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COVARIANT APPROACH TO THE INTERACTION 
OF A WEAK DISCONTINUITY WITH A SHOCK WAVE 

ALBERTO STRUMIA 

An explicit covariant approach to the problem of evaluating the reflection and 
transmission coefficients of the fastest discontinuity wave impacting on a shock 
wave is carried out and applications to the general and polytropic relativistic fluid 
are performed. 

1. Introduction. 

The problem of the interaction of a discontinuity wave with a shock 
wave has already been dealt with in literature, from the stand point of quasi- 
linear wave propagation theory [1],  [2] and applications have been made 
to the electrodynamics of non linear ferromagnetic materials [3],  dielectrics [41 
and non relativistic fluid dynamics [5].  Even if the theory developed in [2] 
is compatible with relativity it does not possess an explicitely covariant form. 
It is the purpouse of the present note to provide a completely covariant for- 
mulation for the problem of the evaluation of the reflection and transmission 
coefficients of the fastest weak discontinuity impacting on a shock wave. 
Applications will be made to relativistic fluid dynamics. 

2. Remarks on discontinuities and shocks in covariant theory. 

Let V 4 be a C ~' 4-dimensional manifold of R 4 and x a point of V 4, x ~ (0~= 
= 0 , 1 , 2 , 3 )  being local coordinates of x. V 4 is supposed to be endowed with 
a pseudo-Riemannian metric, which respect to the coordinates : is described 
by the components g~ of the' metric tensor g. The signature is ( + ,  , , ). 
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On V 4 we consider a quasi-linear hyperbolic system of N first order dif- 
ferential equations for the unknown N-vector U = U(xD belonging to Rn: 

(2.1) AsU,  = f. 

A s = A ~ (U) are N X N matrices and f ~- f (U) is an N-dimensional vector. 
The components of U, f and the elements of A s are supposed to be contra- 
variant tensor components and U~ = V ,  U is a vector formed by the covariant 
derivatives of the components of U. We remember the following definitions 
(see e.g. [6], [7]): 

a) hyperbolic system: a system (2.1) is called hyperbolic if and only if 
a time-like covector {~s}, independent of the field U, exists such that: 

(2.2) det (A ~ ~s) ~ 0 

and for any space-like covector {~},  independent of the field, the eigenvalue 
problem: 

(2.3) A ~ ( ~ - -  ~ , ~ ) d  = 0 

has only real eigenvalues )~ = ~, (U) and N independent eigenvectors d = d (U). 
{G} is named subcharacteristic vector and { ~ -  ~,~} characteristic vector. 

b) Conservative form: a hyperbolic system is said to be conservative if 
and only if: 

(2.4) A ~ =  VF  =, (F ~ = F  =(U), V = 3 / O U )  

i.e. (2.1) is equivalent to the generalized conservative law: 

(2.5) V~ 1 ~ ---- f. 

~7~ denoting the covariant derivative operator. 

c) Discontinuity waves (weak. discontinuities): let: 

(2.6) ~ (x ~) = 0 

the Cartesian equation of a time or light-like sheet X of V 4. We say that a 
discontinuity wave exists if the first order directional derivative of the field U 
along the normal q0~ = 3 ~  is discontinuous across ~, while the field is 
continuous. 
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It is known from wave propagation theory [8] that discontinuity waves 
take place, compatibly with (2.1) if: 

(2.7) %Affill = 0. 

II being the jump of the directional derivative of U across X. This means 
that {%} must be a characteristic vector and II is proportional to the right 

eigenvector d (*). 

Here we point out a remarkable circumstance. If a subcharacteristic vector 
{~} is assumed to define the time direction, so that the scalar variable: 

(2.8) T = ~ x ~. 

represents the time, and we define the time component of {%} along {~}  as: 

( 2 .9 )  - k = g~ ~ ~ ; 

and call its normal component: 

(2.10) ~ = ~ + ), ~ ,  

( r  g~ = 8~) 

: ~ ;~ = 0 

then (2.7) assumes the form (2.3). Moreover if the system (2.1) is conservative 
and we choose as field variable the time component of F ~ [7]: 

(2.11) U = 1 ~ =  

as it is always possible if the system is hyperbolic, thanks to (2.2), it follows 

from (2.4), (2.11): 

(2.12) A ~ ~ = L I = Identity matrix 

and (2.7) becomes: 

(2.13) ( A ~  -- )~I)H -- 0 

with complete formal analogy with the non covariant discontinuity theory; 

X represents the normal speed of the wave evolving respect to the time T and 

is an invariant scalar (characteristic speed). 

