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Abstract. Quantum mechanics presumes classical measuring instruments with which 
they interact. The problem of measurement interaction between classical aria quantum 
systems is posed ana solved. The restriction to compatible measurements comes 
about naturally as the condition for the integrity of the classical system. A technical 
device is the perspective on classical mechanics as quantum mechanics with essentially 
hidden dynamical variables. 
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1. Introduction 

The need for interaction between classical and quantum systems 

Classical mechanics is the crystallization of our everyday experiences of matter 
and motion. During this century, we have found, however, that to deal with 
matter in the minute and matter in the subtle we must use qua~tum mecha~.ics 
(Jammer 1966). Quantum mechasfics has many poi~)ts of similarity with classical 
mecb.a~fics and these aid us in developfixg quat~tum mechanics; but there are 
also mazty essential points of differevce. The most important of these points of 
diffcre~lce is that not  all dy~lamical variables can be measured at the same time. 
The dynamical variables constitute a noncommuting algebra from which a commut- 
ing subalgebra is selected by airy possible measurement. Such a state of affairs 
is beyond our everyday experievce, tb.ougb, it may not be totally alie~., in that, 
poetic experience, dream experience and extraordinary states of awareness share 
kinship with the structure of quay;turn mechanics. 

Measurement in quantum mechanics is the physical process by which " p o i n t e r  
readings " are obtained which correspond to numerical values of a commuting 
subalgebra of dynamical variables. The remarkable feature e f  quantum-mechanical 
measurements is that not  all dy~)amical variables can be measured simultaneously 
eve~), in principle. Yet the measureme~,~t of a maximal commuting subalgebra 
of dynamical variables would yield, in the case of pure states, a complete speci- 
fication of tb.e state. Even a pure state can yield a dispersion in the measure- 
merit of ore  or more dynamical variables. So the measurement process should 
be such as to produce classical pointer readings o~1 the one hand;  and lead to 
unambiguous measurements for a " c o m p a t i b l e "  set of measurements, a measure- 
merit of a commuting set of dynamical variables (Bohr 1963; Dirac 1958) on the 
other hand. 
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Quantum mechanics as a physical theory, the:l, must presuppose classical systems 
which cart be influenced by the quaa~tum sys,,em. It must therefore, require the 
coupling of classical and quantum systems. [The classical measuring instrument 
must be a classical system with a low dynamic inertia which undergoes a catastrophe 
so that the pointer readings can be recorded.] It is, however, known that the general 
structure of classical and quantum dynamics are different (Moyal 1949). It 
is customary to avoid the problem of couplh~g of classical and quantum systems 
and deal with models of the measurement process using quantum systems which 
are treated semiclassically (d'Espagnat 1971). 

In this paper I shall proceed in a diflbreat maamer. I introduce a direct method 
of dealing with. the interaction of classical aJ,.d quantum systems. It is made 
possible by the discovery that a classical system caJt be embedded in a quaa~tum 
system with. a continuum of superselection sectors. If the classical system is to 
preserve its integrity, the couplings to the quantum system must be suitably restric- 
ted. The notion of compatible measurements emerges as consequence of this 
principle ofhTtegrity of the classical system. As far as I am able to tell, the theory 
developed in this paper is consistent with the traditional ideas of measurement 
theory and provides the solution to the long-standing problem of providing a 
dynamical framework for quantum measuremea~t theory. 

2. Classical systems as quantum systems ,~ith superselection 

Quantum mechanical states are vectors (or, rather, rays) in a linear vector space 
,and can be superposed (Dirac 1958). The result of superposition is a pure state, 
a coherent weighted combination of the two states; it is to be contrasted with a 
mixture which is an incoherent weighted combination of the two states. In classical 
mechanics the pure states are those corresponding to precise values for all dynamical 
variables. As such, we cannot but have incohere~t additions between states; 
there are no coherent combinations of two pure states which can be identified as 
a pure state. 

There is one situation in which coherent combinations between two pure states 
of a quantum system are not identified: this arises in the case of a quantum 
system with. " superselection rules " (Wick et al.. 1952; see also Jordan 1969). 
I f  we have subsets of states which are such that no dynamical variable which connects 
these two subsets can be measured, then the relative phase of any two states 
belonging to these two subsets becomes irrelevant. The two subsets of states are 
now labelled superselection sectors. The nonexistence of matrix elements between 
superselection sectors implies that any dynamical variable which has a co~tstaJtt 
value within a superselectioa sector, but different values in different superselection 
sectors, obeys an inviolable selection rule--a " superselection rule" It is believed 
that the electric charge, baryon number and odd~tess of fermions generate super- 

selection rules. 

