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Relativistic fluid sphere on pseudo-spheroidal space-time 

RAMESH TIKEKAR and V O THOMAS* 
Department of Mathematics, Sardar Patel University, Vallabh Vidyanagar 388 120, India 
* Department of Mathematics, The Faculty of Science, The Maharaja Sayajirao University of 
Baroda, Baroda 390 002, India 

MS received 13 June 1996; revised 15 January 1998 

Abstract. A new exact closed form solution of Einstein's field equations is reported describing 
the space-time in the interior of a fluid sphere in equilibrium. The physical 3-space, t = constant of 
its space-time has the geometry of a 3-pseudo spheroid. The suitability of this solution for 
describing the model of a relativistic superdense star is discussed and the stability of the model 
under radial pulsations is examined. 
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1. Introduction 

The non-linear nature of the Einstein's field equations is a consequence of the self- 
interaction of the gravitational field. This makes it difficult to obtain relativistic models of 
spherical stars based on exact solution of Einstein's field equations describing spherical 
distributions of matter. The actual properties in the central region of a relativistic compact 
star are not precisely known and so assumptions of general nature to obtain exact 
solutions of Einstein's field equations become necessary. It is desired that solutions 
should be physically plausible and at the same time simple in form. This problem has 
been considered by several authors [1-6]. 

Here we have investigated the gravitational significance of space-times whose physical 
space obtained as t = constant section has the geometry of 3-pseudo spheroid and it 
is shown that it can describe spherical compact distributions of matter. The form of 
the space-time metric and its general features are discussed in § 2. It is shown that the 
geometry of the space-time is governed by two parameters R and K. The space-time 
metric corresponding to a new exact closed form solution of Einstein's field equations is 
written in § 3. The suitability of this solution for describing the model of a superdense star 
is explored following the approach of [4, 5, 9] in the subsequent sections. 

2. Static pseudo spheroidal space-time 

A 3-pseudo spheroid immersed in the 4-dimensional Euclidean space with metric 
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da 2 = dx 2 + dy 2 + dz 2 + dw 2, (1) 

will have the cartesian equation 

W 2 X 2 + y2 + Z 2 

b2 R2 -- 1, (2) 

where b and R are constants. The section w = constant of the 3-pseudo spheroid are 
pseudo spheres, while sections x = constant, y -= constant and z = constant represent, 
respectively hyperboloids of two sheets. 

The parametrization 

x=rsinOcosfb,  y=rs inOs in~ ,  z=rcosO,  w = b ( l + r 2 / R 2 )  1/2 (3) 

of the 3-pseudo spheroid leads to 

do 2 _ 1 + Kr2/R 2 
1 + r Z / R  2 dr2 + r2(d02 + sin2 0d~b2)' (4) 

where 

K : 1 + bE/R 2. (5) 

The pseudo spheroidal 3-space given by eq. (4) is spherically symmetric and regular 
for K > 1. It is flat when K = 1 and generates into open hyperboloid when K = 0. 

Following the Vaidya-Tikekar [4] approach we consider the space-time with metric 

(IS 2 = eV(r)dt2 1 + Kr2 /R  2 1 + r2/R 2 dr2 - r2(d02 + sin2 0d~b2)" (6) 

Various aspects of spherical distributions of perfect fluid in equilibrium described by 
space-times with metric in a form similar to (6) have been investigated by Buchdahl [1]. 
Vaidya and Tikekar [4] have examined the geometrical features of the 3-dimensional 
physical spaces obtained as t = constant hypersurfaces of such space-times. The space- 
time of the specific solution discussed by Buchdahl has the geometry of a 3-spheroid 
immersed in a 4-dimensional Euclidean space of Vaidya-Tikekar type. An extensive 
study of such solutions has also been done by Maharaj and Leach [6]. The 3-space of the 
metric (6) is characterized by pseudo spheroidal geometry and therefore the specific class 
of solutions in this set up is clearly distinct from the specific class of solutions reported by 
Buchdahl, Vaidya and Tikekar [4] and Maharaj and Leach [6]. 

