# SOME REMARKS ON THE OPTIMAL SUBSPACES OF A CONVOLUTION CLASS WITH A NCVD KERNEL

# In Memory of Professor M. T. Cheng

## Sun Yongsheng

(Beijing Normal University, China)

#### Abstract

In this note a new generalized version of the classical Landau-Kolmogorov and Stein inequalities is established on a convolution class of periodic functions with a NCVD kernel. On this basis some sets of optimal subspaces for the 2n-dimensional Kolmogorov width of such function class are identified.

In [1] V. M. Tikhomirov proved that for a convolution class of  $2\pi$ -periodic functions

$$W_{\infty}^{K}(T) := \{x(\cdot) = (K * u)(\cdot) : \| u(\cdot) \|_{L_{\infty}} \leq 1\}, \tag{1}$$

with a NCVD kernel  $K(\cdot) \in C(T)$  the 2n-dimensional Kolmogorov width  $d_{2n}(W_{\infty}^{K}, C(T))$  has an infinite sequence of optimal subspaces as follows:

$$S_{2n}^{K_m} := \operatorname{span}\{K_m(\cdot - \frac{j\pi}{n}); j=0,\dots,2n-1\},$$
 (2)

where  $m \in \mathbb{Z}_+, K_1 = K$ , when  $m \ge 2, K * \cdots * K : = K_m$ . In this note we consider the same question. Some further results will be proved in the following two sections.

## 1 Landau-Kolmogorov type and Stein type inequalities

Theorem 1 Suppose  $K_1(t)$ ,  $K_2(t) \in C(T)$ , and both of them are NCVD functions. Denote  $K = K_1 * K_2$ . If  $\varphi(\cdot) \in L_p(T)$ ,  $1 \le p \le \infty$ ,  $\|\varphi\|_{L_p(T)} \le 1$ , and

$$\| K * \varphi \|_{L_{p}(T)} \leq \| \Phi_{\mathbf{x}}(K; \cdot) \|_{C(T)}, \tag{3}$$

<sup>\*</sup> Project supported by NSFC(19671012)

where  $\Phi_{\mathbf{n}}(K;x) := (K * \operatorname{sgn sinn}(\cdot))(x)$  is the generalized Euler spline relating to K, then  $\| K_2 * \varphi \|_{L_{\mathbf{n}}(T)} \leq \| \Phi_{\mathbf{n}}(K_2;\cdot) \|_{C(T)}. \tag{4}$ 

*Proof.* (1)  $p=\infty$  (Landau-Kolmogorov case ). Without loss of generality we may assume  $K_1, K_2 \in C^{\infty}(T)$ , and that they possess  $STP_{i_0+1}$  property for every  $n \in Z_+$  (for the STP property, see Pinkus [2], p. 44, 60). Now suppose the assertion is false, then for some  $\varphi \in L_{\infty}(T)$ ,  $\|\varphi\|_{L_{\infty}} \leq 1, n \in Z_+$  we have

$$\|K*\varphi\|_{L_{\infty}(T)} \leqslant \|\Phi_n(K;\,\boldsymbol{\cdot}\,)\|_{C(T)},$$

and

$$\| \Phi_n(K_2; \cdot) \|_{C(T)} < \| K_2 * \varphi \|_{L_{\infty}(T)}.$$

Take a number  $\beta > 1$  such that

$$\| \Phi_{\mathbf{z}}(K_2; \cdot) \|_{C(T)} = \beta^{-1} \| K_2 * \varphi \|_{L_{\infty}(T)}.$$

Choose points  $x_0, x_1$  such that  $\Phi_n(K_1; x-x_1)$  and  $(K_1 * \varphi)(x)$  attain their maximal values at the same point  $x_0$ . We may assume  $\operatorname{sgn}(K_2 * \varphi)(x_0) = \operatorname{sgn}\Phi_n(K_2; x_0-x_1) > 0$ . Set

$$\varphi_{1}(t) = \operatorname{sgn} \sin n(x - x_{1}) - \beta^{-1}\varphi(t).$$

 $\varphi_n \in L_\infty(T)$ , and  $S_c(\varphi_n) = 2n$ . Put

$$g_1(\cdot) = (K_2 * \varphi)(\cdot), \qquad g_2(\cdot) = (K_1 * g_1)(\cdot).$$

We have

$$g_2(\cdot) = \Phi_n(K; \cdot - x_1) - \beta^{-1}(G * \varphi)(\cdot).$$

On account of

$$\| \Phi_{\mathbf{x}}(K; \cdot - x_1) \|_{C(T)} = \| \Phi_{\mathbf{x}}(K; \cdot) \|_{C(T)} > \beta^{-1} \| K * \varphi \|_{C(T)},$$

and there exists  $\alpha \in R$  such that

$$\Phi_{\mathbf{s}}(K; \alpha + \frac{j\pi}{n}) = (-1)^{j} \Phi_{\mathbf{s}}(K; \alpha) = (-1)^{j} \| \Phi_{\mathbf{s}}(K; \bullet) \|_{C(T)}$$

