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QUASIHYPERBOLIC GEOMETRY 

By Herbert Busemann (Los Angeles Calif., U.S.A.) 

In comparison to Riemann spaces the theory of Finsler spaces developed 

on a very meager store of concrete examples, a fact which greatly hampered 

progress. Any new special, non-artificial metric is likely to provide important 

hints for the general theory. The present paper bears this contention out by 

studying the quasihyperbolic plane, which is the only two-dimensional Finsler 

space with a transitive group of motions which has not yet been thoroughly 

investigated (~). 

We first briefly recall the definition and known properties, then procure 

a model and determine all quasihyperbolic metrics. In contrast to Minkowskian 

geometry the differentiability rather than the strict convexity of the local unit 

circle proves decisive. The theory of parallels is exactly as in hyperbolic geo- 

metry, but the geodesics satisfy Desargues' Theorem only in the hyperbolic case. 

The circles are convex with respect to the orbits of the one-parameter 

subgroups of the group of motions, but they are in general not geodesicaUy 

convex. However, each circle contains a subarc comprising a semicircle which 

is convex. This implies the existence of one-sided perpendiculars, a phenomenon 

which does not seem to have been encountered previously. The loci equidistant 

from a geodesic segment therefore also fail to be convex, and still less has a 

quasihyperbolic plane negative curvature in the sense of the author, see [1, 

Section 36]. 

However, under a mild condition on the local unit circle whith is always 

(~) The other surfaces (= two dimensional spaces) with transitive groups of motions are:  

the elliptic plane, the sphere, and the plane, cylinder, or torus with Minkowskian  metrics,  

see [1, Theorem (52.7)]. The results of [1] will be freely used. 
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satisfied by the Finsler spaces usually considered, there is a unique anguIar 

measure, [1, Section 42], which is invariant under motions and yields a com- 

pletely additive excess, or equivalently, a Gauss-Bonnet Theorem. With this 

angular measure the area of a triangle is proportional to the excess. 

The uniqueness of this measure leads us to the important conclusion that 

a problem which has interested many mathematicians does not have a solution: 

there is no universal (~) angular measure for two-dimensional Finsler spaces such 

that the Gauss-Bonnet Theorem always holds. 

1. Definition and model .  

A straight two-dimensional G-space Q is quasihyperbolic if it possesses 

all translations along two geodesics G, H, where G is an asymptote to H, but 

not parallel to H, see [1, Section 51]. It follows (ibidem) that the asymptotes 

to H are all asymptotes to each other. The asymptotes in this family F and 

the limitcircles in the family L which have F as central rays will be called 

distinguished. All translations along each element of F or L exist, a translation 

along one element of L is a translation along all others. These translations 

form together a simply transitive group r of motions of Q. 

Let p(z) represent an arbitrary element Go of F such that p(z) lies for z ~ 0 

in the interior of the limitcircle L0 in L through p(0). Let z(o) represent Lo in 

terms of arc length with z ( 0 ) =  p(0). An arbitrary point of Q lies on exactly 

one geodesic in F which intersects L0 in a point z(~) and on exactly one li- 

mitcircle in L which intersects Go in a point p(~). In terms of these coordinates 

a, z the group F takes the form 

(1) a' = aSa -Jr- % "c' = "c + ~, 

where 8 is a fixed number between 0 and I and each pair ~, ~ of real numbers 

determines a motion in r .  

Conversely, [1, Theorem (52.9)], if a (~, ~)-plane is metrized as a G-space 

for which the transformations (1) are motions, then it is a quasihype~bolic 

plane Q'. Choose a hyperbolic metrization H of the (a, "c)-plane such that the 

parameters a, ~: have for H the same meaning as above for Q. As model for 

H take the upper halfplane of an (x, y)-plane with the metric ds ~-- (dx~+ dy2)y -~ 

with the common endpoint of the distinguished family x-----const at infinity. 

The orbits of the one-parameter subgroup of I' (simply called orbits) are the 

(t)  T h i s  w i l l  b e  d e f i n e d  p r e c i s e l y .  

