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T H E  G E O M E T R Y  O F  Z E R O S  O F  T R I N O M I A L  E Q U A T I O N S  

HARRIET FELL 

Ce travail est consacr6 ~ la premiere discussion complete du comportement des 

racines de l'6quation trinomiale 

z r + s + ( 1  - - c t )  z r -  1 = 0  (r, sEN) pour ~ variant - -  oo ~ +oo.  

The original intent of this work was to study the transition of the roots of 

the equation 0~z'+* + ( 1 -  00z ' -  1 = 0 as ~ varies between 0 and 1. This 

equation is a weighted sum of the two binomial equations, z r+s -- 1 = 0 and 

z r -  1 = 0  so that when ~ = 1  its roots are the r + s  th roots of unity and 

when ~ = 0 its roots are the r th roots of unity. The question arose as to what hap- 

pens in between, i.e. 0 < ,r < 1. Which of the r + s ~h roots of unity move over 

to r th roots and what kind of paths do they follow? What trajectories are taken by 

those roots that move out to infinity? 

While investigating this equation it was noticed that a large class of trinomials 

could, by means of a simple substitution, be put into his form and that the 

remaining trinomials could be put into the even simpler form: z ~+s + ~ + k = 0 

where k is a positive real. Therefore it seemed reasonable to broaden the scope of 

the paper to include the location of the roots of arbitrary trinomials. 

In the early 1900"s ,  trinomial equations were discussed in many papers and 

by a variety of authors. The techniques found and investigated by these authors 

where for the location of the roots of general polynomials and the trinomial, with 

its few terms, offered a good example for the application of these methods. Ne- 

krasoff [8] considers all trinomials, complex coefficients included, by putting them 

into the normalized form: u m -  p u " - - q  where m > n and p and q may be complex. 
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He showed that the roots of this equation have their moduli bounded by r [q[1/rn 
and p [q[l/,~ where r and p satisfy: 

p > l a n d  Pm-"--P-"=(mln)~/m( mm-n)('-")/m 

r<---1 and r -" - - r~-~= (m/n)~/m( mm-n- .)(" ,>/m. 

As for the arguments of the roots, he showed only that, taking p and q real, 

there is exactly one root of the equation in each of the sectors: 

( 2 k + l ) ~ / m < _ 0 < _ ( 2 k + 3 ) ~ / m  k = O  . . . . .  m--  1, 

except under certain conditions when the roots belonging to two adjacent sectors 

actually both lie on the boundary common to these two sectors. There are no sectors 

excluded nor clues given as to whether a root in a given sector is likely to be 

of large or small modulus. 

By normalizing the constant tzrm and making a substitution of the form 

z = k x, any trinomial can be put in the form 1 + x r + a x" = 0 where a and k 

may both be complex. Biernaki [1] stated that any equation of this form must 

always have r of its roots with magnitude tess than (r](n -- r))I/r. When applied to 

an equation not already in this special form, this does not give a coefficient free or 

necessarily very tight bound. For example, for - -  r z" + (0~ - -  I ) z  r + 1 = 0 we 

must first put 
1 

Z ~ X  �9 
(~- 1)1/, 

to arrive at the fact that 

0 - -  t "  _tr ,"- ' ,  x " + x ' + l  

has r roots of magnitude less than (r / (n-  F)) llr which in turn implies that our 

original equation has r roots of magnitude less than (r/(n -- r))~l r (1/(0~ --  1)) ~/r so 

that as 0~ nears 1, this bound approaches infinity while it is obvious that all the 

roots of original equation will have magnitude near one. Again there is no informa- 

tion as to which roots are likely to be of small or large magnitude. Neither is this 

objection met  by the class of theorems which state that p roots of a polynomial 

(of degree n > p) have magnitude less than an exhibited bound. Pellet's Theorem 

(Marden [7] p. 99) which produces an annulus that separates the p roots of 

smallest magnitude from the n -  p roots of largest magnitude is not applicable 
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to all trinomials. For a z n + z r + 1 = 0 to satisfy its hypotheses for separating out 

the r roots of smaUest magnitude, one must have: 

( r / n y / C . - ~  _ ( r / n ) , / c . - ~  > lalr/C"-,~. 

Kempner [5] does give a method for determining sectors in which the roots of 

a given trinomial must lie. His method works for trinomials with arbitrary 

complex coefficients and it produces n sectors, smaller than those of Nekrasoff 

and sharing at most one common boundary, such that each of these sectors must 

contain one of the n roots of the trinomial. In this paper, we will restrict our 

attention to trinomials with real coefficients. We will produce, though by dif- 

ferent methods, similar bounds to those of Kempner. We will, however, describe 

these bounds in a more closed form and at the same time discuss the magnitude 

of the roots in the various sectors. 

Preliminaries. 

Given an arbitrary trynomial equation, a z" + b z k +  C Z m = 0, we can as- 

sume, without losing anything more than a few easily retrievable roots, that 

m - - 0  and a = 1. We shall therefore take as our general form of a trinomial 

equation: 

x~ + b x k  + c = O  

where b and c are nonzero reals. We shall put this equation into one of two 

normalized forms depending on whether or not it has a real root. First, if the 

equation does have a real root, r0, then we divide by -- c and substitute x = r0 z 

to put the equation in the form: 

a z " + ( l - - ~ ) Z  k -  1 = 0 .  