 $(\alpha = x_0 - x_1), j = 0, 1, \dots, 2n - 1$ , we derive

$$S_c(g_*) \geqslant 2n_*$$

So that  $Z_{\epsilon}(g_2) \ge 2n$ . By the CVD property, from  $S_{\epsilon}(g_2) = S_{\epsilon}(K_1 * g_1) \le S_{\epsilon}(g_1) \Rightarrow S_{\epsilon}(g_1) \ge 2n$ . So  $Z_{\epsilon}(g_1) \ge 2n$ . In addition, by assumption, we have  $g_1(x_0) = 0$ , and also  $g'_1(x_0) = 0$ . Thus  $x_0$  is at least a double zero of  $g_1$ . To sum up, we get

$$2n+2\leqslant \widetilde{Z}_{\epsilon}(g_1)\leqslant S_{\epsilon}(\varphi_n)=2n, \qquad (5)$$

where  $Z_c$  counts cyclically the number of zeros of a function, where zeros which are not sign changes are counted twice. The contradiction (5) completes our proof.

Note 1. The above result was essentially contained in Nguen Thi Thieu Hoa [3]. (2)  $1 \le p < \infty$  (Stein case).

We use Stein's technique (see [4]). Suppose  $\varphi \in L_{\epsilon}(T)$ ,

$$||K * \varphi||_{L_{\alpha}(T)} \leq ||\Phi_{\alpha}(K; \cdot)||_{C(T)}, \quad 1 \leq p < \infty.$$

Set

$$h(x) = \operatorname{sgn}((K_2 * \varphi)(x)) \frac{|(K_2 * \varphi)(x)|^{p-1}}{\| |(K_2 * \varphi)(\cdot)|^{p-1} \|_{L_{\varphi}(T)}},$$

where p>1,  $\frac{1}{p}+\frac{1}{p'}=1$ ;  $h(x)=\mathrm{sgn}((K_2*\varphi)(x))$ , when p=1. Then  $||h||_{L_{p'}(T)}=1$ , and  $\int_{-\infty}^{2\pi} (K_2*\varphi)(x)h(x)dx = ||(K_2*\varphi)(\cdot)||_{L_{p}(T)}.$ 

Let

$$F(x) = \int_0^{2\pi} (K * \varphi)(x - t)h(t)dt.$$

A simple calculation yields

$$F(x) = -\int_0^{2\pi} K(x-v) \left\{ \int_0^{2\pi} \varphi(t-v)h(t)dt \right\} dv,$$

where the function

$$\Psi(v):=\int_0^{t}\varphi(t-v)h(t)dt\in L_\infty(T),$$

because  $\|\Psi(v)\| \leqslant \|\varphi\|_{L_{p}} \cdot \|h\|_{L_{p}'} \leqslant 1$  by Hölder's inequality. Besides this, we have  $\|F(x)\| \leqslant \|K * \varphi\|_{L_{p}(T)} \cdot \|h\|_{L_{p}'} \leqslant \|\Phi_{s}(K; \cdot)\|_{C(T)}.$ 

Thus, if we apply the above obtained result to F(x), we get

$$\parallel K_2 * \Psi \parallel_{L_{\infty}(T)} \leqslant \parallel \Phi_*(K_2; \, \bullet) \parallel_{C(T)}.$$

But it is easy to see

$$\| K_2 * \varphi \|_{L_p(T)} = \left| \int_0^{2\pi} (K_2 * \varphi)(x) h(x) dx \right| \leqslant \| K_2 * \Psi \|_{L_{\infty}(T)}.$$

So we obtain

$$\| K_2 * \varphi \|_{L_{\rho}(T)} \leqslant \| \Phi_n(K_2; \cdot) \|_{C(T)}.$$

The case  $1 \le p < \infty$  is over.

Note 2. The Stein type inequality (3) is sharp when p=1.

# 2 Optimal subspaces of $d_{2n}(W_p^{r}(T), L_p(T)), p=1,\infty$

Denote

$$W_{p}^{R}: = \{x(\cdot) = (K * u)(\cdot); \| u(\cdot) \|_{L_{p}(T)} \leq 1\}.$$
 (6)

**Theorem 2** Let K be a NCVD kernel and  $K \in C(T)$ . Then for any  $2\pi$ -periodic continuous function G which satisfies NCVD condition, the 2n-dimensional Kolmogorov width  $d_{2n}(W_k^K)$ 

(T),  $L_p(T)$ ) has an infinite set of optimal subspaces  $\{S_{2n}^{K_m}: m \in \mathbb{Z}_+\}$ , where  $p=1,+\infty$ ;  $K_m=G_m * K$ ,  $G_1=G,G_m=G*\cdots*G$  m times when  $m \ge 2$ .