(*) For the sake of simplicity we shall not care of the multiplicity of the eigenvalues )~. 
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d) Shock waves (strong discontinuities): let (2.5) a conservative system 

and F a manifold of V ~ of time or light type, of Cartesian equation: 

(2.14) <I) (x ~) = 0. 

We say that F is a shock manifold if the field U itself jumps across 1'. We 

shall call U ,  the field evaluated in the region unperturbed by the shock 

and U the field in the perturbed region and denote with: 

[ w ]  = w - w . ,  w = w ( U ) ,  w .  = w ( I T . )  

the jump of any function w = w(U). It is known from the shock theory 

[8], [9] that, if U, U,  are solutions to (2.5), then the Rankine-Hugoniot 

matchin~ conditions hold: 

(2.15) ~ [1 ~] = 0, (~,~ = a~ ~,). 

It will be useful in the following to introduce the time component of { ~ } :  

(2.16) -- ~ = g~ ~ 

and the space-like normal vector: 

(2.17) -q~ = ~ + o'~, g~ ~ = 0. 

By employing the field choice (2.11), conditions (2.15) become: 

(2.18) - o" [U] + [1 m'] a], = 0 

with formal analogy with the non covariant theory; o" is a scalar representing 

the shock speed related to the time T. 

To conclude the section we show that the evolutive Lax conditions [10] 
for the shock, in covariant form, are: 

~c,~) < ~kc2) < �9 < kck) < ~ < kck+~) < < kern 

(2.19) 1 _ k _< N 
)~cl) < ~c2) < . . .  < ~:k-l) < s < ~ck) < . . .  < ~,cu) 

the N eigenvalues being opportunely labelled and ordered. 
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In fact since X (j), ~(i,), (r are scalar invariants, the inequalities (2.19) 
will hold if and only if they are fulfilled in some special frame. But if we 
choose the local frame in which: 

(2.20) {F,~} = ( g " ~ , ~ ) u  { 1 ,0 ,0 ,0 }  

the conditions (2.19) become the usual Lax conditions in non covariant form, 
that one supposes to be satisfied. 

We observe that it is not a restriction to put: 

(2.21) g~ ~ ~B = 1. 

Therefore we shall assume (2.21) in the following. 

3. The reflection and transmission problem. 

We suppose to have a conservative system (2.5) and to consider a shock 
wave governed by the Rankine-Hugoniot equations (2.15), that through the 
assumptions (2.11), (2.16), (2.17) will reduce to (2.18). Moreover we consider 
the discontinuity waves characterized by the eigenvalue problem: 

(3.1) (A = ~= -- ~fl) I) d ~ = O, i = 1,2 . . . . .  N 

and assume that all the wave fronts (discontinuities and shocks) have in the 
point of impact P, the same normal { ~ }  in the space platform of eq. (2.8), i.e. 

(3 .2 )  L = ~ .  

It follows that the problem may be studied in the 2-dimensional sub-space-time 
generated by the congruences {~}  and {~}  respect to the curvilinear coor- 
dinates T and X, where: 

(3.3) X --- --E~x ~. 

We call: 

(3.4) F = 1 ~ L ,  A = A ~ L .  

Then the Rankine-Hugoniot equations look like: 

(3.5) , (U - U,)  -- (F - F . )  = 0. 
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The way to derive the reflection and transmission coefficients is now the 
same as in ref. [2] for non covariant theory. 

We differentiate (3.5) respect to the proper time of the shock line in 
the 2-dimensional sub-space-time, obtaining two limits, at the right and at the 
left of the impact point P (see fig. 1 in ref. [2]): 

(3.6) 

where: 

lira 
A,B..-~P+ 

{~r+ (U~ -- U~) -- (A -- * I ) d U A /  dX  + 

+ ( A .  -- o'I) d U ~ / d x }  = 0 

lira 
C, D--*.P_ 

{o'_(Uo-- U~) -- (A --  c r I ) d U o / d x  + 

+ (A. -- o'I) d U * / d x }  = 0 

d / d x - - " - - A ' V , .  

{A'} being the ray velocity [8] of the shock, which enjoyes the properties: 

(3.7) A" q)~ = 0, 

(3.8) g~ A" A ~ = 1. 