Finally, to simplify the discussion later in this paper, we rewrite this equation as: 

(1) a z  ~+~ + (1 --  a)z"  - 1 = O. 

Returning to our general trinomial equation, x" + b x ~ + c = 0, we observe 

that: if c is negative, the equation has a real root; if n is odd, the equation has 

a real root; if n and k are both even we can reduce the degree of the equation 

by substituting y = x 2. Therefore, we need only worry about the case where c is 

positive, n is even and k is odd. Assuming that these conditions hold, we make 

the substitution, x = r0 z where r0 is a real satisfying ~0 -k = b. It  is possible to 

find such a real, even if b is negative, since by our assumption n --  k is odd. We 
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then divide by ~ and make the same change of exponents that we did above 

to obtain our second normalized form of trinomial equation: 

(2) Z r+s + Z ~ + k = 0 

where k is a positive constant since c is positive and n = r q- s is even. 

In this paper, we will describe the trajectories of the roots of equation (1) 
as tt varies from -- ~ to + ~, and of the roots of equation (2~ as k varies from 
0 to + ~,. We will present some purely numerical results which are necessary 
for the later description; second, we will give a qualitative description of what 
happens; third, we will present the mathematical justification of our description. 

Part 1. LEMMA. Let rn >_ 2 be an integer. Define 

l i A m =  I I  < _ i < m  

and 

B,~ = t  2 i q - 1  [ 1 _ < 2 i +  l_<_m l �9 - -  , 

m 

Then ]or r and s integers, r, s >_ 1, and for j any integer, the closed interval 

[ 2 j - - 1  2 j - - 1  ] contains exactly one element from each of the 
1- -  2 ( r d - s )  ' 2 ( r d - s )  

following four sets: 

1) A, U B2, 

2) As U B2r 

3) A r U A ,  

4) B2, U B~. 

Proof. We shall prove the lemma only for set 1). For 2) the statement then 
obviously follows by symmetry. The proof for sets 5) and 4) is exactly like that 
for set 1). 

We shall often use in this proof the fact: 

(*) Given any Jour positive integers x, x', y, y', one has that (x d- x')/(y + y') 
belongs to the open interval bounded by x/y and x'/y" unless x / y  = x'/y" = 
= (x + x')/fy + y'). 
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We first show that our interval contains at most one element  of A, U Bz~. 

It surely cannot contain two elements of Ar or two or B2, since the length of the 

interval. I, is l/(r q-s) which is smaller than both 1/r and l/s, the respective 

distances between consecutive elements of A, ,  and B2s. Suppose then that 1 

contains one element of each of these sets, i.e. k / rE l  and ( 2 i +  1)/(2s)El. 
Since k/r = 2k/2r,  we have that (2k  + 2 i  + l ) / (2 ( r  q- s))El. This implies 

that 2 j -  i _< 2 k  q- 2 i  + 1 < 2 j  4- 1. It is impossible for both of these inequa- 

lities to be strict so that equality must hold at one end, but this implies, by(*). 

that k/r = (2 i  q- t ) / (2s )  and that we stitt have only one element  of  Ar t3 B2, in L 

It now remains to show that there really is an element of A, U Bz~ in L 

Suppose, for the sake of contradiction, that this is not the case. Then there would 

exist integers k and i such that: 

k 2i  - I 2 j  + 1 k + 1 - - < - -  - - < - -  < - - - -  
r 2(r  + s) 2(r  + s) r 

2 i - -  1 2 j - -  1 2 j +  1 2 i +  1 < - - - - <  < - -  
2 s  2(r  + s) 2( r  + s) 2 s  

Combining these two inequalities and using (*) yields: 

2 k q - 2 i - -  1 2 / - - 1  2 j + l  2 k - F 2 i + 3  < < < 
2( r  + s) 2(r  + s) 2( r  + s) 2 ( r  + s) 

The difference between the first and last numerators is 4. All of the numerators 

are odd and as the inequalities are strict, the first and  last must differ by at least 

6 which is a contradiction. 

The lemma tells us, for example, that if C is the set of roots of x "§ -- 1, A 

the set of roots of x '  -- I and B the set of roots of x ' + 1, then for each element, 

c of C, there is exactly ene element, b, of A U B such that arg (c) -- arg (b) is 

less than or equal to 2~/2(r+s). This b is that member of A U B which is nearest 

to c. From the proof of the lemma we can also see that two elements cI and c2 

of C can have the same b as their respective nearest neighbor in A U B if and 

only if b lies in A f l  B and if it is equidistant from ca and c2. 

Part 2. We will consider, first, the equation (I)  t~zr+Sq-(1--tg)Zr--l=O. 
Before we indulge in a verbal description of the trajectories of the roots of this 

equation, we present some sketches of what takes place for some special cases of 

r and s (see the figures that follow). 
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Now, to describe the locus of roots of equation (1), we first notice that for 
= 1, the equation has r -k s roots, the r -k s roots of unity. We can then de- 

scribe that part  of our locus with ~ restricted to [0, 1] as trajectories of particles 
starting at these r q- s roots. As ~ charges from 1 to zero, they move continuously 
until at ~ ---- 0, r of them have moved into r 'h roots of unity and s of them have 
disappeared. We must first be able to tell whether or not a given ( r - t -sY h root 
of unity lies on a trajectory that passes through an r th root of unity. We sum this 

up in the following : 

Descriptive Claim I :  As in the remark after the numerical lemma, let 

A = {r 'h roots of unity} 

B = { s  zh roots of --  1} 

C = {(r + s) th roots of unity} (r > 1, s > 1). 

