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Dielectric behaviour and optic mode Gruneisen parameters of the
halides of silver, caesium and thallium
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Abstract. The aptic mode Gruneisen parameters in silver, caesium and thallium
halides are calculated using the Born model for interionic forces and the Szigeti theory
of dielectric constants. The strain derivatives of the electronic and static dielectric
constants are also evaluated and compared with experimental data. The strain
derivative of static dielectric constant reveals the inadequacy of the Born model for
the crystals under study. Possible modifications have been suggested to improve
the situation. The theoretical values of the optic mode Gruneisen parameters closely
agree with recent experimental data. An appropriate process has been adopted to
evaluate the average values for the Gruneisen parameter.

Keywords. Gruneisen parameter; dielectric constants; Born model; Szigeti relations;
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1. Introduction

Studies on the Gruneisen parameters provide valuable information about the volume
dependence of the frequency spectrum which is related to the thermodynamic and
thermoelastic behaviour (Ruppin and Roberts 1971) and dielectric behaviour of
solids under the effect of pressure (Lowndes and Martin 1970; Madan 1971). In
recent years it has been possible, with the help of improved techniques, to measure
the variation of dielectric constant and frequencies of lattice vibrations under hydro-
static pressure. This makes it desirable to extend the existing theories to investigate
the behaviour of crystals under the effect of pressure. Recently, Singh et al (1977)
have shown that the Born model and Szigeti relations give an adequate description
of the pressure variation of transverse optic mode frequency in the entire family of
NaCl structure alkali halides. It will be interesting as well as useful to investigate
the applicability of the approach in other ionic crystals which are more complicated
as far as the nature of the chemical bond is concerned. In the present paper we
perform calculations of the optic mode Gruneisen parameters and strain deri-
vatives of dielectric constants for AgCl, AgBr, CsCl, CsBr, CslI, TICI, TIBr and
TII crystals. The halides of Ag and Tl show a remarkably different behaviour from
that of alkali halides in respect of chemical bond, dielectric properties and elastic
properties (Lowndes and Martin 1969; Philips 1970; Loje and Schuele 1970). In the
following sections we give the method of calculation of various quantities and
compare the results with experimental data.
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2. Strain derivatives of electronic polarizability and electronic dielectric constant

The strain derivatives of electronic polarizability in alkali halides have recently been
calculated by Sharma et al (1976) following the energy level analysis performed by
Ruffa (1963). It is evident from recent studies (Jai Shanker and Verma 1975; Jai
Shanker and Agrawal 1976) that Ruffa’s energy level analysis yields reasonable values
of electronic polarizabilities of ions even in crystals other than alkali halides. It is
therefore plausible to make use of this approach to evaluate the strain derivatives of
electronic polarizabilities in the crystals under study. Following Sharma et al
(1976) we can write

da.*./dr = - [Za-f+ Ef+2] /(Ef+ eVM 3 — (eVM/ r), (1)
and

do_[dr = a_[r_ [1—(rs/a,) (da./dr)] 2
where r is the interionic separation, «, and a_ are the electronic polarizabilities and

r. and r_ are the radii of cation and anion respectively. The expression for the
strain derivative of electronic or high frequency dielectric constant €_ can be

0
obtained from the Lorentz-Lorenz relation

which yields
V(deJdV) = — [(e—D) (e, + 2)]/3(1--2), @

where A, the strain polarizability parameter, is given by
A=(V/a,) (dayjdV). ®

The electronic polarizability a, can be expressed as the sum of the polarizabilities of
individual ions (Tessman et al 1953)

e, = & + a_. )

Since V=kr® (k=2 for NaCl structure and 1-54 for CsCl structure), we can write
from (5) and (6)

1 r (de 1 r(d d
A=_ — Ort=- — ..gi _a.:. 7
3 ( ) 3aw(dr+dr\) M

Making use of (1), (2), (4) and (7) one can calculate ¥(de_/dV). The relevant input

data are listed in table 1. It will be pertinent to mention here that if the variation
of polarizability with strain is not taken into account i.e. A=0, we find

V(de /dV) = —[(e,—1) (e, +2)1/3. ®)
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Table 2. Values of (da,/dr), (da_[dr), A and V(de®[dV)

V (deo/dV)

(da,/dr) (du_/dr) A -
Crystal (10-1% cm?) (10® cm?) equations Calculated Experimental

equation (1) equation (2) (6) and (7) equation (4) values tt;asec(ig)
on equation

AgCl —0-36 1-99 0-28 —4-14 —1-76
AgBr —032 2-36 0-32 —545 —1:99
CsCi -031 222 0-37 —1-58 —1-02
CsBr —0-28 2-78 042 —1-64 —1.25
GCsl -024 3-64 0-47 -—1-78 —1-66
TIC1 —-0-52 1-94 0-21 —-671 —5-20
TIBr —0-48 2-31 0-25 - 795 —679
T —-043 307 0-32 —14-82 —

Equation (8) was used by Burstein and Smith (1948a, 1948b) to study the photoelastic
behaviour of crystals. The experimental values of V(de_/dV) can be derived from

the data on photoelastic constants. Unfortunately the photoelastic constants have
not been measured for the crystals under study. Mueller (1935) has, however, sug-
gested that in the absence of such data, one can make use of the temperature depend-
ence of dielectric constant. Lowndes and Martin (1969) have reported the tempera-
ture dependence of ¢,,. These data can be reduced to yield the strain derivatives of

€, using the relation

V(dey/dV) = (1/B) (de/dT), )

where B is the volume thermal expansion coefficient. A comparison of the calcu-
lated and experimental values is presented in table 2.

