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Abstract. A manifestly covariant Lagrangian is presented which leads to the reformula- 
tion of canonical general relativity using new variables recently discovered by Ashtekar. 
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In the constrained Hamiltonian formulation of general relativity, as developed by 
Dirac and others, the basic variables are the three-metric on a spatial slice and the 
extrinsic curvature. Both of these have a direct geometrical interpretation, but this 
choice of variables leads to complicated, non-polynomial constraints, which no one 
has been able to consistently carry over to the quantum theory. Recently, starting 
from the Hamiltonian formulation of gravity in the triad formalism, Ashtekar 
(1986) has performed a canonical transformation to a new set of variables, which 
leads to a dramatic simplification of the constraints of the theory. The new 
variables consist of a soldering form and the Ashtekar-Sen-Witten connection. 
This reformulation of canonical gravity is explained in the references quoted 
below. It raises hopes of arriving at a consistent quantum theory of gravity and is 
of considerable interest in its own right. 

The basic variables in Ashtekar's formulation are a canonically conjugate pair 
(5",A,,): 

{~.~, ~.b} = {A,, Ab} = 0 

{A,,, ~ "h} = 6~, (1) 

~'" is a densitized soldering form and has information about the three-metric on a 
spatial slice. A,  is a complex SU(2) connection which has information about the 
extrinsic curvature of a spatial slice. With the SU(2) indices in, these objects are 
oeR~ and A,,AB. O.AI ~ ~  , is a Hermitean, traceless 2 × 2 matrix. In terms of these 
variables, the constraints of general relativity assume a strikingly simple form. 
They are 
(i) The "Gauss law" constraint 

~,,~r" ~ O, (2) 
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where 92~, is the covariant derivative operator corresponding to the Ashtekar-Sen- 
Witten connection A,,, 
(ii) the vector constraint 

Tr(~"F~b) ~ 0, (3) 

where F~b is the curvature of the connection Ao and 
(iii) the scalar constraint 

Tr(~r"o'hF~b) -~ 0. (4) 

The Hamiltonian is (as in all reparametrizatmn-invariant theories) a linear combi- 
nation of the constraints. The classical evolution of the system is then determined 
by Hamilton's equations. Thus, equations (1)-(4) completely describe Ashtekar's 
theory. 

As is clear from the last paragraph, the new formulation is cast in Hamiltonian 
language. While this is ideally suited for purposes of quantization, it lacks manifest 
four-dimensional covariance. It would be of some interest to derive the formula- 
tion from a covariant Lagrangian. This is the purpose of this note. A set of basic 
variables is postulated and a manifestly covariant Lagrangian formed out of these. 
A straightforward application of Dirac's procedure for singular Lagrangians leads 
to a constrained Hamiltonian theory identical in content to Ashtekar's. Details will 
appear elsewhere. For background and notation, see the references at the end of 
the paper. 

The basic variables used are a real SL(2, C) valued connection 1-form A~, and a 
Hermitean, matrix valued 1-form Yr With the SL(2, C) indices in, these objects 
are A AB and AA' [A B are Weyl spinor indices and take values 1 2. Primed )/bt • , 
indices transform according to the complex conjugate representation of SL(2, C)]. 
A Au is a connection and so transforms inhom0geneously under local SL(2, C) 
rotations, whereas ,,/AA' transforms homogeneously. From these objects one can 
construct the curvature 2-form 

_~,,F A;; =-- ituA~" At~--avA~,B +[A~, , my] AR 

and the antisymmetric tensor 

\ 'An = i( AA'., B .y,,AA' 

The trace (over internal indices) of the wedge product of =v and F is a 4-form and 
can be integrated over space-time to produce a general coordinate scalar. We 
postulate the Action 

1 = IN'AB/~ FB A (5) 

which is manifestly generally covariant and invariant under local SL(2, C) transfor- 
mations. 