Let y E C and let [3 be the unique nearest 

neighbor of y in A U B. Then: 

1. If  [3 E A, 13 r B, then the trajectory of a 
particle starting at y when 0: = 1, passes 
through ~ when ~ = 0. The argument 0 of the 
particles position changes monotonically with 
0:, while the modulus never gets very far from 1. 

/ 

2. If ~ E B, [3 r A, a particle starting at "r when 0: = 1 moves out to infinity 

as g --, 0 along a curve asymptotic to the ray 0 = argument (9)- 

0' 
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3. I f  ~ E A  N B ,  then there is a ~ " E C  such that  ~ is equidistant f rom 
~, and ~,'. In this case, there is an ~0, 0 < ~ < 1, such that  two particles starting 
at  ~, and "r' when  ~ = 1 move  so that  both  the arguments  and  modul i  of their 
positions change monotonical ly  with ~ until ~ = ~ when they meet  on the ray 
0 = arg (~). As  ~ changes from ~0 to 0, both  roots stay on this ray, one heading 
out to infinity, the other heading in to [3. 

0t 

~ = 0  

Note  that  as long as 0 _< ~ ___ 1, the modul i  of tho roots are  greater than or 
equal to 1 and that  in those sectors of  type ,c 1 ~ the modul i  do not  get very big. 
Later,  we shall produce bounds to m a k e  this s tatement  more  explicit. 

We  can now see what  happens when  1 < ~ < ~ ,  by  means  of a transfor- 
mar ion on our  equat ion o~z r+s + (1 - -  ~ ) z  r - -  1 = 0. We put  a : 1/~, y = l[z 

to get:  

1 y - ( r + ~ ) + ( 1 - - ~ )  y - r - - l = 0 ,  
a 

OI7 

a y  "+~ + ( 1 - a ) y "  + 1 = 0 .  

Therefore,  if we believe or verify Descript ive Claim 1. we mus t  automatical ly 

believe or  accept  as p roved:  

Descriptive Claim I I :  Le t  

C = { (r + s) th roots of unity } 

D -  {s t '  roots  of  unity} 

E : { r th roots  of - -  1 } 
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Let ~, E C and 8 be the unique nearest neighbor of y in D U E, then we have 

the following pictures:  

1. 8f:D,  8 r  

s 

2. ~ E E , ~ d g D  

~, ~EE N D 

o( ---r q- o o  

Ifl 
+ / a =  

Lastly, we must  see what  happens when - - o o  < 0t < O. When 0t----O, 

the equation (1) has only r roots but as 0~ becomes negative, the s roots that 

~ disappeared �9 as approached 0 from the positive side (i.e. moved  into the point 

at infinity) reappear. These s trajectories must  approach the s roots of unity as 

approaches --  oo. Similarly the r roots that collapsed into zero as 0t approached 

+ oo reappear  when ~z is near --  oo and these r trajectories must  approach the 

r th roots of unity as 0t approaches O. 
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Descriptive Claim I I I :  Let A, B, C, D, and E be as before. Let y E C, 

[3, ~ as above. 

1. 6 E D, 6 ~ E. As ~ moves from -- oo to 0, there is a trajectory starting 
at 6 such that p changes 
from 1 to + o o , 0  as a 
function of 0~ has only 
one turning point on this 
part  of the trajectory. 

As p goes to + oo, the 

curve is asymptotic to 
the ray 0 = arg(6). As 

in the picture this part 

of the trajectory lies en- 

tirely on that side of the 
ray opposite from y. 

2. ~ E A ,  [3 r  As ~ moves 

from 0 to - -oo ,  there is a trajectory 

starting at ~ such that p moves from 

1 to 0. 0 as a function of tt has only 

one turning point in this range of 0. 

The trajectory is tangent to the ray 

0 = arg (~) and it lies on that side of 

this ray opposite from ~,. 

. 

to 1. 0 = arg (6). 

6 E D N E. As 0~ moves from 0 to - ~ o ,  p decreases from + o o  
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4. ~ E A  0 B. As a moves f rom 0 to - - o o ,  p changes from 1 to 0. 

0 = arg ([3). 

c~--'t 

0 4"�9 
,,.I, `, 

S 

,S 

S 

5. 0 = 0. As  ~ moves from 0 to - -  oo, p decreases monotonical ly  from 

+ oo to 0. There  is always a root at z = 1. 

t l o~ o< . .-,0- 

We will now consider equation (2), z ~+s + z r + k = 0. Again,  we first present 

sketches of  some special cases. We will always take r and s to be odd and relati- 

vely prime. After  the sketches, we will describe the trajectories of  the roots of 

this equation for  positive k in Descriptive Claim IV.  
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11. 
+ X § K--0  

0 = -5._~% 
3 

k~,,~ N N ~  0 : 
4- 

Fig. 7 
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e= 3~" 

~_ 5"iT 
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3 
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Descriptive Claim IV:  In keeping with the notation that we have already 

used, we let 
B = {s th roots of -- 1)} 

E = { r  ~h root of - - 1 }  

G = { ( r + s )  th roots of -- 1}. 