3. Strain derivatives of static polarizability and static dielectric constant

The static dielectric constant corresponds to the low frequency region where the
polarization arising from the relative displacement of the ions also contributes to
the polarizability. Following the Clausius-Mossotti relation one can express the
static dielectric constant ¢, as

(eo—1)/(€0+2) = (47/3V) oy (10)

where a,, the static polarizability, can be expressed as the sum of electronic and
ionic polarizabiiities

ap=a+a;. (1)
For e;, which arises from the relative displacement of ions, one can write
a; = (Ze)*lf (12)

where Ze is the ionic charge and fthe short range force constant.
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Following expression for the strain derivative of ¢, can be obtained from (10)

V(dey/dV) = — [(& — 1) (g + 2)]/3 [1 — (V/ay) (day/dV)]. (13)
From (11) we have
(day/dV) = (daw/dV) + (da,/dV). (14)

The method for evaluating (daw/dV) has been given in the preceding section. For
estimating (da,/dV) we use (12) which yields

(day/dV) =— (1/f) (df/dV)e, . (15)
From the theory of ionic crystals (Born and Huang 1954), we have

F=Q/3) [#"() + 2N ¢, (16)
so that

v ( a ) _ "' (N[N " (r)—(2[r*¢' ()] a7

f\dv. 38" (N+2/r)¢'(n]

where ¢'(r), ¢'(r) and ¢'"’(r) are the first, second and third order derivatives of the
short range energy ¢(r) with respect to r. The binding energy of an ionic crystal
can be expressed as

W = —(e*[r) + ¢(r) (18)
where ¢ is the Madelung constant and
$(r) = B(r) — (C/r®) — (D/r®). (19)

B(r) is the overlap repulsive energy, C and D are the van der Waals dipole-dipole and
dipole-quadrupole coefficients. For B(r), we adopt two potential functions, an
inverse power law B;r" and the exponential law B, exp (—r/p). The repulsive
parameters B;, B,, n and p are derived from the Hildebrand equation of state (Tosi
1964). Values of C and D are taken from Mayer (1933a, 1933b). Values of f and
(df]dV) calculated from (16) and (17) are given in table 3 along with the repulsive
potential parameters. It may be pointed out here that the two potential functions
lead to the same value for f as n=(r/p)—1. Using the values of £, (V/f) (df/dV) and
(daw/dV) and taking the values of ¢, from Lowndes and Martin (1969) and Samara
(1968) we have calculated ay, (dag/dV) and Vi(de/dV) from (11)-(15). These are
given in table 4 along with the experimental values.

4. Evaluation of the optic mode Gruneisen parameters

Szigeti (1949, 1950) derived the following relation for the transverse optic mode
frequency wyo

0} =Feot2)/ple+2), (20)
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where p is the reduced mass per ion pair. Using the values of £, €, and e one can
evaluate wro from (20). Values of wro thus calculated present close agreement
with experimental data (table 5).

The following expression for the transverse optic mode Gruneisen parameter yqo
can be obtained from (20)

m ==l )-8 - ()

@y

From the LST (Lyddane ef a/ 1941) relation we have
(wro/wro)® = (€o/€) 22)

where wro is the longitudinal optic mode frequency. Equation (22) yields

YL0 = Y0 — % [ (deo) y (d;V) ] (23)

Values of yro and y;0 calculated from (21) and (23) are given in table 5 along with
available experimental data. An average value of the Gruneisen parameter (7) can
be obtained from the method suggested by Barron (1955, 1957) and adopted by
Madan (1971). Following these investigators one can write

% w + ¥ 2
- TO Lo W
y = o (29)
@ 2 + 2
o " “Lo

Values of y calculated from (24) are given in table 5. The Gruneisen parameter is
an important and useful quantity related to the thermal and elastic properties of
solids. Values of this parameter can also be derived from the thermoelastic data
using the relation

7e = (BV/x<C.), (25)

where yr is the isothermal compressibility and C, the specific heat at constant
volume. It is interesting to compare y and y¢ obtained from (24) and (25) respec-
tively (table 5).

5. Results and discussion

In the present study we have considered eight crystals of heavier metal halides with
NaCl and CsCI structures. It is found that the values of the strain polarizability
parameter A are less than 1 and those of V(de /dV) are negative for all the crystals
under study. This implies that the high frequency dielectric constant increases with
pressure. In this respect the crystals under consideration are similar to NaCl struc-
true alkali halides (Sharma ef a/ 1976). It should be noted that the experimental values
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of V(de,/dV) are smaller than the calculated ones. This discrepancy is due to the

fact that there is some purely temperature dependent contribution of the polariza-
bility. The values quoted as experimental (table 2) are derived from the temperature
dependence of €, using (9). In fact, the change in electronic polarizabilities of ions

due to the change in temperature arises from (i) purely volume dependent contribu-
tion and (ii) purely temperature dependent contribution (Vedam ez a 1975). Equation
(9) holds strictly only if contribution (ii) is zero. A. comparison of calculated values
with those obtained from (9) reveals that the temperature dependence of electronic
polarizability at constant volume is relatively larger in AgCl and AgBr than that in
caesium and thallium halides.