17  - R e n d .  C l r r  M a t e m .  P a l e r m o  - -  Serie II - To:no IV - 1955 
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circles through this point, hence the euclidean straight lines, or rather their 

intersections with y > 0. The group P then becomes the g r o u p o f  conformal 

mappings of the upper halfplane on itself which leave the point at infinity 

fixed, i.e. 

(2) x ' = ~ x + 8 ,  y ' = ~ y ,  ~ > 0 ,  - - ~  < ~ <  co. 

The proof of [1, Theorem (52.9)] shows that y = const are the distinguished 

limitcircles for both H and Q', and that the family F of Q'  need not coincide 

with lines x = const, but may consist of the curves equidistant in the hyper- 

bolic sense to the lines x = const at the same distance from, and on the same 

side of, these curves, i.e. F may be any family of parallel lines other than 

y = const. It was already observed in [1, l.c.] that it means no restriction on the 

generality of a quasihyperbolic metric, if we assume that F is the family x = const. 

In fact, the hyperbolic line element in the form (Edx "z + 2 F d x d y  ~ Gdy2)y -~, 
where E, F, G are constant, has for a proper choice of E, F, G a given family 

of parallel lines (other than y = const) as geodesics. 

This will be our model M for quasihyperbolic geometry, i.e. the geometry 

is defined for y > 0, the distinguished families F and L consist of the lines 

x = const, and y = const., and the group s is given by (2). 

We now investigate the shape of the ordinary (~- non-distinguished) geo- 
desics in M. The proof of [1, (52.9)] implies that an ordinary geodesic in- 

tersects an orbit at most twice. Since an equidistant curve to a distinguished 

geodesic is in the quasihyperbolic sense strictly convex and turns its concave 

side towards the geodesic, [1, (51.1)], the ordinary geodesics in M are strictly 

convex curves in the euclidean sense which turn their concave sides downwards.  

If p ('c) represents an ordinary geodesic, then p (':) tends for .c-~ c~ or "c-),-- 

to a point on the x-axis. These two points will be called the endpoints of p(-c). 

A line x = const, being a geodesic intersects p(-c) at most once, so that p(~) 

can be written in the form y = f(x). All other ordinary geodesics are obtained 

from one by the transformations (2), hence have the form 

(3) y = + > o. 

We may therefore assume that f(x) is defined for - -  1 ~ x ~< 1 with f ( - -  1) 

= f(1) = 0, the points (--  1, 0) and (1, 0) being the endpoints (of course f(x) > 0 
for - -  1 < x <  1). 

It follows that the geodesics with a common endpoint form a (complete) 

family of asymptotes, so that the asymptote relation is symmetric and transitive. 
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The general ordinary geodesic with ( - - 1 ,  0) as left endpoint  is given by 

Y = ~ - I f ( ~  x W ~ -  1). For 13-~c~ this geodesic must tend to x = - -  1. This 

means that the (one-sided) tangent of y = f(x) at x = - -  1 is perpendicular to 

the x-axis. The same holds at x = 1. 

PROPERTY 1. In the model M the ordinary geodesics have the form y=~-~f(~xq-~), 

> O, - -  ~ < ~ < c~, where y = f(x), - -  1 < x _< 1, is a strictly concave curve 

with f ( - -  1) - - - - f (1 )=  0, whose right tangent at (-- 1, O) and left tangent at 
(1, 0) are perpendicular to the x-axis. 

2. Determination of all quasihyperbolie geometries. 

We are now going to show that every system of curves satisfying the con- 

ditions of Property 1 occurs as system of ordinary geodesics in a quasihyper- 
bolic geometry. 

4. If f(x) behaves as in Property 1 then any two points in the upper 

half plane which do not have the same abscissa lie on exactly one curve 

y = ~ - ' / (~x  + ~), 13 > 0. 

For if (xi, Yt) and (x~, y~) with x t ~ x ~  and Y t > 0  are given, then the 

curve y ~-f(x)  possesses a family of parallel chords with slope (yi--Y2) ( x ~ -  xe)-'. 
Among these chords there is exactly one, say from (xl, y~) to (x~, y~), such that 

the trapezoid with vertices (x~, 0), (x~, y~), (x~, y~), (x~; 0) is homothetic to the 

trapezoid with vertices (x~, 0) (xt, yt), (x2, ye), (x~, 0), hence there is exactly 

one transformation (2) which sends y = f (x)  into a curve through (x~, y~) and 
(x~, y~). 