Proof. (1) First case: 
$$p = \infty$$
.  $\forall f \in C(T)$ , by duality theorem [5]
$$E(f, S_{2n}^{\overline{K}_n}, C(T)) := \min_{g \in S_{2n}^{\overline{K}_n}} || f - g ||_{C(T)}$$

$$= \min_{g \in S_{2n}^{\overline{K}_n}} || f - g ||_{L_{\infty}(T)} = \sup_{\|h\|_{L(T)} \leq 1.h \leq S_{2n}^{\overline{K}_n}} || \int_0^{2\pi} f(t)h(t)dt ||.$$

Notice that

$$h \perp S_{2n}^{K_m} \Leftrightarrow \int_0^{2n} h(t) \{ (G_m * K)(t - \frac{j\pi}{n}) \} dt = 0, \quad j = 0, \dots, 2n - 1.$$

Set

$$H(x):=\int_0^{2\pi}(G_n*K)(t-x)h(t)dt.$$

Then

$$H(\frac{j\pi}{n})=0, \quad j=0,\cdots,2n-1.$$

Inasmuch as  $(G_m * K)^*$  (the conjugate kernel) is also a NCVD function, so by Pinkus ([2]p. 182. Th. 4.13).

$$\| H(t) \|_{L_1(T)} \leq \| \Phi_{\mathfrak{a}}((G_{\mathfrak{m}} * K)^*, \cdot) \|_{C(T)} = \| \Phi_{\mathfrak{a}}((G_{\mathfrak{m}} * K), \cdot) \|_{C(T)}. \tag{7}$$

Thus from Theorem 1(p=1 case) we derive

$$\|\int_{0}^{2\pi} K(t-x)h(t)dt\|_{L_{1}} \leq \|\Phi_{n}(K^{*}, \cdot)\|_{C(T)} = \|\Phi_{n}(K, \cdot)\|_{C(T)},$$
 (8)

where h(t) is any function such that  $||h||_{L_1(T)} \leq 1$ ,  $h \perp S_{2n}^{K_n}$ .

Consider

$$\begin{split} E(W_{\infty}^{K}(T); S_{2n}^{K_{n}}; C(T)) : &= \sup_{f \in W_{\infty}^{K}(T)} E(f, S_{2n}^{K_{n}}, C(T))) \\ &= \sup_{f \in W_{\infty}^{K}} \sup_{\|h\|_{L_{1}} \leq 1, h \perp S_{2n}^{K_{n}}} \left| \int_{0}^{2\pi} f(t)h(t)dt \right| \\ &= \sup_{\|h\|_{L_{1}} \leq 1, h \perp S_{2n}^{K_{n}}} \sup_{\|u\|_{C_{\infty}} \leq 1} \left| \int_{0}^{2\pi} \left\{ \int_{0}^{2\pi} K(x-t)h(x)dx \right\} u(t)dt \right| \\ &= \sup_{\|h\|_{L_{n}} \leq 1, h \perp S_{2n}^{K_{n}}} \left\| \int_{0}^{2\pi} K(x-t)h(x)dx \right\|_{L_{1}(T)} \leq \left\| \Phi_{n}(K, \cdot) \right\|_{C(T)} \end{split}$$

by (8).

Thus we have proved

$$E(W_{\infty}^{K}(T); S_{2n}^{K_{n}}; C(T)) = \| \Phi_{n}(K; \cdot) \|_{C(T)} = d_{2n}(W_{\infty}^{K}(T), C(T)), m \in \mathbb{Z}_{+}.$$

(2) p=1 case.

In the same manner as above we may obtain the required result. The details are omitted.

# References

- [1] Tikhomirov, V. M., On the Optimal Subspaces of Classes of Functions with Cyclic Variation-Diminishing Kernel, Vestnik Moskov, Univ. ser. 1, Mat. Meh., 4(1997), 16-19(In Russian).
- [2] Pinkus, A., n-widths in Approximation Theory, Springer-Verlag, 1985.
- [3] Nguen Thi Thieu Hoa, On Extremal Problem for Variation-Diminishing Transformations, Vestnik Moskov, Univ. Ser. I, Mat. Meh., 5(1982), 3-7(In Russian).
- [4] Stein, E.M., Functions of Exponential Type, Ann. Math., 65, 3(1957), 582-592.
- [5] Korneichuk, N. P., Extremal Problems in Approximation Theory, Nauka, Noscow, 1976. (In Russian).

Department of Mathematics Beijing Normal University Beijing, 100875 PRC