It is observed from table 4 that «y, (day/dV) and V(de,/dV) calculated in the present
study show significant deviations from the experimental values. This suggests that
the Born model analysis is not adequate for the crystals under study. It is pertinent
to mention here that the strain dependence of €, and ¢, for Cs halides were first cal-
culated by Srinivasan and Srinivasan (1973) using an ion polarizable shell model.
These investigators used an exponential form of the Born repulsive energy and found
that the calculated (1/¢,) (dey/dP) were about 70 to 100% more than the measured
values. This result agrees with our predictions for CsCl, CsBr and Csl (table 4).
It should be emphasized that in calculating the values of @, and (da,/dV) the charge
on the ions has been considered to be Ze with Z = 1 and e the electronic charge.
In fact the classical theory cannot explain the dielectric behaviour of ionic crystals
unless the effective charge parameter is introduced for ions (Szigeti 1949, 1950).
If Z*e be the effective ionic charge, (12) will be modified to

a; = (Z*e)¥/f. (26)
Values of Z* which will yield «;, and «, in agreement with experiment are listed in

table 6 and compared with the effective charge parameter calculated by Lowndes
and Martin (1969) using experimental data on ¢, ¢, and wre and making use of the

Szigeti relation
€ — €4 = [4m(Z*e)*[IV] [(e,, + 2)*/ped ). @D

Equation (26) leads to the following expression

2 ew) @) @

Values of (dZ*/dV) which produce (da,/dV) or (day/dV) in agreement with experi-

ment, are given in table 6. One can also evaluate (dZ*/dV) by taking the volume
derivative of (27) which yields

2!% (%ZV*) =t— 70— [ (ew1+2) + 2(e01—€°o)] V(‘%o)

+ s (79 (29)
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Table 6. Values of Z* and (V/Z*) (dZ*/dV)

z* (Viz*) [(dZ*)/@V)]
Calculated Experimental Inverse Exponential Experimental
Crystal equations (Lowndes and Power power Form based on

(12) and (26) Martin 1969)  equation (28) equation (28)  equation (29)

AgCl 0-92 0-69 0-62 0-92 0-90
AgBr 0-88 0-68 0-73 1-02 1-04
CsCl1 0-82 0-85 —0-37 —0-11 —0-47
CsBr 0-80 0-82 —0-25 0-01 0-08
Csl 0-75 0-78 —0-27 —0-02 025
TICI 0-80 0-87 —0-31 0-02 —0-09
TIBr 0-82 0-86 —0-47 —0-02 —044

A comparison of (V/Z*) (dZ*/dV) obtained from (28) and (29) is presented in table 6.
Values of wro and yyo reported in table 5 present good agreement with recent experi-
mental data. Value of y;, is smaller than yq0 for the crystals under study. It is
interesting to mention here that the optic mode Gruneisen parameters of TiBr were
calculated by Srinivasan ef al/ (1975) using a variable charge shell model. Their
values for yro and y;, are respectively 4-05 and 1-05 and in good agreement with our
results.

An alternative explanation of the discrepancy between calculated and experimental
a; can also be provided without introducing the concept of the effective charge para-
meter. This can be done by deriving the Born repulsive parameters from the values
of a, corresponding to the experimental data of static dielectric constant as suggestep
by Boswarva and Simpson (1973) . The parameters thus obtained are given in table 3.
These differ significantly from the corresponding parameters derived from the com-
pressibility data (table 3). It has been argued by Boswarva and Simpson that for
studying the dielectric behaviour of ionic crystals one should make use of the short
range parameters based on dielectric data. In view of this argument the calculations
for (day/dV), V (dey/dV), wro, Y10, YLo and ¥ have been repeated using the dielectric
parameters. The results have been included in tables 4 and 5. We observe from
there that the use of dielectric parameters does not improve the agreement between
the experimental and calculated values of V(dey)/dV) and yyo. It is therefore evident
that the dielectric behaviour of the crystals under study is better explained by intro-
ducing the concept of effective charge parameter in the theory of dielectric polari-
zation.

6. Conclusions

We have thus presented an analysis of the strain dependence of dielectric constants
and optic mode frequencies of the halides of silver, caesium and thallium using the
Born model and the Szigeti relations. The calculated values of V(de/dV) and yro
are found to be consistent with experimental data. It has been demonstrated that
consideration of the effective charge parameter and its volume dependence is essen-
tial to explain the static polarizability and its variation under hydrostatic pressure.
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For AgCl and AgBr, the temperature dependence of the electronic polarizability
and volume dependence of the effective charge parameter are significantly larger
than those for the halides of caesium and thallium.
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