The hyperbolic distance (induced by the line element dse=(dx~-q-dy'2)y -~) 

of two points p, q will be denoted by h(p, q), the quasihyperbolic distance 

simply by p q, finally the euclidean distance by e (p, q ) -  [ (x~-  x~)~-~ (y~--y2)~] ~/~, 

when p = (x~, y~), q = (x~, y~). 

The lines G~:x cos a -----y sin ~, a ~ 0, are the equidistant curves to x = 0 

both in the hyperbolic and the quasihyperbolic sense;  they go into themselves 

under the motions x ' =  ~x, y '  = ~ y .  Therefore the hyperbolic and the quasi- 

hyperbolic arclengths along G~ differ only by a factor c(~), which is the same 

for any line parallel to G,, because x ' =  x--l-8, y '  = y  is a motion. A slightly 

different argument or continuity proves the same for the lines y = const. 

The ratio of length to chord along Ga tends to 1 almost everywhere, see 

[1, (5.14)]; using the motions x'  ---- ~x, y '  = ~y shows that it equals 1 every- 

where and that 
l impq.h-~(p ,  q) = c(~) > O, 
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whenever p ~ q lie on G~ and approach the same point r = (x., y~). Since 

lim h (p, q) e-' (p, q) = y7 ~ 

it follows that 

l imp q. e -~ (p, q) = c (a)y7 ~. 

If we define 

F(u, v) =- (u s -t- v'~) ';" �9 c (arc tan u v-'), F(0,  0) = 0, 

then F(ku,  kv)-=-]klF(u, v) for all real k and F(u, v ) > 0  for (u, v ) ~ ( 0 ,  0). 

The triangle inequality for quasihyperbolie geometry yields in a standard way 

that F(u, v) is a convex function of u and v. The line element of quasihyper- 

bolic geometry has therefore the form 

(5) a s  = F ( d x ,  dy)y_,. 

We have to investigate whether F(u, v) must have any additional properties. 

The curves G~ have a family of quasihyperbolic geodesics as orthogonal 

trajectories in the sense that a point on a geodesic H in this family has its 

intersection with G~ as foot on G,,, [1, (51.1)]. The other elements of the family 

are obtained from H by the motions x ' ~  ~x, y ' ~  ~3y. Consequently G~ inter- 

sects H transversally, or a line through (0, 0) parallel to a supporting line of 

H at G~ t") H must intersect the curve 

K with equation F(x, y) ~ 1 

at a point where K possesses a supporting line parallel to G~. Using the re- 

suits of [2] we obtain the following very surprising fact: 

PROPERTY 2. The line element ot the model M has the form ds-----F(dx, dy)y -1. 

The geodesics are the (intersections with y ~ 0 of the) solutions of the iso- 

perimetric problem for the Minkowski metric F(xi  ~ x2, Yi--Y2) in the (x, y)-plane 

whose centers lie on the x-axis. 
If perpendicularity (or transversality) in this Minkowski metric is symmetric, 

then the geodesics are the curves F(x - -  5, y) ~ k, y > 0. 

Since, see [2], K is obtained from H by a polar reciprocity and a revolution 

through ~/2, the strict convexity of H implies the differentiability of /4, hence 

of F(u, v) for (u, v ) ~  (0, 0). The fact that K has (0, 0) as center implies that 

(6) The orthogonal trajectories of the lines x cos a ~ y sin a are the curves 
y = 

Since the one-sided tangents of H at its endpoints are perpendicular to 
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the x-axis, a whole solution of the isoperimetric problem possesses at its in- 

tersections with the x-axis a tangent. This means for K that its tangents at 

its intersections ki, k2 with the y-axis are perpendicular to the y-axis and 

touch K only at ki or k s. Also, since H determines the shape of K: 

PROPERTY 3. If one ordinary geodesic of a quasihyperbolic metric is known, 

then the metric is determined up to a factor (when range and F are given). 