Let 7 E G and let [~ the unique nearest neighbor of T in E U B. Then:  

1. If ~ E B, ~ ~ E, a particle starting at {3 when k = 0 moves with the argu- 

ment of its position changing monotonically with k. The modulus might fail below 

one before the particle reaches oo. If (r + s) > 2, the particle approaches the ray 

0 = a r g ( 7 )  as k ~  + oo. 

2. If i]6E, ~r B, there 

is a root of equation (2) 

for each 0 in the sector 

bounded by arg (I3) and 

arg (T). 0 changes monoto- 

nically with k. As k ----0, 

p ~ 0 and the curve is tan- 

gent to the ray 0 = arg (~). 

As k--,  + oo, p - - - +  oo and 

the curve is asymptotic to 

the ray 0 = arg (y). 
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3. If [3 = -- 1 there is a T' in G such that [3 is equidistant from y and T'- 

The trajectories of roots in the sector bounded by arg(T) and arg(T" ) is as 

shown in the diagram with the motion being monotonic in k either side of the 

double point. 

These are all the roots of equation (2) with k positive. 

~ } < _ _  OLI k -.. o~...._ 

Part 3. In this section, we will verify the descriptive claims that we made 

in the previous section. As we will handle equations (1) and (2) separately, we 

will subdivide this section into Part 3 A and Part 3 B. 

Part 3 A :  Here we shall study only equation (1), ~ z  r+s + (I -- ~)z" -- I = 0 .  

a) Isolation ol the sectors: 

We start by taking th~ imaginary and real parts of equation (1). 

(3) 

and 

(4) 
From equation (3), we get: 

(5) f -- 

~ p'+' sin(r + s)0 + (1 -- ~)p~sinr0 = 0 

~pr+s sin (r + s)0 + (1 -- ~) f cos r0  -- 1 = 0. 

-- 1 s i n r 0  
sin (r + s)0 
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By first dividing equation (1) by z "+" and then taking the imaginary part, we 
obtain in a similar manner :  

sin (r + s)0 
(6) f~" = (1 --  a)  sin sO 

Since p is always positive, we can use these last two equations to  deduce 

the follow relations between the signs (abbreviated sgn) of our sin functions 

over various ranges of oz. F rom equat ion (5), we see that  if o~ < 0 then (0~ -- 1 ) / a  

is positive so sgn (sin r 0) = sgn (sin (r + s) 0); if 0 < ~z < 1 then (~z --  1)/0~ is 

negative so sgn (sin r 0) = -- sgn (sir (s + s)); if 1 < 0~ then (cz --  1) /~  is positive 

so s g n ( s i n r 0 ) =  sgn(s in( r  + s)0). F rom equation (6), we have that  if 0~ < 1 

then 1 --  0~ is positive so sgn (sin s 0) = sgn (sin (r + s) 0); if 1 < ~z then 1 --  ~z 

negative so sgn (sin s 0) = --  sgn (sin (r + s) 0). Putting this information together 

gives: 

0 ~ < 0  

0 < c z < l  

l < r  

sgn (sin r 0) = sgn (sin (r + s) 0) = sgn (sin s 0) 

- -  sgn (sin r 0) = sgn (sin (r + s) 0) = sgn (sin s 0) 

sgn (sin r 0) = sgn (sin (r + s) 0) = --  sgn (sin s 0). 

Solving for  0~ in equations (3) and (4) and equating the two expressions yields 
the following 0~-free equation for  the trajectories of the roots of (1): 

(7) D T M  sin s 0 --  ps sin (r + s) 0 + sin r 0 = 0. 

If 0 is such that  it satisfies either the second or third equation on signs above, 

in particular,  if sin r 0 and sin sO have opposite signs, then equation (7) will 

have leading coefficient positive and value at zero negative or vice-versa. In 

either case, it will have a positive root  p. 
2 x  

Now, let us look at an interval of  length less than or equal  to 
2 ( r  + s) ' 

bounded on one side by arg([3) and on the other by arg(7) ,  where 7 is an 
(r + s) th root  of unity and [~ is an r ta root  of unity or  an sth root  of - -  1 but  not  
both. In such an interval, the second set of equalities in satisfied. We shall see 
in the next  section of this part  that 0 is monotonic  in 0~ in these intervals with 
ranging f rom 0 at arg (9) to 1 at arg (T). Hence,  for  each ~ between 0 and 1 there 
will be a root  of (I)  in each of these sectors. If  ~ is both  an r th root  of unity and 
an s th root  of - -  1, then we will again have monotonici ty between 0~ and 0 on the 
interval but  0~ will only take on the values less than 1 and such that 

I(1 - ~)I '+' (r q- s) '+" < 
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For smaller positive 0( �9 there will be first a double root on the ray 0 = arg ([3) and 

then the two roots on this ray. For any ~ between zero and one, we have now 

accounted for r + s roots of equation (1). Since there are no other roots to worry 

about, we have shown that for this range of a, the roots of (1) lie in the sectors 

that we specified in the previous part. The transformation a ~ l[a, x ~  I/y, 
takes care of our assertions for a bigger than one. 