We observe that from (2.17), (3.1), (3.7), (3.8) and employing the non restrictive 

normalization conditions (2.21) and: 

(3.9) 

one finds easily: 

(3.10) 

and consequently: 

(3.11) 

where: 

(3.12) 

~ [ , r  = -  1 

A" = ~, ~ ( ~  - -  ~ ~ ) ,  y = (1 - or2) - ~  

d / d x  = T(ar  + uax) 
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Now taking account  that thanks to (3.1) it follows: 

r = O~, + { o" --  ),/"~ } ~,~, i = 1,2 . . . . .  N (3.13) 

and that [2] :  

k-1  
Up = UA + l I  oN) 9~N) + ~ II(;)~(J) + . . .  

1=1 

N 

= + X o,,> + 
r ,  ' ' '  

/ = k + l  

in which we have introduced the reflected amplitudes: 

(3.14) I I  <i) = 13 o) d ~ j = 1,2 . . . . .  k - 1 

the transmitted amplitudes: 

(3.15) ] I  (j) ~_ (J) (J) d , ,  j = k + l  . . . . .  N - - 1 ,  N 

and the incident  one: 

(3.16) 11 ~~ = I I d  oN) 

ct ci~ and ~('~ are respectively the transmission and reflection coefficients. Following 
the procedure  exposed in [2] one reaches the algebraic system for the reflection 

and transmission coefficients: 

k - I  

(3.17) cr [O] + 22 13(i){cr--k~176 - 

where: 

A' 
--  ~., } d ,  = - II { o" - X oN) }2 deN) 

j=k+l 

(3 .18)  o" = o'+ - -  o'_. 

The result is interesting since it exhibits the same form as the non 
covariant one shown in [2] ,  but  it has the advantage that the symbols represent 
here covariant  quantities. We must  point  out  the fact that  (3.17) becomes 
the usual non covariant  formula when  it is writ ten in a locally Minkowskian 
frame in which  (2.20), (2.21) hold. 
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4.  The  general relativistic fluid. 

In this section we evaluate the transmission and reflection coefficients 

of the fastest discontinuity (sonic wave) across the contact shock in a rela- 

tivistic fluid. The equations of relativistic fluid dynamics possess the conser- 

vative form (2.5) with: 

T~ 
(4.1) F ~ ~- , f3 = 0, 1 ,2 ,3;  f ~- 0 

where the energy-momentum tensor has components: 

(4.2) T "~ = r ] u" u ~ -- p g~ 

in which r is the matter density, ] the index of the fluid, {u s } the fluid 

unit 4-velocity, p the pressure and the speed of light is taken equal unity [2]. 

Then: 

(4.3) g~0 u~ u ~ = 1. 

Moreover it is useful to introduce the energy density 9 and take into account 
that: 

(4 .4)  r t = 9 + P. 

The field variable defined by (2.11) is: 

(4.5) U - -  

where: 

(4.6) 

r l v u  ~ - p ~  

r l J  

v = u ' ~ , ,  g~ = g ~ ' L .  

~3= 0 , 1 , 2 , 3  

(4.7) u~ = v ~ -- z ~ ,  z = u" ~ ,  u, = g,~ u a. 

For the sake of simplicity we make the assumption that the component of { u '} 

on the space platform has the direction of the normal to the wave fronts {~} .  

It follows: 
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On introducing: 

(4.8) u = z / v  

we have: 

(4.9) u~ = v ( ~  --  u ~s) 

and taking account  of (2.21), (3.9) and (4.3): 

(4.10) v = (1 --  u2) -~i 

discontinuities. 

It is known that two kinds of discontinuities take place in relativistic 
hydrodynamics [ 11 ] : 

a) contact wave: characterized by the polynomial:  

(4.11) u~q~ = 0 

which implies through (2.10), (2.21), (3.9), (4.9): 

(4.12) )~(~) = u. 

The discontinuity of the field U defined by (2.11) is proport ional  to the right 
eigenvector: 

(4.13) d (2) -~-- 

b) sonic waves: 

(4.14) 

where:  

(4.15) 

u ~ 

(a r/a 9)p 

characterized by the polynomial:  

(u s ~)~ + d ( g ~  - u s u ~) q~, q~ = 0 

, [3 = O, 1 ,2 ,3 ;  r = r(p,p).  

c, = V (0 p/O p)s, p = p (p, S) 

is the sound speed relative to the fluid, p being a funct ion of the energy 
density p and the specific entropy S. From (4.14) we find the eigenvalues: 

(4.16) ~,~1) = u --  cs ~,c3) -- u + cs 
1 - -  U C s  1 + uc, 
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The discontinuity of the field U is respectively proportional to the eigenvectors: 

(4.17) 

d (~) - v 4 (1 -- u c~) 2 

d (2) -= v 4 (1 + u Cs) 2 

I 1 

! { u~ + (u ~ - ;~) v c, 

1 

We observe that (4.16) represent the relativistic composition of the fluid speed 
and the sound speed as one would expect. The multiplicity of the waves is one. 

c) contact  shock .  