It will now be shown that we have obtained all characteristic properties 

of F(u, v). Since the metric (5)is  obviously invariant under the transformations 

(2), this assertion is (because of [1, Theorem (52.9)]) trivial as soon as F(u, v) 

has the properties used in the calculus of variations to show that the extremals 

have the properties of the geodesics of a G-space. Therefore we will merely 

indicate very briefly how this result can be established without the assumptions 

of the calculus of variations. 

Let F(u, v) have all the mentioned properties, and represent a solution of 

the isoperimetric problem (in y > 0) with center (0, 0) belonging to F ( x i - - x 2 ,  

Y t -  Y2) in terms of polarcoordinates e, ~ by p ~---g(~), 0 < ~ ~ n. This curve 

is cut transversaily by all lines G~. If t~ ----- h(~), 0 < ~ < ~, represents a second 

curve cut transversally by the G~, then g ' ( ~ ) a n d  h ' (~)  exist except at the 

most denumerable many values ~ which correspond to segments lying on K 

and g'(x)/g(=) ~- h'/(oO/h(~). Since p = g(=) is a convex curve we have enough 

information regarding the behaviour of g'(oO/g(~) (and hence of h'(~)/h(,t)) in 

the neighborhood of the exceptional values to conclude that h(~,) and g(=) 

differ only by a factor. Thus the curves t~ ~ kg(~)  are the only curves cut 

transversalIy by the G~. 

Consider now a curve ~ ~ q(~), c,~-~< ~z .~< % connecting two points (p~, ~) ,  

(p~, a2) , p ~ = g ( a , ) .  Choose values w o = %  < ~vt ~ . . . . <  w,-----% such that 

the direction perpendicular to each G.~ in the sense of the Minkowskian geo- 

metry is unique for i # 0, n. If (x~, Yl) is the point (q(~v,.), w~) and the partition 

(w,.) is sufficiently fine then ~ F ( x ~ -  x~+~, y , -  y,..~)yy is arbitrarily close to 

the quasihyperbolic length of p = q(~). If (xl, y~) is the foot of (x,, y,) on G,~§ 

then, unless p---~ q(~) is cut transversally by all G,~ (i.e q(a) coincides by the 

preceding argument with g (~) )  

~" F(x,  - -  x~, y, - -  Yl)Y-/' < ~ F(x,  - -  x,§ y, - -  Yt+t)/Y, - -  E, 

where ~ > 0 is the same for all sufficiently fine partitions (wi). On the other 
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hand, if u,, v~ are the cartesian coordinates of the point (g(rv,), w,) and (ul, v~) 

its foot on Gw~+l, then 

F ( u , -  u;, v , -  v~)vF' = ~ F ( x , -  x~, y , -  y~)y;'. 

Because 0 ~ g ( ~ ) i s  cut transversally by the O~ the sum on the left differs 

for fine partitions (rye) arbitrarily little from .V,F(u~- u~+~, v, ~ v~+l)v-; -~, which 

in turn is arbitrarily close to the length of ~ ~ g ( ~ ) ,  ~ l ~  ~ 2 .  This length 

is therefore smaller than that of ~ ~ q(~). The estimate clearly only improves 

for curves connecting (~t, ~ti) and (02, ~t2) and not representable in the form 
= q(~). 

Thus, if two points can be connected by an arc of a solution of the iso- 

perimetric problem, then this arc is the unique shortest connection of the two 

points. But under our assumption on K the hypotheses of ( 4 ) a r e  satisfied, 

which proves that the space is a G-space. Thus :  

PROPERTY 4. Every quasihyperbolic geometry can be obtained from a line 
element d s : F ( d x ,  dy)y -~ in y > O, where [k[-~F(kx, k y ) = F ( x ,  y) is convex, 
differentiable and positive for (x, y) ~ (0, 0), and the tangents of F(x, y) : 1 

at its intersections with the y-axis are perpendicular to the y-axis and touch 
F(x, y ) -~  1 at only one point. 

Conversely, every line element of this form yields a quasihyperbolic geometry. 