2 ~  
For ot negative, we look at intervals of 0 of length __< bounded 

2(r -F s) 
on one side by arg (~3), where ~3 is an r 'h or s th root of unity and on the other side 

by arg (T) where y is an (r + s) th root of -- 1. In such an interval, the first set 

of equalities hold. This does not imediately imply that for each negative 0~ there 

is a root of (1) with argument in this interval. Though this is true, the demonstra- 

tion will take a bit more machinery so that we leave it for the next section of 
this part. 

b) Investigation o/ the change in 0 with respect to a: 

As long as we keep in mind that our search for roots must be restricted to 

intervals where one of our three sets of equalities hold, we can replace equation 

(5) by 

a -  I 1/, [sinrOl'/" 
(8) P = ~ [sin(r -4- s)O11Is 

Substituting into equation (4) the expression given for 9 by equation (8) yields: 

~z ~ , isin(r + s)0[c,+,#, cos (r + s)0 + 

a - -  1 I '/'  [ s inrO[ ' / '  
+ (1 I isin(r+s)O[,/ ,  cosrO = 1. 

With patience, we proceed to simplify this expression: 

s r.O,r" 

X ( ~z Io~ -- 1] [sinrO] 
Io~l sin(r + s)O 

cos (r + s)O + (1 -- a ) cos  rO) = 1. 
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We note that the three sets of equalities tell us that if: 

[sin r0[ sin r0  ~>l 
then or but then 

Isin (r + s)01 --  sin (r + s)0 ~<0 
[oc-- 11 cx-- 1 

m 

o~ tz 

[sin r0l - -  sin r0  then 0 < tz < 1 and I tz --____~1 1 -- 0~ 
I sin (r + s)0l --  sin (r + s)0 I tz -- 

In either case, the equation becomes: 

[sin rO['/~ ~ /̀~ 
Isin (r + s)0]'/s (1 --so)(sin (r + s)0 cos r0  -- sin r 0 cos (r + s)0) = 

= sin (r + s)0. 

This in turn reduces to:  

sm,0,s io ll,S 
]sin(r +s)Ol~/, T (1--tt) sinsO=sin(r +s)O. 

As long as one of the three sets of equalities is satisfied, we have, 

I ( 1 . c o )  s i n s 0  I ( 1 - o 0 s i n s 0  
s i n ( r + s )  0 I = s i n ( r + s )  0 " 

And  we can change our equation to:  

11 --  ~c[<'§ Isin (r + s) 01<'+')/s 
l~lr/' - - I s i n  r01r/' lsin s 01 

Taking the s th powers of both sides, we have more simply: 

(9) 
I1 - ~1 "/~ Isin (r + s)0l r+' 

I~1' - I s i n  r01r Isin s01 s '  

Now, differentiating both sides with respect to 0 and leaving out the alge- 
braic manipulations, we get: 

(io) 
d~  (1 - ~)~ l~l' Isin( r + s)OI "+sz 

d 0  = (scc + r ) l l  --  ~cl "+s ls inr0[ ' l s ins01ss in(r  + s )0  s i n r 0 s i n s 0  " 
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where A = r 2 sin 2 s 0 + s 2 sin 2 r 0 - -  2 r s (cos (r + s) 0 sin r 0 sin s 0). So tha t  A lies 
between the two squares (r sin s 0 - -  s sin r 0) 2 and (r sin s 0  + s sin r 0) 2. So 

A could be  zero only if both  cos (r + s) 0 was + 1 and the appropr ia te  square 
was zero. This  can happen  only if r = s, a case which doesn ' t  concern us at  
the momen t  since we  are insisting that  gcd (r, 2 s)----1. The  derivative,  d* t /dO will 
be zero or go  to infinity only at points where  one of the following occurs, sin s 0 = 

= 0, sin r 0 = 0, sin (r + s) 0 = 0, *t = 0, *t = 1, or  *t = - -  r/s. For  positive *t 
then, d*t/d 0 does not have any singularities in the interior of  these intervals we 
described in the last  section. Therefore,  as we claimed, 0 is a monotonic  function 
of *t in those intervals.  

We must  now see what  happens when *t is negative. *t = - -  r/s is surely of 

part icular  interest. First  notice that it is the *t between - -  oo and  0 at which the 

left hand side of  equat ion (9) takes on its m in imum value, (r + s) "+" 
r s s r 

We must  see what  happens to the f ight  side of this equat ion in an interval 
of  length less than  2 ~ / 2  (r + s) which is bounded on one side b y  arg (~) and one 
other by arg (y), where  ~r is an (r + sy  h root  of - -  1, ~3 is an r th root  of unity or  
an s th root  of  unity. At  arg (~) the f ight  hand side of  (9) is a t  + oo and it 
decreases monotonica l ly  to 0 as 0 moves  f rom arg(~)  to arg(-r).  I f  00 is the 
unique point  in this interval such that  

lsin (r  + s) 00l~+5/lsin r 00l" [sin s Ool�9 = (r + s y + ' / r  ~ s', 

then for each negat ive *t, there will be  a 0 in the interval bounded  by  arg( ' r )  
and 00 such that  *t, 0 satisfy equat ion (9). Each  0 in the inferior of  the interval 
will be good for  two p' s. 

c) Investigation o[ the change in O wi th  respect to O: 

We would like to show that  p changes monotonical ly  with respect  to  0 and 
hence with respect  to *t in those sectors where 0 lies between arg (~) and arg ('r) 
where y is an (r + s) 'h root  of unity and  ~3 is an s ~h root  of  - -  1. In  fact, we have 
never  demonst ra ted  that  this is the case but  we present the fol lowing work  which 
leads to an equat ion in 0 alone that  is satisfied by  those points on the trajectories 
where d o/d 0 = O. 