I find it more convenient to put the emphasis somewhat differently and view 
superselection as a "principle of impotence". In a quantum theory let us 
designate certain dynamical variables as being unobservable in principle. Consider 
all dynamical variables which commute with the set Z of non-observable dynamical 
variables. They form a subalgebra called the commutant Z '  of the set Z. This 
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is the subalgebra of observables• In general the algebra of observables is non- 
commutative like the algebra ot dynamical variables. 

The remarkable fact is that we could enlarge the set Z to the point where the 
commutaatt of observables, Z', is commutative. Then all the observables cart be 
measured simultaneously. This could be a suitable model for a classical system, 
especially if each pure slate is a superselection sector by itself. Theu the abseIme 
of superpositions for classical systems would be understandable. 

For Hamiltonian system with one degree of freedom and with commuting canoni- 
cal variables X, P the equations of motion take the form 

~H 
- i [x, ~1 X =  ~p 

,p= ~H 
a-~ = - -  i [p ,  /7/] ( 2 . 1 )  

where, 

• [ b H  b bH ~ ) h= - ' k ~  ~-x ~x ~ .  

Th.e operators 2 and p defined by 

p = _ i-~x i = + i ~ ;  
have the property 

[X, X l = O ;  

[p, ~1 = - i ; 

Tiros the quamtities 

(2.2) 

(2.3) 

Ix, P] = i : 

[p, p] = O. ( 2 . 4 )  

o , : ( X , p  ) and w = ( - - p , ~ ) : i - ~ ; ,  

may be viewed as the canonical coordinate and mome1~tum operators of a 
qum~tum system with. two degrees of freedom. Tb.e  equatior~s of motion of 
the classical system call be viewed as the equation of motion of the quantum 
system with. the Hamiltonian operator 

bH (oJ) 
/aro~ = i ~ d *~ , ~ j  

~ ( o ~ )  = [o~,  ~oq~.~. ( 2 . 5 )  

i:l the form 

o, = - ; [% ~ro d _= i (o, Ho~ - -  ~rop co) ( 2 . 6 )  

We note that the Ham.iltonian operator is linear in the quantum momenta i (~/~oa) 
and hence any phase space density p Co) is mapped into a new phase space density 
t7 (co) such that ~ (~') = p (co) where ~" are the displaced values obtained by solv- 
ing (2.6). If instead of this Scb.r/3dinger form of time development we were to 
view the time development in terms of the Heisenberg picture, we have th.e result 
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f(oJ) - + f  (~') (2.7) 

where ~' is the solutiou to (2.6). It is important to note that  ~ is a function 
of ,~ alone and not of o, and rr by virtue of the linearity of Hop in the quantum 
canonical momenta rr. 

Let us now endow the quantum system with two degrees of freedom with the 
superselection principle that the quantum momenta rr = i ( b/bw) are mwbservable at all 
times and under all conditions. This implies and is implied b!~ the identification 
of  the observables with the commutative algebra of functions f (o)) of the coordi- 
nate operators. [This construction of a quantum theory embedding l he classical 
theory is to be contrasted with the work of Coopman 1931 ; see also, Jorda~l and 
Sudarshan 1961]. 

State vectors for the quaxttum system are give% in the SchrSdinger represe~ttatien, 
by their wave functions $ (~o). But because of the superselection principle, the 
relative phase of the distinct ideal eigenstates of coordinate operators is unmeasur- 
able and, therefore, irrelevant. Hettce, we are led to the equivalence 

~b (~o) ~ $ (o J) exp {i,& (~o)} (2.8) 

Therefore, only the absolute value of ¢ (o~) is relevant and may be taken as the 
positive square root of the phase space density 

~b (co) = ~ /p (~) .  (2.9) 

The ideal eigenstates of the coordiimte operators is identified with  the classical 
state corresponding to a point in phase space. The time development is given 
by ~2.6) and (2.7) and leads to a trajectory in phase space which is entirely observ- 
able. The possibility of being able to observe the entire trajectory is to be directly 
traced to the linearity of the Hamiltonian operator (2.5) in the quantum momen- 
tum operators. 