3. Parallels. Desarguesian spaces. 

There are two positive constants dt ,  d 2 such that 

(7) dt (x ~ _~ y~)l/2 ~ F(x, y) ~< dz (x ~ + y2)1/2. 

Let p(z) = (x(z), y(x)), .~ >f 0 represent any half-geodesic with p(':) -~ (0, 0) 

for x-~ oo. If q ( z ) ~  (x'(x), y '  (~)), x ~ 0 represents any other half-geodesic /~ 

with the same endpoint (0, 0), (i.e., is a co-ray to p(~), see [1, Section 22]) 

then the fact that the tangent of these geodesics at their endpoint (0, 0) is the 

y-axis implies 

x ('O/Y (x) -~ 0 and x" (x)/y" (':) ~ 0 for z -~ co. 

If -~'(x) is chosen such that y '  ( ~ ' ) =  y(x) then ~'-~ c~ for "~-~ oo and by (7) 

p(z)q(z) < d.zlx(z) - -  x'(,')ly-'(9-~o, 
hence p ( z ) R - ~ 0  for z-~ ~ .  If the endpoint of /? is different from (0, 0) then 

the hyperbolic distance h(x(z), R) tends because of ( 7 ) w i t h  the order of 
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to co. Applying (7) again we find x( ' . )R>~dih(x(-O,  R). We have found, for 

the terminology see [1, Section 23]: 

PROPERTY 5. A quasihyperbolic geometry satisfies the hyperbolic parallel 

axiom. I f  p (:), .c >~ 0 represents any geodesic ray and R is a co-ray to p ('0 

then p (~)R-~ 0 for  .c-~ co. I f  R is not a co-ray to p ('0 then p (.c)R tends with 

the order of  �9 to ~ .  

We next investigate in which quasihyperbolic geometries the geodesics 

satisfy Desargues' Theorem; since the intersections necessary for the usual 

Theorem of Desargues need not exist, we mean more precisely the Desargues 

Property as formulated in [1, Section 13]. If the Desargues Property holds, then 

the quasihyperbolic plane can be mapped on an open convex subset of the 

affine plane such that the geodesics go into the intersections of the affine 

straight lines with this convex set, [1, (13.1)]. Because of Property 5 the set 

can neither be the whole or a half plane nor a strip bounded by two parallel lines, 

hence will after a suitable choice of the line at infinity be a set bounded by 

a closed convex curve C. 

Let a E C be the common endpoint of the distinguished family F of geodesics. 

The motions (2) will now be induced by projectivities which map C and its 

interior on themselves. Since a suitable translation along a distinguished limit- 

circle carries a given point c ~ a on C into another given point c' ~ a on C, 

the curve C has, except possibly at a, a continuous non-vanishing curvature. 

Let T be one of the one-sided tangents of C at a and T' the tangent of C at 

b - ~  a. The translations along the geodesic G with endpoints a, b leave a, b 

fixed and take C into itself. They also leave d ~  TN T' (possibly at infinity) fixed. 

If a, b, d are taken as points (l, 0, 0), (0, 0, 1), (0, 1, 0) of a projective coordinate 

system xt,  x2, xa, then a projectivity which leaves a, b, d fixed has the form 

�9 ~ ~ - - k x ~ ,  px~--~)~x~, ~ x ~ =  l~x2, ~xa-----vxa, so that C must have the form x , x  a -  

where =, ~, ~" are positive, , - [ -  ~ = 7 ,  k ~ 0 ,  see [3, w 41]. If we return to 

affine coordinates by putting x 3 = 1 the equation of C takes the form xl ~ kx~, 

> 1. Among all these curves only the parabola xi -~ cx] has non-vanishing 

curvature at (0, 0). Hence C is a conic. It follows now readily from Property 3 

that the metric is hyperbolic. 

PROPERTY 6. The hyperbolic geometry is the only Desarguesian qaasihyper- 

bolic geometry. 

If the line element (5) satisfies F(x,  y) ~ F ( - -  x, y) then the space pos- 

sesses reflections in the distinguished geodesics. But the space cannot admit 
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any other additional motions without becoming hyperbolic. For any such motion 

carries some distinguished geodesic into an ordinary geodesic, so that all trans- 

lations along this geodesic also exist. It follows from [1, (51.5)] that then the 

metric is hyperbolic. 