3. Matter distribution on pseudo spheroidal space-time 

In this section the gravitational significance of a static, spherical distribution of matter in 
the form of perfect fluid is explored on the background of the space-time of the metirc (6) 
with energy-momentum tensor 

Tij = (p + p/c2)uiuj - (p/c2)gij. (7) 

Here p,p and u i respectively denote the matter density, fluid pressure and the unit 4-velocity 
field of the fluid. Since the fluid distribution is at rest, 

u' = (0, 0, o, e-V/2). (8) 

96 Pramana - J. Phys., Vol. 50, No. 2, February 1998 



Relativistic fluid sphere 

Einstein's field equations 

1 87rG Z 
T~ij - -~'~gij  - :  - c2 ij (9) 

for a specific choice of the curvature parameter K = 2 leads to the space-time metric 
written explicitly as 

ds2= V/I +r2/R 2 + B  X ( r ) - ~ V / I  + 2rZ/R z 

1 + 2r2/e 2 
1 + r 2 / R  2 dr2 - r2(d02 + sin20dq~2)' (10) 

where 

X(r) : V/1 + r2 /R 2 ln[v~x/ i  + r2 /R2 + V/1 + 2r2 /R 2 ] (11) 

and A, B are arbitrary constants. 
The matter density and fluid pressure for the distribution (10) are expressed as 

3( 
c 2 P = ~ 5  1 + ~ - /  1 + - ~ - )  , (12) 

87rG a~¢/1 + r2/R 2 + B[X(r) + ( l /v/2) ~//1 + 2r2/R 2] 
c 4 P  = RE(1 + 2r2/R2)(Av/1 + rZ/R 2 +B[X(r) - (1 /v~)  ~ 1  + 2r2/R2]) " 

(13) 

It is evident from eq. (12) that density is positive throughout the distribution. The 
gradient of density dp/dr is found to be negative indicating that/9 is decreasing radially 
outward. 

4. Size of  the fluid sphere 

The total mass and size of the configuration can be estimated using the scheme given by 
Vaidya and Tikekar [4], as follows. 

Equation (12) determine p at the boundary r = a of the distribution as 

87rG 3(1 + 2a2/3R 2) (14) 
7 p(a) = R2( 1 + 2a2/R2)2. 

We introduce the density variation parameter 

A - p(a) _ 1 + 2a2/3R 2 (15) 
p(0) (1 + 2a2/R2) 2' 

where p(0) is the density at the centre. Since p is a decreasing function of r, A < 1. 
Solving (15) as quadratic in (a2/R 2) one finds 

a 2 1 - 6A + vq- + 24A 
R --y = 12A (16) 
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The algebraic root assigning negative values to a2/R 2 is rejected to ensure that a/R is 
real. 

Equation (12) implies that the matter density at the centre is explicitly related with 
curvature parameter R as 

87rG . • 3 (17) p(0) = 

Equation (17) therefore determines R in terms of p(a) and A. Equation (16) then 
determines the boundary radius a of the distribution. Thus the size of the configuration is 
determined in terms of the surface density p(a) and density variation parameter A. 

5. Physical  plausibil ity 

Any physically acceptable solution must comply with the following conditions: 

(i) The matter density p and fluid pressure p should be non-negative throughout the 
distribution. 

(ii) The gradients dp/dr and dp/dr should be negative. 
(iii) The speed of sound should not exceed the speed of light as implication of causality 

fulfillment. 
(iv) The interior metric should match continuously with the Schwarzschild exterior 

solution 

d s 2 = ( a - ~ ) d t Z - ( 1 - ~ ) - l d r Z - r 2 ( d 0 2 + s i n 2 0 d 0 2 )  (18) 

at the boundary surface r = a of the distribution where p(a) = O. 

The continuity of the metric coefficients give 

a 3 

m = 2R2( 1 + 2a2/R2 ) (19) 

and 

where 

V/1 - 2m/a = AX/1 + a2/R 2 + B (X(a) - (1/v~)v/1 + 2a2/R2), (20) 

X(a) --- V/1 + a2/R 2 ln(x/~V/1 + a2/R 2 + V/1 + 2a2/R2). 

The continuity of pressure across r = a requires that pressure 
boundary implying that 

AV/1 + a2/R 2 = -B(X(a) + (1/x/2)V/1 + 2a2/R2). 

The constants A and B are determined from eqs (19), (20) and (22) as 

A = X(a)+ (1/x/2)V/I + 2a2/R 2 
V/2(1 + 2a2/R 2) ' 

(21) 

to vanish on the 

(22) 

(23) 
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B = V/1 + a2/R2 
v~(1 + 2a2/R2) ' (24) 

while the total mass m is determined by (19). 
The expressions (23) and (24) for A and B when substituted in (13), one can fred after a 

lengthy but straightforward computation that p > 0 throughout the sphere. Further using 
the TOV equation we found that the pressure is decreasing radially outward. 