We make  heavy  use of the ,t-free equat ion of the trajectories of  equat ion (1). 

Recall : 

(7) 0 '+ '  sin s 0 --  0 ~ sin ( r  + s)0 + sin r 0 = 0. 

F rom this, we can evaluate d o/dO: 

(11) d o ~ d O = -  ( s o ~ + ~ c ~ 1 7 6  
( r +  s) p '+ ' - I  sin s 0 - -  s 0'-1 sin ( r  + s) 0 ' 
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First notice that  on an  interval of  the type that we are considering, d p/d 0 
as given by equat ion (11) is well-defined, i.e. the denominator  is never 0. I f  it were 

zero, we would  have 

s sin (r + s)0 
Or= (r + s) sin sO " 

but then substituting this in equation (7) yields: 

o r  

$ 
p~ 

r + s  
- -  sin (r + s) 0 --  sin (r + s) O) + sin r 0 = O, 

(r + s) sin r 0 ps __ 

r s i n ( r + s )  O ' 

but  this is impossible as sgn (sin r 0) = --  sgn (sin (r + s) 0) when 0 < 0~ < 1. 

Notice that this par t  of the argument applies whenever 0~ is in this interval and that 

the restriction on  0 was not  important.  T o  assure monotonici ty of  p in 0, we have 

only to show that  dp/dO is never zero in the interval. Tha t  is, s p ' + ' c o s s 0  --  (r + 

+ s)p~cos (r + s)O + rcosrO ~ O. 

We will now set out to find an equation in 0 that will isolate those values of 

of 0 or  which d p[dO is zero. For  this, we will first treat this last equation and 

equation (7) as a pair  of simultaneous equations in p" and p r+s, to get:  

and 

pr+S= 

ps = 

r sin s 0 - -  s sin r 0 cos (r + s) 0 

r sin s 0 cos (r + s) 0 --  s sin r 0 

s sin r 0 cos s 0 +  r sin s 0 cos r 
r sin s 0 cos (r + s) 0 --  s sin r 0 " 

Equat ing (p,)r+s and (p,+S)~ gives the p-free equat ion:  

( - -  s sin r 0 cos s 0 + r sin s 0 cos r O) '+" = 

= (r sin s 0 - -  s sin r 0 cos (r + s )07  (r sin s 0 cos (r + s)0 --  s sin r O) r, 

which is satisfied by  those O's for which d old 0 = O. 



THE GEOMETRY OF ZEROS OF TRINOMIAL E(~U,~T'[ON$ 329 

d) Veriftcation of the asymptotes: 

We can see f rom figure 2, (r = 1, s = 2) that  the t rajectory of the roots of 

equat ion (1) is not  necessarily asymptot ic  to the rays 0 = arg (~), where ~ is an s t~ 

root  of  - -  1. In  fact, as we shall see, this example  is really a very special case. 

I f  r > 1, these rays  will in fact be  asymptotes .  Consider  the following case 

where 00 = arg (~3) and  pl is a point  on the trajectory (7), p,+S sin s 0 - -  ps sin (r + 

+ s ) 0  + sin r0  = 0 We know f rom the past  section that  as 0 --- 00, p --, o~ and 

we must  show that  this implies that  the distance between Pl and the ray goes 

to zero. In o ther  word,  we must  show tha t  p sin (00 - 0) --- 0. Dividing equat ion (1) 

1 1 by  ps+l, yelds p , - l s i n s O _ ~ s i n ( r + s )  0 +  p ~ + ~ s i n r 0 + 0 .  

Since s in ( r  + s)0  and sin r 0  are non-zero near 00, we have  that  p ~ o o  

implies that  p,-1 sin sO - -  0 so that  if r > 1 we have p sin sO --- 0. Since cos s00 = 

= •  p s i n ( s 0  ~  

But  as sin ( - -  00 - -  0) > sin(00 - -  0) for  0 near 00, we finally arrive at 
p sin (O0 - 0) ~ 0. 

e) Discussion of the bounds on p: 

We would like to place a bound on p especially in those sectors bounded by 

arg q3) and arg (~,) where "r is an (r + s) 'h root of  unity and ~3 is an r 'h root of  

unity for we c la im that  for  these values of  O, p never  gets very big. 