PROPERTY 7. The only motions other than the translations along the distin- 
guished geodesics or limit circles which a quasihyperbolic geometry can possess 
without being hyperbolic are the reflections in the distinguished geodesics. 

4. Convex i ty  p roper t i e s .  

The quasihyperbolic circles If(p, ~) (i.e. the loci p x ~ p) are strictly convex 
with respect to the orbits (hence strictly convex in the euclidean sense in M). 

For if an orbit contained either a proper subarc of K(p, ~) or intersected K(p, ~) 
in three points, then a sufficiently small translation along this orbit would 

produce a circle K(p',  p), p ' ~ p ,  which has three or more common points 

with K(p, ~), which contradicts [1, (10, 11)]. Therefore the distinguished limit 

circle L through p intersects K(p, ~) in exactly two points and divides K(p, ~) 
into two arcs / ( t (p ,  ~) and Kz(p, ~) one of which, say K~(p, ~), lies except 

for its endpoints outside (or in the model M below) L, the other inside (or 

above) L. The arc Ki(P, ~) properly contains a semicircle, because the sup- 

porting geodesic to L at p lies outside L. The arc Ki(p, p) is geodesically 

convex. For at a given point qE/f~(p,  ~) there exists a supporting orbit D, 

and there is (unless D EF) a supporting geodesic G of D at q which lies on 

the other side of K(p, p), so that K~(p, ~) is convex (see [1, (25.2)]). 

The other arc K~(p, ~) need not be convex. For any ordinary geodesic 

G decomposes the quasihyperbolic plane into two domains of which one is 

convex with respect to the orbits and the other not. We call these domains 

the orbit convex and orbit concave sides of G. Consider supporting orbits of 

G at a point q EG. If D is not a limit circle, then it intersects the x-axis in a 

point (Xo, 0 ) a n d  the lines through (x0, 0) form a family of curves equidistant 

to x ~ x0, with a family of geodesics as orthogonal trajectories. Exactly one 

of these, H, ,  passes through q. Every point u of Ho has q as foot on D. If u 

lies on the orbit concave side of G, then q is also the only foot of u on G. 

PROPERTY 8. Every point on the orbit concave side of an ordinary geodesic 
G has exactly one foot on G. The points on this side with the same foot q on G 
form a half geodesic H'~ and /-/'o N Hi = 0 for q ~ r. 

If the circles K(p, ~) are convex, then perpendiculars (see [1, (20.10)]) 
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to a given geodesic at a given point exist and perpendiculars to the same 

geodesic at different points do not intersect. These perpendiculars are the lines 

containing the above constructed half geodesics. 
However, the geodesics containing /fq and H" r of Property 8 will in general 

intersect on the orbit convex side of G. This can readily be verified for a 

geodesic G which approximates the polygon with vertices ( - -1 ,  0), ( - - 1 ,  10-1), 

(0, 1), (1, 10-J), (1, 0), such that its curvature is large in the neigborhood of 

( - -  1, 10-I), (0, 1), (1, 10-') and small elsewhere; the points q, r are to be 

taken close to (1,0). 

PROPERTY 9. A circle K(p, ~) is divided by the distinguished limit circle L 

through p into two arcs, Ki (p, ~) outside L and K2(p, ~) inside L. The arc 

Ki (p, ~) properly contains a semicircle and is convex, Ks (p, ~) need not be convex. 

According to the general theory (see [1, (20.5)]) there is a number r > / 0  

(the values 0 and c~ are admitted) such that K(p, ~) is convex for ~ a  and 

not convex for ~ ~ r It is not hard to see that a = 0 when the geodesics in 

N[ are not differentiable (or F(x, y ) =  1 is not strictly convex). If F(x, y) satis- 

fies the usual assumptions of the calculus of variations then ~ > 0, see White- 

head [4]. 

