ (u~, v~)az. 

0 o 

2. 

and their tidal cycle averages are 

<u,,> = ue,(x, y) + u,,,(x,.y), 

(61) 

(62) 

(63) 



No. 2 Three-dimensional nonlinear dynamics 155 

<v,.> = ve.(x,y)  + (64) 

LONGER-TERM TRANSPORT EQUATION 

A tidally averaged convection-diffusion equation for the concentration of any passive 
solute is also called a longer-term transport equation and it can be derived from the 
equation (21). The zeroth-order, the first-order and the second-order equations are 
respectively obtained as follows 

O& = o, (65) 
00 

0S, 
00 + ~o'VSo = O, (66) 

o& 
oo +  o.VS, + u,.VSo-   o {koso'  (67) 

The equation (65) indicates that the tidal cycle average of the concentration S can be 
approximately evaluated by So, and thus it is enough to derive the convection-diffusion 
equation which is satisfied by So instead of the tidally averaged concentration <S). 

Substituting the equation (66) into the equation (67) and noting the equation (65), a 
tidal cycle average of the equation (67) yields the longer-term transport equation 

(68) 

where u m  is expressed by (56), 
The equation derived here, (68), is different from the classical longer-term transport 

equation (Fischer et al., 1979). On the one hand, in the latter, the convection has been 
unreasonably represented by the Eulerian residual velocity, but in the equation (68) the 
convection is reasonably expressed by the Eulerian mean of the Lagrangian residual 
velocity, namely, by the mass-transport velocity. On the other hand, an assumption on the 
so called "tidal dispersion" has to be introduced into the classical longer-term transport 
equation (Fischer et al., 1979), the equation (68), however, may describe correctly the 
Lagrangian nature of longer-term transport processes without introducing the Fickian 
hypothesis for tidal dispersion. 

A longer-term transport equation satisfied by the depth-averaged quantity of tidal lfO 
= So dz, can be cycle mean of the concentration, or by ~o approximately, where So h -h 

derived, by integrating the equation (68) over the depth and using the continuity equations 
and the boundary conditions (6)--(9), to be as 
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1 (Shear Effect): 
+ I')M - hPe 

(69) 

where 

U,M= U,,+ Us , V,M= Ve,+ 

ucL Pe- , the Peclet n u m b e r ,  

~c is the scale of the dispersion coefficient due to the shear effect (Bowden, 1965). 
Noting (xPe)- ~ to be a smaller order quantity (Bowden, 1965; Feng et al., 1984b) and 

further neglecting this telm, the equation (69) is reduced to the form of 

u,M + = 0. (70) 

The equation (70) has been validly derived if the condition on a horizontally two- 
dimensional problem of tides has been satisfied as pointed out in the previous paper (Feng 
et al., 1974b). Of course, the equation (70) derived here in a three-dimensional space 
behaves as the depth average of a three-dimensional flow field. It should be pointed out 
that, however, this equation is valid for "the interior" of a basin because the diffusion or 
dispersion becoiires important in a "boundary region" (Feng et al., 1974b). 

CONCLUSION 

In view of the three-dimensional behaviour in space of the Lagrangian motion of a 
water parcel, and based on the fact that ~.(x) < 1, a three-dimensional weakly-nonlinear 
theory on tide-induced Lagrangian residual circulation and longer-term transport processes 
in tidal estuaries and coastal seas is formed. Differing from the Eulerian residual 
circulation, which is steady-state, the Lagrangian residual circulation might be expressed as 
a sum of the tidally periodic fluctuation part and the tidal cycle mean part, which is similar 
to a tidal circulation. This does not surprise us since the net Lagrangian displacement of a 
marked water parcel in a tidal current field depends not only on the position where the 
marked water parcel is released but also on the tidal plll~tLt'~hen the marked water parcel is 
released. The mass-transport velocity is the Eulerian mean of the Lagrangian residual 
velocity and is correct to the second order, ~.(x2), rather than to the first order, ~x) .  And 
further, a formula of the Lagrangian residual current is proposed for such long-term 
processes as a season or a year, or n >> 1 and ~(N) > 1. And finally, differing from the 
classical equation, a new, longer-term transport equation for any conservative and passive 
tracer is derived. This equation is briefly characterized by the Lagrangian convection 
without introducing the so-called "tidal dispersion". The convection velocity is but the 
Eulerian mean of the Lagrangian residual velocity, or the mass-transport velocity. 
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