We start  as usual with equation (I),  but  this t ime we divide by r before 

taking the imaginary  part,  so that  we have:  

o r  

(1 - -  ct)p' sin sO = p-~,+s~ sin (r + s)0, 

+ 1 Isin (r + s)Ol 
r  r l- lls -.0l " 

From this, we easily get the first of the inequalities that  we will use:  

(I) p' < 
Isin s 0 [  I1 - -  g l  

Equat ion (9) gives us:  

Isinrel  - {  fsinCr+.)el ) '"  
[sin,el - fst. e111 - " 
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From this we form the second inequality that we will use: 

,', --(Is n.01r, l' 
Now, if 0 < o ~ <  1/2, then ( 1 - - ( ~ ) >  1/2 and from (I) we have 

p~ < 2/[sin sO I. On the other hand, for 0~ > 1/2, we have from (lI) that: 

2r )l/r+s 
r < Isin s0l '  = 

2,/~+~ 2 < -  
[sin s 01 '/r+* sin s 0 

And so we have that for 0 < 0~ < + **, pr < 2]lsin s01. 

If we now restrict our attention to an interval of length less than 2 re/(r + s) 

which is bounded on one side by ( k / r )2~  and on the other by (j](r + s ) )2~  

we notice that on such an interval, 

Isin s 01 >-- rain { Isin ((r + s) (k/r) 2 ~)l, I sin (r (#(r + s)) 2 ~)1 }. 

We know that this last statement is true since sin sO does not change 

sign on the interval in question and is concave toward the x-axis. We must 

now see how small sin (r + s ) ( k / r ) 2 x  = sin s k 2 g / r  and sin ( r ] 2 x / ( r  + s)) 

can be. We assume, as before that gcd (r, 2 s) = 1 so that neither of these sin's 

can be zero. Sin (s k 2 x / r )  is smallest when s k 2 x / r  is nearest to n ~ for some 

integer n. That  is, when 2 s k / r  is as close to an integer as it can be or when 

n and k are such that 2 s k  = r n  is as small in magnitude as possible. As the 

smallest that this can be is I, we have that:  

I sin (r + s) ~--- 2 ~1 > sin > sin 
I b 

r I r r + s  

Similarly, sin (r ] 2 ~/(r + s)) is smallest when (r j 2 ~j(r + s)) is as near as 

possible to n ~ for some integer n. As with the above, we arrive at: 

rj2  I sin.-=---=--: > s i n ~  > 
r + s  r + s  6( r  + s) a [r + s) 

We then have p bounded as follows: 

2 p ' < ~ <  2 

r - k s  " 6 (r + s) a 
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For large r + s, this tells us that pr  is of the order of (2 (r + s)/x) but even 

for small r + s, as long as both r and s are greater than or equal to one, it 

easily gives us that:  

4 ( r  + s) ( 4 ( r + s ) )  1/" 
p" < or p < . 

We now know that the moduli of root of (1) do not get very big in these 

intervals at least when r ___ s. 

We can partially take care of the case s _>_ r by restricting our attention to 

bounded away from 0, for example, 0: > 1/2. 

From the immaginary part of equation (I), we have: 

0 , =  I (1 -- ~) sin rO 1 
s i n ( r + s ) O  " 

By substituting from equation (I) as we have just done, this becomes: 

I s i n r 0  I '/(r~', p =  
0~ sin s 0 " 

But then, if ~ > 1/2, we arrive at the inequality: 

2 1/(r+s) 
P <  " 

Using the same bound on sin s 0 that we just found, we can now say: 

P <  

r + s 6 (r + s) 3 

l/(r+s) 

This time we have a bound that in fact goes to one as r + s gets big, inde- 

pendently of any relation between r and s. 

Part 3 B:  We now proceed to verify our claims for the second equation: 

(2) z r§ + z" + k = 0, 

where k is a positive real. Following the format of Part 3 A, we start with: 
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(12) 

and 

a) Isolat ion o f  the sectors: 

We take the real and imaginary parts of equation (2) to yield: 

pr+s sin (r + s)0 + pr sin r 0 = 0 

( 1 3 )  

From equation (12), we have 

(14) 

p,+s cos (r + s)0 + p" cos r0  + k = 0. 

sin r 0 
sin (r + s ) 0  " 

If we had divided equation (12) by z T M  before taking the imaginary part, we 
would have obtained in a similar fashion: 

k sin (r + s)0 
( 1 5 )  r = _ 

sin s 0 

Since p is always positive and we are only worried about positive k, equations 

(14) and (15) tell us that equation (2) can have solutions only in those sectors 
where : 

sgn (sin r 0) = -- sgn (sin (r + s) 0) = sgn (sin s 0). 

These equalities are surely satisfied in any interval of length less than or equal 

to (2 7:/2 (r + s)) and with endpoints arg (6) and arg(y) where 3" is an (r + s) th 

root of -- 1 and ~ is an r th or s th root of - -  1. There are r + s such disjoint 

sectors if we include the trivial sector 0 = 0. We now show that any 0 satisfying 

the equalities on the sgn's of the sin functions is in fact the argument of a 

solution of (2) and that in each of these r + s sectors, there is a solution for 

each k. 