We mention without proof the following implications: An ordinary geodesic 

G is for any ~ > 0 equidistant from the locus of points on orbit concave side 

of G which have distance ~ from G, but G is equidistant from the analagous 

locus on the orbit convex side only for ~ ~ ~. 

When the circles are not all convex, then the loci equidistant from segments 

or straight lines are not all convex and still less can the space have negative 

curvature, see [1, Section 36]. 

5. Ex i s t ence  of  individual  B o n n e t  m e a s u r e s .  

We now investigate angular measures. The exact definition is found in 

[1, Section 42]; the essential points are additivity for angles with the same 

vertex and that measure 7: characterizes straight angles. 

A natural angular measure must be invariant under motions. But this does 

not characterize the measure: because the mappings (2) are conformal, the 

ordinary euclidean angle (at least when the geodesics in M are differentiable) 

has this property and suitable functions of the euclidean angle will also be 

invariant and satysfy the axioms for angular measure. 

A very important property of the angle in the Riemannian case is the 
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Theorem of Gauss-Bonnet or, equivalently, that the excess (see [1, Section 42]) 

which is defined on polygonal regions can be extended to a completely additive 

set function defined on all Borel sets. If angular measure is invariant under 

motions, then this set function will be too and must from the theory of Haar 

measure be proportional to the hyperbolic (or quasihyperbolic) area. A conti- 

nuous (see [1, Section 42]) angular measure for which the excess can be extended 

to a completely additive set function will be called a Bonnet measure. 

Consider a distinguished geodesic G, say x-----0 in the model M, and the 

geodesic H~, with a fixed end point (a, 0), a ~ 0, intersecting G at (0, y). Denote 

by % the measure of the convex angle Ay formed by the two rays of G and 

Hy beginning at (0, y), and ending at (0, 0), (a, 0). Then % ~ %/ for y ~ y'.  

For the translation T along G which takes (0, y) into (0, y ')  will take (a, 0) 

into (b, 0) with 0 ~ b ~ a, and H~ into the geodesic through (y',  0) and (b, 0). 

Therefore Ay T is properly contained in ,4y,, SO that by invariance under motion 

the measure of A~ T equals % and is less than %/. Hence limy.>.oo % ~ ~ exists. 

For an arbitrary b ~ 0 there is a translation along G that takes (a, 0) into 

(b, 0), so that ~ is independent of a. 

For a fixed y ~ 0 the measure of the convex angle between the rays from 

(0, y) to (b, 0) and to (0, 0) tends to 0 for b-~0,  if the angular measure is 

continuous. Hence ~ ~ 0. Similarly l imy.~  ~y exists and equals ~. Using the 

additivify of angular measure we conclude: if p ('~) represents a geodesic, then for 

any point q the measure of the angle p(O)p(~)q  tends to 0 when "~-~ ca. This 

is an important property, not shared by arbitrary angular measures, and is called 

non-extendability, If, Section 42]. 

PROPERTY 10. A continuous angular measure which is invariant under mo- 

tions is non-extendable. 
Consider the asymptote triangle formed by the two lines x ~ - -  1 x ~ 1 

and the ordinary geodesic y ~ - f ( x )  with end points ( - -1 ,  0) and (1, 0). If 

~ 0 is sufficiently small, it follows from the continuity of angular measure 

and the preceding arguments, that the sum of the measures of the angles in 

the geodesic triangle with vertices ( - -  1 Jr- ~, f ( - -  1 ~ ~)), ( - -  1 -Jr- r e-l), 

(1 - - ~ ,  f(1 - - Q )  is arbitraliry small, hence the excess of the triangle (i.e. the 

angle sum minus ~) is negative. Consequently, for a Bonnet measure the excess 

of a geodesic triangle is negative and the total excess of the above asymptote 

triangle equals ~. Under the assumption that we have a Bonnet measure denote 

by ~ x o , -  1 ~ x o -~ 1, the measure of the convex angle between the rays 
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y>~f(Xo) of x = x 0 and x>~x  o of y = f(x) .  The hyperbolic area, with respect 

to the metric ( d x ~ +  dx2)y -2, of the domain y :>~f(t), - - 1  ~ t ~ < x  is 

X co  X 

t" f dtdy f at 
.f J = i f ( O "  