It is to be noted that the Hamiltonian operator (2.5) is not observable: What 
is observable is the associated energy function H (~o) which is a function of the 
quantum coordinate operators only. 

The restriction to the study of a classical system with one degree of freedom 
.and its mapping on to a quantum system with two degrees of freedom with a 
superselection principle can be generalized to a system with f degrees of freedom. 
In this case 

= ( q l , . . . . , q l  ; Pl . . . . .  ,Pt) 

, . . . .  , ° rr = i . . . . .  ' 3qt ~P*' (2.10) 

The observables are functions of the o) only, and the Hamiltonian operator being 
linear in the quantum momenta rr the trajectories continue to be observable. 

We can generalize the system even further. Let w denote the ,.ntire set of classical 
dynamical variables. We can then map it onto the superseleetion sectors of a 
quantum theory with co and i(3/boJ) a s  coordinate and momentum operators and 
a Hamiltonian operator (2.5) linear in the momentum operators. The generalized 
"trajectory" is now the specification of all aJ as functions of time and this is 
entirely observable. 
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Not only the Hamikonian, but all the generators of canonical transformations 
including displacements, rotations and transformations to moving frames are 
linear in the momenta (Sudarshan and Mukunda 1974). None of them are observ- 
able, but lhere are associated dynamical quantities of momentum, angular momen- 
tum and moment of mass which are either constant or have simple time depen- 
dence. I shall not elaborate on these generalizations in this paper. 

What I have presented here is the complete equivalence of a classical system 
with a suitable quantum system endowed with a superselecaon principle: Classical 
mechanics as a hidden variable theory! 

.3. Coupling of cIassical and quantum systems 

Since a classical system is a special kind of quantum system, we may couple a 
.classical system with a quantum system provided we pay attention to the super- 
selection principle: the momentum operators rr = i (~/~co) shall continue to remain 
unobservable. The dynamical variables are elements of the noncommutative 
algebra generated by co, rr and the quantum system variable which I collectively 
.denote by ~:. These variables ~: may involve canonical pairs Q, P or spin variables S, 

or more general quantifies. (In this paper I deal with systems with a finite 
number of degrees of freedom and specifically exclude dynamical fields, for techni- 
,cal reasons). Given such a system, the Hamiltonian operator may be written 

: o n it'll; (2.11 Hop Ho~ + "'o. 

-with 

= ~ ~ ~t`" (co) + .¥ (~) 

~H 
bcot  ̀

- - -  ~t`" ( c o ) ~ .  + x (~:). 

b 
Hio"~ = i d, t` (co, ~:) ~ + h (co, ~) (2.12) 

= .~t` (~,, 0 =~, + h (o,, ~). 

Here H is a function of co only and X is a function of s e only ; g,u and h depend 
on both set of variables to describe interaction. We can absorb the "f ree  Hamil- 

t o n i a n "  terms into the interaction part and rewrite 

Hop = ~t` (co, s e) ~rt  ̀+ X (co, se). (3.1)  

"The equations of motion for cot' and ~: are given by 

lot` = - C ( 3 . 2 )  

--~ - - i  [~:, ~t`] 7rt  ̀- -  i [~:, X]. (3.3) 

By virtue of these equations cot* (t) become functionally dependent on the non- 
commutative quantum variables ~e, but these same equations guarantee that they 
will continue to remain mutually commutative. We can also write down the equa- 
tions of motion for ~rt`. The superselection principle requires them to remain un- 
observable and also demands that cou (t) should not depend on ~r. 
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We can use (3.1) to calculate the higher time derivatives of oJt*. We get 

~t* = q- i[~ tz, Hop] 

P/' ' ~  [(,~, ~.- i [~,~t*, X]. (3.4) 

If  co (t) is to be independent of ~r for all t, we must have the coefficient of the 
~r~ term vanish. We get, therefore, the requirement 

[~t*, ~"1 = o. 

We could derive a stronger condition by observing that according to (3.2) the 
velocities are given by - ~t* (oJ) and these are all simultaneously measurable. Hence 

[q,t* (o~), ~ ,  (o;)1 = 0. (3.5) 

where w' is a suitable point in the classical phase space which may or may not  
coincide with oJ. [We may therefore differentiate with respect to oJ' any number 
of times !] Barring singular " impuls ive"  interactions velocities and accelerations 
should also commute, by virtue of (3.4) and (3.5) we obtain 

[I6 ~ (~), x] ,  +" (~')] = 0. 