Using the expressions (12) and (13) for density and pressure and the values of A and B 
in the TOV equation it can be readily seen that the speed of sound will not exceed the 
speed of light in the central region and boundary of the distribution, ensuring the 
fulfilment of causality requirements. 

The expression for dp/dp, which represents the speed of sound in isentropic fluids, 
takes the form 

dp = 7rGR2(p +p/c2)(1 + 2r2/R2) 3 [1 + (87rGR2p/c4)(1 + 2r2/R2)] (25) 
dp (5 + 2r2/R2)(1 + r2/R 2) 

At the centre, dp/dp has the value 

dp) 7rGg2[p(O) -t- p(O)/c2](1 -[- 87rGp(O)R2/c 4) 
dpp 0 = 5 (26) 

From eqs (12), (13), (23) and (24) we can show that 

p(O) - 3p(O)/c 2 > 0 (27) 

at the centre and using (17) and (27) it readily follows from (26) that 

(dP) < 0.2c2. (28) 

At the boundary, using (14), we have the expression 

( d p )  3(1 + 2a2/R2)(1 + 2a2/3R 2) c2 cZ" 
dpp s -  8(5 + 2a21R2)(1 + a21R 2) < 

(29) 

The variation of dp/dp, which represents the speed of sound in isentropic fluids, is 
examined using numerical procedures for certain specific models in this set up. It is found 
that p/p is decreasing radially outward indicating that d(p/p)/dp > 0. However the 
speed of sound is found to be increasing radially outward for a number of models, which 
is an unsatisfactory feature of these solutions in view of the expectation that it should be 
decreasing radially outward which follows from equations of state found in literature. 
Since definite information about the equation of state for matter in nuclear density ranges 
is lacking, as argued by Knutsen [9], one must be careful in this respect. 

6. Superdense star model  

When all thermonuclear sources of  energy are exhausted, a star will gradually cool down 
and in this process it will collapse gravitationally and form a compact star - white dwarf, 
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Table 1. Masses and 
K = 2 and p(a) = 2 x 

V 0 Thomas 

equilibrium radii of superdense 
1014 gm/cm 3. 

star models corresponding to 

A R (km) a (km) m (km) m/Mo A B 

0.900 26.928 04.875 0.075 0.050 1.094 -0.674 
0.800 25.388 06.828 0.215 0.146 1 .062 -0.639 
0.700 23.748 08.271 0.403 0.273 1.027 -0.602 
0.600 21.987 09.429 0.634 0.429 0.987 -0.562 
0.500 20.071 10.382 0.904 0.613 0.943 -0.518 
0.400 17.952 11.162 1.216 0.825 0.890 -0.469 
0.300 15.547 11.771 1.571 1.065 0.826 -0.413 
0.200 12.694 12.176 1.972 1.337 0.742 -0.345 
0.125 10.035 12.291 2.304 1.562 0.653 -0.279 
0.100 08.976 12.274 2.421 1.641 0.613 -0.252 

Note: 1 Mo = 1.475 km. 

neutron star, or black hole. Generally a star keeps its equilibrium with outward pressure 
against the self gravitational force. The model that we have presented here can describe 
the hydrostatic equilibrium conditions in such a superdense star with densities in the 
range 1014-1016 gm/cm 3. We take the matter density on the boundary r = a of the star as 
p(a) = 2 x 1014 gm/cm 3. Choosing different values for A, we determine the boundary 
radius a of the star and its total mass m in accordance with the scheme of § 4 and § 5. The 
value of m obtained is in kilometers. The mass of the star in grams is obtained using 
M = mc2/G. The results of these computations together with the values of constants A 
and B as determined by eqs (23) and (24) are given in table 1. 

For A _< 0.7 in table 1, we get a set of physically viable models of relativistic compact 
stars. The models with A > 0.7 in the table have their equilibrium radii much smaller than 
that of a neutron star. The equilibrium models presented here take lesser values for radii a 
and total mass m, than the corresponding values given by Vaidya and Tikekar [4]. 