- - l  l i t )  - l  

The total excess of this domain is ~ - -  ~x - -  n = - -  13. Since ~t = 7: we find 

X 1 

(8)  = 7: f ( 0  ' 
- - 1  - - 1  

provided these integrals exist. This measure is clearly invariant under (2). The 

angle between any two geodesics is now determined by additivity. Standard 

arguments of hyperbolic geometry show that with this angular measure the 

hyperbolic area of any geodesic triangle is proportional to the excess. The 

same holds for quasihyperbolic area which differs from the hyperbolic area 
:m 

/ *  

only by the constant factor =/tF-2(cos% sin~0)d% 
, v ,  

0 
0 

The integral ] f - l ( x ) d x  exists if f ( x )  possesses at - - 1  a finite upper 
- - 1  

curvature (but the condition is not necessary). Similarly for x ----- 1. This means for 

F(x, y) that F(x,  y ) =  1 has at its intersection with y-axis non-vanishing 

right and left lower curvatures. If we write y = f ( x )  in the form ~ = g(~) then 
X r 

If .re(x, y ) ~  x ~ + y2 then g(~) is constant and we find the hyperbolic value 

~x ~ ~ -  ~. (It is easy but uninteresting to express the last integral in terms 

of F(x, y)). We summarize: 

PROPERTY 1 1. A quasihyperbolic geometry for which the local unit circle has 
at the points, where it is tangent to distinguished limit circles non-vanishing right 
and left lower curvatures, possesses one and only one Bonnet measure which is 
invariant under motions. In terms of this measure the excess of a geodesic triangle 
is negative and proportional to the area of the triangle. 

Comparing these results with those of the preceding section, we see that 

quasihyperbolic geometry furnishes an excellent example to show that different 
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aspects of curvature & Riemann spaces may become entirely dissociated in Finsler 
spaces, 

6. The non-existence of universal Bonnet measures.  

The Bonnet measure which we found for quasihyperbolic geometry is an 

individual measure adapted to the specific metric, it is not universal. 

To make this precise we consider two-dimensional Finsler spaces with the 

usual properties, which implies in particular that the condition on the local 

unit circle occurring in Property 11 is automatically satisfied. A universal angular 
measure is characterized by the following property (beyond the conditions for a 

continuous angular measure): 

It depends only on the local Minkowskian geometry, i.e., if the local 

Minkowskian geometries M i belonging to the points piESi of the two Finsler 

surfaces S~, $2 are isometric, then the angles on S~ at Pi which correspond 

under an isometry of M I on M 2 have equal measures. In particular: 
If for two Finsler surfaces Si,  $2 with integrands F~(x, y, dx, dy) and 

F~(x, y, dx, dy) and two points (x~, y~)~S~ the relation 

(9) F~(x~, yt, dx, dy) = kF~(x2, y~, dx, dy) 

holds for all dx, dy, where k does not depend on dx, dy, then the two (convex) 

angles with vertices (xi,y~) in S~ and (x2, Y2) in $2 determined by two arbi- 

trary directions dx, dy and ~x, ~y have the same measure. 

For instance, making the angular measure proportional to the area of the 

sector of the local unit circle leads to a universal angular measure, and there 

are many others. A universal measure is always invariant under motion. 

A universal Bonnet measure would be a universal measure for which the 

Gauss-Bonnet  Theorem holds (or the set function induced by the excess is 

completely additive). The discussion of Bonnet measure in quasihyperbolic geo- 

metry shows the non-existence of a universal Bonnet measure. 

The condition that the tangent of F(x, y) = 1 at its intersections with the 

y-axis is perpendicular to the x-axis is immaterial, because it merely expresses 

the normalization that the lines x = const, be the distinguished geodesics rather 

than y = m(x + ~). It is easily verified that in general F(dx, dy)x -~ in x > 0, 

or more generally F(dx, dy)(ax + by) -1 in ax + by > 0 leads to a different 

angular measure if defined as in (8). On the other hand (9) obviously holds 

for any two points of F(dx, dy)y -~ and F(dx, dy)(ax + by) -1. Since the 