If we were to deal with higher derivatives of w, we could deduce additional rela- 
tions of the form 

[ tI+  +) ,  x], xl ,  +')] = 0 

-,, +' +')] = o  

and so on. All these relations are satisfied i f :  

[<fit*, X] ----- ft* (~, ~o). (3.6) 

Consis-;ency of the superselection principle for the interacting classical system 
and the observability of the " t r a j ec to ry"  can be lranslated into the requirement 
that the coupling funcdons (bt* Co, ~:) are dependent only on a commutative subset 
of ~he quantum variables; the function may depend on other quantum dynamical 
variables also but in such a special manner that [<b~, X] depends only on these 
commuting sets of quantum variables. If, for example, we were to have q~ 
dependent only on canonical coordina",e operators, then X can depend linearly 
on the quantum momentum operators, unless the interactions are impulsive. 
[I am grateful to Narasimhaiengar Mukunda for a patient and critical discussion 
of these considerations.] 

It is gratifying that we are naturally led to a measurement, via the classical 
trajectory, of only a commuting set of quantum dynamical variables. I discuss 
measurement in the next section. 

4. Measurement 

Let us now turn to measurement of quantum dynamical variables. We have seen 
in the last section that if we need -to measure a subset of the maximal commuting 
sez of quantities ~, which themselves form a subset of the set ~: of dynamical 
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variables of the quantum system, then we couple suitable functions <b/z (~, ~o) to 
the classical system through the nonobservable dynamical variables i (3/~ojt'). Then 
the classical trajectory ~o~ (t) now depends on the ~. A consequence of this is 
the possibility of "branching" of the classical trajectory if the quantum variables 
~bt' are many-valued. The most familiar example of this is the splitting of a 
molecular beam in the Stern-Gerlach experiment. We now study the measure- 
ment problem more systematically. 

Two kinds of measurement interaction may be distinguished: continuous measure- 
ments in which quantum dynamical variables are monitored continuously and 
discrete measurements in which instantaneous values are measured by one or more 
impulsive interactions. 

For impulsive interactions we consider a singular perturbation of the un 
coupled quantum and classical systems idealized in the form 

/¢,°t = v (o~, ~) ~ (t - -  to) 

C = ~ i ~  (o,, ~ ) ~  + x(~,  ~:~ j ~ (t-to).  (4.1) 

The effect of this impulsive interaction is obtained by going to the interaction 
picture. (I am grateful to Baidyanath Misra for a discussion of this question). 
The generator of interactions is the time-ordered unitary operator 

U = (exp { - -  i ~ V (oJ (t), ~ (t) 3 (t - -  to) dt))+ 

( b 
i X )  (4.2) exp <b~ ~ ~ 

The classical system is a quantum system with the state vector ~b (~o)wi~h the 
,distinct values of o~ corresponding to distinct superselectlon sectors. So essentially 
only I~ (oJ) ] is relevant. The integrity of the classical system demands that this 
feature be preserved by the transformation (4.2). If the state vector of the 
coupled system is denoted by 7 t (co, ~) 

v, (,o, 0 ~ ~ ,  (~o, 0 
where 

eo z = UoJU-1 

~t = U~U -1 

~,,  = t / - 1 4 , .  

We require that the b/boJ do not enter into the expression of ~z. 

l__r~ ~ b iX, ~ ]  oh~ = o~ ~ q~t~ + 2! L 3 o~ 

~Ojb, e e  • 

Ihese requirements are met if 

0 . 3 )  

(4.4) 
Since 

(4.5) 
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~b~ = cb~ (~o ~) (4 .6 )  

X = 0 .  

The condition (4.6) together with. (4.5) imply the possibility of measuring all 
members of a complete set ~ of commuting observables. We may write the 
expressiort for ~o1~ given by (4.5) as the solution of the differential equations 

3--~-- q- q~ (oJ (~-), ~) = 0 (4.7} 

with. the boundary conditiolts 

o,~' (0 )  = o ~  (to)  = o ~  ( to  - )  

o~t' (1) = cot# (to) = ~ (to q- ). (4.8). 

Sit?ce all tb.e ~ can. be simultaneously diagonalized (4.7) may be viewed as a 
set of differevtial equations labelled by a set of parameters; (4.8) then yields 
a "bra#cb.iltg of the trajectories" according to ttte quantization of the set ~. 