;" " .~./Ig ua/3] ~/0123 By using the Levi-Civita tensor density r/"~'~ (rf "v'~t3 = = 
1), one can write the Action (5) as the integral of Lagrangian density 

I =  I d a X ~  = "~ f d4x'~'"q3Tr(~t~F"[3)" 
(6) 
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(In future, we drop the internal indices and use more compact matrix notation). 
We now take (6) as the starting point and in a straightforward manner apply 
Dirac's analysis for singular Lagrangians. The Lagrangian can be written in 3 + 1 
form as 

L = f d3x ~ahc {Tr(\2a,.F,,,,) + Tr(~,,,, Fb,.)}. (7) 
d 

Defining the canonical momenta as usual 

rr ~' =- OL/iJA o = O, q) 1 - ~L/a5'.  = O. 

~ " ~ -  aLl,A,, = ~"h"E~,,, t/," ~- aL/a~ = 0,. 

we find the following primary constraints 

r r ° =  0, (8) 

@'~- 0, (9) 

¢,,, ~ 0,  (10)  

rr"- F¢'b' Vb, = O. (11) 

Let us define 

o" =- ~"b""'h,.. (12) 

Since the y's are supposed Hermitean, it follows from the definition that ~" is 
traceless and Hermitean. The constraint (11) now reads 

,p" =- r r ° - g  ' '  ~- O. (13) 

With the usual Poisson bracket structure between the canonically conjugate pairs 
(A~,, r#*), (7~, 6'*), we find that ~b ° and rr ° commute with all the constraints. 
~" depends on 3'b through ) and so has a non-vanishing bracket with some of 
the 6"'s. The remaining ~ ' s  commute with all constraints and are so first class. 

The Hamiltonian of the theory, given by H = p / / - L ,  is 

H = [d3xTr{~r~(OaAo+[Ao,  A~])-Xo~Fb, . ( j~b"}+constraints .  (14) 

We now demand the preservation in time of the first class constraint (8). This leads 
to the Gauss law constraint (2). (Throughout this paper we drop surface terms; 
they are important, but not for this calculation.) The Hamiltonian now is 

H = - fd3x ~,,b,-Tr ( ~0,, Fh,) + constraints. (15) 
/ 

Next we demand that the first class constraint (9) is preserved in time. 
This leads to the constraint 

i (l"h" [ 7,,, Fb,. l -~ 0 (16) 

and modulo (16) the Hamiltonian vanishes. Since the Hamiltonian is now zero 
(and so certainly first class!), the constraint analysis ends. No new constraints 
emerge. The Hamiltonian is a linear combination of constraints. The content of 
(16) can be extracted by multiplying with 7's and taking the trace. Multiplying 
(16) by Yb and tracing yields the vector constraint (3). Multiplying (16) by 
i~def)ldYeY f and tracing yields the scalar constraint (4). 
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The constraints of the theory now are (8, 9, 10, 11) and (2.3, 4), Let us denote 
by F 0 the initial phase space spanned by (A~, :r", T~, q~) endowed with the 
natural sympletic form: 

~o 0 = dTr u/~ dAu + dO ~'/~ dye,. (17) 

[An integral over space is understood in (17) and (18).] We now impose con- 
straints (8, 9, 10, 11). These define a submanifold AtCI" 0. The pull-back of the 
two form (17) to AI is 

o~ = d b " A d A , , .  (18) 

This form on At is, of course, degenerate. Vector fields in its kernel are generators 
of "gauge" transformations. Let us quotient At with respect to these "'gauge" 
transformations. The quotient space F is a symplectic manifold spanned by the 
coordinates (~r",A,,) and endowed with the non-degenerate symplectic form (18) 
(now regarded as a form on F). 

From (18) we see that F is spanned by the variables or" and A,, which are 
canonically conjugate to each other. ~' is a Hermitean, traceless matrix and the 
real SL(2, C) connection A,, can also be viewed as a complex SU(2) connection. 
The theory now consists of canonically conjugate (1) variables (~",A,,) and the 
constraints (2, 3, 4). Thus the manifestly covariant Lagrangian (5) completely 
reproduces Ashtekar's theory. A remarkable feature of the Lagrangian (5) is that 
it is polynomial. 
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