Suppose that 0 does satisfy sgn (sin r 0) = -- sgn (sin (r + s) 0) = sgn (sin s ~), 

then equation (14) gives us a positive p such that z = p e i~ is a solution of 

equation (2) for some k. In addition, we can see from equation (15) that the k 

in question will be positive. Let us restrict our attention to an interval bounded 

by. arg(~) and arg(y),  as described above. Then from (14), 

p' = -- sin s 0/sin (r + s) 0 

we see that p goes to + oo as 0 ~ arg (y). p changes continuously on the in- 

terval, going down to 0 if sin r (arg (~) )=0  or just down to --1 if sins s (arg (6))=0. 
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Then,  f rom equat ion (15), 

k = - -  . p r s i n s 0  
s m ( r  + s)0 

so that  k -~ oo as 0 ---, arg T (we have p --- + oo f rom eq. 14), and k changes con- 

t inuously on the interval, approaching  0 as 0-- -arg([3)  either because 

sin s (arg (9)) = 0 and sin ((r + s) arg (9)) # 0, p --- 1; or because p --, 0, i.e. 

sin (r arg ([3)) = 0 and sin (s arg ([3)) = - -  sin ((r + s ) a rg  (9)) # 0. In  either case, 

k does take on all values between 0 and  + oo. 
All of this presumed,  of course that  sin ((r + s) arg (13)) ~ 0, or that  [3 was 

not both  an r th and an s ta root of - -  1. Now suppose that  [3 is both an r th and 

s th root  of - -  1 so that  it is equidistant  f rom two (r + s) th roots  of  --  1 3" and y' .  

We still have  that  p--,  + oo as 0 approaches  arg T or  arg  T', but  now, as 0 

approaches  arg(~) ,  ( - -  s in rO/s in ( r  + s)O)---, r/(r + s) so that  p --, (r/(r + s))Vs. 
At this point,  k = (r/(r + s)r/S(s/(r + $)) and equat ion (2) has  a double root.  

(2) restricted to the ray 0 = arg(~3) is just pr+s__ p r +  k = 0 and as long as 

k < (r/(r + s ) ) m ( s / ( r  + s)), this equat ion  has two roots be tween 0 and  1, one 

either side of  (r / (r  + s))VL as k ---, O, the equat ion becomes close to p,+S _ pr = 0 

so we can see tha t  one root  actually approaches  0 and the o ther  1. 

b) Monotonici ty  of O in k: 

From equations (14) and (15) we get a p-free equat ion relat ing k and  0, 

( - - s i n r 0 )  r ( - - k s i n ( r + s ) O )  s 

s i n ( r + s )  0 = " s i n s 0  " " 

We ment ioned in the introduction tha t  we need only worrey about  r + s even, 

and we will assume that  now to get rid of  the minus signs, so that  the equat ion 

becomes : 

(16) ks = (sin r0)  r (sin sO)' 
(sin (r + s) 0)' +s 

Differentiating bo th  sides with respect  to  0, we find: 

(17) 
d k  

dO--  
(sin r0)` -1 (sin sO)'  -1 (r 3 sin2 sO + s 2 sin r 0  + 
s k (sin (r + ~) 0)` +s+l 

- -  2 r s  sin r 0  sin sO cos (r + s)0). 
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The quanti ty in the parentheses on the right appeared in d tz/d 0 in Part  3 A and 

here too, it is never zero. Of course sin sO, sin r 0 and sin (r + s)0 are never 

zero in the interval, hence d k/d 0 is non-zero and 0 is monoton ic  in k and vice- 

versa. 

c) Change in p with respect to 0: 

p is given very simply in terms of  0 by  equation (14): p = - -  sinrO/sin(r + s). 

Though p appears to be monotonic  in 0 when ~3 is an r th root  o f  - -  1 (i), we can 

easily see f rom (14) that p is not  monotonic  in 0 when [3 is an  s th root  of --  1, 

or at least it is not  always monotonic.  I n  figure 10 are the three possible forms 

that the sin functions can take in the interval if [3 is an s th roo t  of --  1 and to 

the right of  each of these is a sketch of  the corresponding trajectory. 

d) Verification of the asymptotes: 

We again use equation (14), p S = _  sinrO/sin(r + s ) 0 .  Then, as long as 

s > 1, p sin (r + s )0  = --  sin r 0/p '- ; ,  and it follows that as p ---, oo, p sin (r + 

+ s)0  --, 0. As  in Par t  3 A ,  this implies that  the rays 0 = a r g ( y )  are really asym- 

totes when s > 1. 

e) Bounds on p : 

In  the light of  section c), we should be interested in finding a lower bound 

on p in those sectors where [3 is an s th root  of  unity. This time, we are able to 

get a result when s >__ r. F rom (14), we get the inequality:  

sin rO 
p' > ~ > sin (~/(r + s)). 

Using the same estimate on sin (~/(r + s)) that  we did in Part  3 A, we have, 

P >  r + s  6 ( r  + s) 3 " 

This bound approaches 1 as s approaches infinity. We can arrive at  a bound 

in the case r > s if we are willing to restrict our  interest to k greater than some 

(1) I have not succeeded in demonstrating this or the monotonicity of p in the ct case. 
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constant, k0. Then, taking the product of equations (14) and (15) we have: 

pr+s k sin rO ( 7~ 7~ 3 ) 
- -  s i n s 0  > k s i n r 0 > k 0  - r + s  6 ( r + s )  ~ 

or, 

,~ ,~3 ~l/(r+s) 
P > " r + s 6 (r + s)  3 ] (k~ 

and this bound goes to 1 as r + s approaches infinity. 
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