7. Dynamic  stability 

A sufficient condition for the dynamic stability of a spherically symmetric distribution of 
matter under small radial adiabatic perturbations has been developed by Chandrasekhar 
[7]. A normal mode of radial oscillation for an equilibrium configuration i.e, 

6r = ~(r) exp(iwt) (30) 

is stable when the frequency of oscillation ~o is real and unstable when a; is imaginary. 
Chandrasekhar's [7] pulsation equation for the line element (6) is given by 

fboun y + (p + p)u 2 
W2 

] a centre exp ~------~)  r2 
dr 

[boundary f3u+a'~ (p+p'~ 

=acent~e e x p , - - - f - - )  k r: ] 

{ [ ~  d u l / d u ' ~ 2  dr \ / j ~] dd--~Pp(du) 2 } drr x 4 [ ~ r l  +81rpe q u2 + dr, (31) 
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where 

u = ~ r2e -"/2 and e ~ -- 1 + 2r2/R 2 with K = 2. (32) 
1 + r2/R 2 

The boundary condition to be satisfied at r = a is that the Lagrangian change in 
pressure 

A p = -  \ ~ - ]  drr = 0  a t r = a ,  

where 3' is the adiabatic index. We must have 

du 
dr 0 at r = a .  (33) 

Following the method of Bardeen et al [8] and used by Knutsen [9] to investigate the 
stability of Vaidya-Tikekar models, we choose 

u : R3x3/2(1 q- alx + bl x2 -k-., .) 

as the trial function where the new variable x is taken as x = 2r2/R 2. 
The boundary condition du/dr = 0 at r = a implies 

3 + 5alb + 7bib 2 + . . . .  0, 

where b : 2aZ/R 2. 
The pulsation equation (31) for the metric (6) now takes the form 

where 

(34) 

(35) 

wz Jcentr erb°madary exp ~ - - )  ~f3e~+u'~(P+p)u2 dr=fobRIR2((R3+R4+Rs)R6+R7Rs)dx, 

(36) 

2(x + 1) (A1 x / ~  2 + B1 Ix/x+ 2 l(x) - ~ ] ) 3 ,  

R2 = L(x)(x + 2) +p(x)(x + 2) + q(x) 
47rR2(x -k- 1)2[L(x) +p(x) + q(x)] ' 

R3 = -8[L(x) +p(x)] 
R2(x + 2)[L(x) + p(x) + q(x)] ' 

-2x[L(x) + p(x)] 2 
R4 = R2(x -1- 2)2[Z(x) -~- p(x) -1- q(x)] 2' 

2(x + 1)[Z(x) +p(x) - q(x)] 
R5 : 

R2(x + 1)(x + 2)[L(x) +p(x) + q(x)] ' 

R6 = 2R4x2(1 + alx q- blX 2 +'"  .)2 

(X + 1)[L(x) +p(x)][L(x)(x + 2) +p(x)(x + 2) + q(x)] 
R7 = 

(x + 5)(x + 2)[L(x) +p(x) + q(x)] 2 
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Table 2. The values of the integral on the right hand side of the 
pulsation equation (36) for some specific choices of the constants 
al and bl and/~ = 0.4. 

al bl Integral 

0.000 -0.717 1.476 
-0.776 0.000 0.536 
-0.858 1.000 0.084 

1.000 - 1.641 3.447 
5.000 × 102 -4.627 × 102 1.076 × los 

-5.410 × 102 5.000 × 102 1.246 × lO s 
1.000 × 105 -9.240 × 104 4.272 × 109 

-1.000 × lOs 9.240 × 104 4.272 × 10 9 

Rs = 4R2x(3 + 5alx + 7blX 2 + . . . ) 2 ,  

L(x) = r(x)[/(b) - / (x ) ] ,  

l(x) = ln[~/x + 1 + v/x + 2], 

l(b)= ln[ b ~ / - ~ l + ~ ] ,  

p(x)= ¢ 7 - ~ , / b  + 1, 

q(x) = ~ ~/b + 2, 

r(x) = ~ x/b + 2, 

v / b +  2/(b) + v ~ +  1 
A I :  

b + l  

v'~+2 
BI = 

( b +  1)" 

We have evaluated the integral on the fight of the equation (36) numerically for 
different values of b. It is found that the integral admits positive values for 0.243 < b < 
1.146 (i.e. 0.3 < ,~ < 0.7) and for different choices small, large, postive or negative 
values of the constants al,  bl. 

We have reported in table 2 the values of the integral on the right side of the equation 
(36) evaluated numerically for certain specific choices of al and bl for the model with 
A = 0.4 of table 1. 

This analysis indicates that these models with 0.3 < )~ < 0.7 will be stable. The space- 
time with pseudo spheroidal geometry for its spatial sections t = constant thus may admit 
the possibilities of describing interiors of superdense fluid stars in equilibrium. 
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