The contact shock is characterized by the polynomial: 

u ~ ~ = 0 

that implies: 

(4.18) cr = u, [p] = 0, [u] = 0 

and from (4.10) also: 

[ v ]  = O. 

The Lax conditions are fulfilled for k = 2 and the algebraic system (3.17) 

specializes as: 

(4.19) o" [ U ]  + [Y'~ {~r - kc'~}2dC~ - o~c3~ { o  " - k , } ~  2 d,~ = 

= - 1I { r - k c~ }2 d %  

From (4.5), (4.16), (4.17), (4.18) we gain the explicit form of (4.19) in terms 

of its components: 

(4.20) ,r [r t] v u~ + f~c,~ ~ ! { u ~ -  (u ~ - ~ )  v cs } - 

_ ~(3~ ~ ,  1, { u~ + (u ~ - ~ )  v % } = 

= -  r t ~ l  {u" + (u~" - ~) v c J ,  

(4.21) o" [r] v + ~(')~ -- ~~ c2s. = -- I I ~ .  
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Taking account of (4.4), (4.18) which impIy [rt] = [p] and contracting (4.20) 
with ~ and with ~ = ~ -  u ~  we reach: 

(4.22) ~r [p] VU "q'- ~(1) C~sl (U --  Cs) - -  (Z(3) C~s, ]* (U "]- Cs*) : - -  I ~ s s f ( U  "J- Cs), 

(4.23) 13,1, ~ i  + ~,3, ~ . t .  = n ~ / .  

The addition of (4.22), (4.23) yields: 

(4.24) ~r [p] v + 13,i, ~ !  _ ~,3, ~ ,  1, = _  n g t .  

Then multiplying (4.21) by [p] and (4.24) by - [ r ]  and taking the sum it 
results: 

(4.25) 13O)~r, -- ~t~ r = -  I I ~ r ,  . 

From the system of three scalar equations (4.21), (4.23), (4.25) we find even- 
tually: 

~ .  2 ~ !  
(4.26) ~ =-- II 

v (c~ r ] + c s .  r ,  1,) 

C. r f -- Cs* r ,  ] ,  
(4.27) 13 <1) = II 

cs r ] + cs, r ,  ! ,  

2 ~ r , !  
(4.28) a(s~ = II 

~ .  (c, r ! + c , .  r ,  ! , )  

which fulfil also (4.24), i.e. the whole system (4.19). 

As a comment to the previous results it is interesting to emphasize that 
being a Riemannian scalar, its jump is independent of the frame and is a 
geometrical property of the shock manifold (local discontinuity of the curvature). 

5. The relativistic polytropic fluid. 

The polytropic fluid is characterized by the constitutive equation [12]: 

(5.1) p = ( y - -  1)er 

y being constant and greater than unity and e the internal energy that is 
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related with p and r according to the relation: 

(5.2) p = r (1 + e). 

It follows from (5.1), (5.2) and the first principle of thermodynamics: 

YP 
(5.3) ~ = (a p/a  p)s = 

r/ 

On introducing those information into (4.26), (4.27), (4.28) the coefficient~ 
become simply: 

2 ~ 1' (cs --  cs.) 
(5.4) tr = II 

~ - ~  v c s .  [p] 

Us* ~ Cs 
(5.5) 13 cl) = rt 

Cs* -5 Cs 

2c'st 
(5.6) =(3) = II. 

. (c,.  + cs) / .  

It is remarkable that the results obtained for the polytropic fluid do not 
differ sensibly from the ones performed in ref. [5] for the non relativistic 
case, even if the non relativistic limit of our field U is not the same as the 
field employed in [5], owing to the rest energy term appearing in the energy 
conservation law. Another intersting problem could be the evaluation of the 
coefficients for the impact of the incident discontinuity on the contact and 
on Alfven shocks in relativistic magneto-hydrodynamics. In this latter case 
one may follow the same procedure as exposed here, taking care that the 
field U defined according to (2.11), in this case, has not independent components 
(see [13]). Applications to astrophysics appear possible. 

[q 
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