If we make repeated observations, we must guarantee tb~e integrity of the classical 
system ; this entails tb.e "compatibility" of the different measurement interactio~s. 
If we denote by them by 

i ~ b t u ~ .  3 ( t - - t t )  and i ~ b ~ 3 ( t - - t , , ) ,  

then in tb.e interaction picture 

[qs~u (q), q~,,~ (t.,)] = 0. (4.9) 

A special limiting case of repeated observations is the situation of continuous 
observation. The discussion in the last section shows that in this case we should 
demand 

IX, ~bgl =f~ '  (o~, ~) (4.10) 

with the interaction in the form (3.1). We cannot, in .'.his case, choose X-= 0, 
si~.ce it involves the " f r ee"  Hamiltonian of the quantum system. It is interesting 
m~d importa~.t to note that the quantities that can be continuously observed need 
not be constants of motion. 

As simple examples of continuous measurements we may consider tb.e Stent- 
Gerlach experiment with the Hamiltonian operator 

- - i  3 3 
H =  - m- p . ~-~ - -  i F  Sa ~ppa --  v B~.Sa 

where P is proportio,lal to the magnetic field gradie,~.t. The equations of motion. 
can be solved to yield, without any essential loss of generality, 

1 
q ~ ( t ) = m  p~ t ;  q ~ ( t ) = 0 ;  

q~ (t) = 4- ½ P t ~. 

where the spin is taken to have values ±-}. We get two parabolas for the tra- 
jectory. 
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Another simple example is the measurement of the quantum coordinate Q of 
harmonic oscillator by an impulsive interaction: 

i b 
H= - r a p .  

1 
+ ~ ( e ~ +  w ~M sQ~) 

+ ig Q . ~ . 8 (t - to) 

The classical trajectory would be a straight line at uniform velocity excepting for 
the sudden jump in the momentum by the amount AP = AQ. 

If we wish to measure the coordinate at a later instant, it could be compatible only 
if it is an integral number of periods later when we recover the same value. 

5. Concluding remarks 

The superselection principle applicable to the classical system viewed as a quantum 
system makes different phase space configurations belong to different supersel'ection 
sectors and hence their relative phase is nonmeasurable. The loss of this phase 
information is compensated by the continuous observability of the phase space 
trajectory. It is of considerable interest to note that if the Classical system was 
coupled to a quantum system in an eigenstate of a set of variables ~ and the 
subsequent interaction is in terms of a set of variables ~ which commute among 
themselves but not with ~ the different components of the split classical trajec- 
tory have phase relations, but these phase relations cannot be measured in any 
fashion except by giving up the information on the variables 7? and then proceed- 
ing to measure [. Any definitive measurement of 7? destroys av.y phase relations 
which exist. 

We may view measurement as being destruction of any phase information so 
that the component beam becomes a genuine physical system in itself. Measure- 
ment may thus be viewed as the process of  one-becoming-two. 

We point out that classical mechanics is viewed in this paper as quantum mecha- 
nics with hidden variables. The hiddenness of the quantities i(b/~oJ) and functions 
of them is an essential property which must be maintained to preserve the integrity 
of the classical system. Unlike the orthodox quantum theories with superselection 
rules, here the Hamiltonian does not preserve the superselection sectors, but causes 
continuous and lawful evolution of the system from one sector to another so 
that we have a nontrivial classical trajectory. This leads to n.o inconsistencies, 
since the Hamiltonian is not an observable but it is associated in a (projective, 
up to--neutral element) correspondence with the energy operator which is an 
observable. 

The position taken in this paper is that all classical dynamical variables cart be 
measured and that quantum dynamical variables are to be measured by coupling 
a classical system to quantum system. Thus, we have seen that the interaction 
(3.1) converts the dynamical variables -- ¢~ into the velocities w~' along the classical 
trajectory. The question of measuring classical dynamical variables, the cata- 
strophic configuration of pointers that give pointer readings and the irreversibility 

P---2 
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that is implicit in a recordable measurement and, finally, the role of  the observer 
or rather, the presiding intelligence in the measurement protocol and its authentica- 
tion (Wigner 1952) are questions too profound to be discussed in this paper, My 
understanding is well summarized by the smrti: 

SarvagamS+namaefi ram 
pratyapi parikalpayet 
icara  prabhavo dharmo 
dharmasya praburacyuta.h 

[All authoritative formulations stress the proper procedure; proper procedure 
is the prerequisite to natural law. The immutable awareness (the Self) is the 
presiding it~telligenc¢.] 
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