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Abstract. This paper is devoted to a study of some of the basic conditions which 
have to be satisfied by a hidden variable theory in order that it can reproduce the 
quantum mechanical probabilities. Of course one such condition, which emerges 
from the important theorem of Bell, is that a hidden variable theory has to be non- 
local. It is shown that a hidden variable theory is also incompatible with the con- 
ventional interpretation of mixed states and the mixing operation in quantum theory. 
It is therefore concluded that, apart from being non-local, a hidden variable theory 
would also necessarily violate the usual assumption of quantum theory that the density 
operator provides an adequate characterization of any ensemble of systems, pure or 
mixed. 
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1. Introduction: The framework of hidden variable theories 

In conventional non-relativistic quantum theory the state of a system is represented 
by a density operator p on a Hilbert space 5~. A measurement performed on the 
system (normally considered to be instantaneous) is characterised by a self-adjoint 
operator A on ,~, such that the probability that the result of the measurement lies 
in a Borel set A C R, is given by 

PlPA (A) = Tr (p pA (A)), (1) 

where A -+ pA(A) is the spectral measure associated with the self-adjoint operator A. 
Usually, equation (1) is interpreted as implying that if a large number of systems (i.e. 
an ensemble) is prepared aceoiding to a procedure characteristic of the ' quantum 
state'  P, and if each of them is subjected to a measurement characterised by the 
' observable' A, then Pr~l (A) is the fraction of systems which yield an outcome in 
the set A c R .  

For various motivating reasons, it has been argued (ever since the inception of 
quantum theory) that the above specification of the state of a system in quantum 
theory should be ' completed ', so that the completed theory would predict the actual 
outcomes of experiments performed on individual systems, and not merely the statis- 
tics of the outcomes of experiments performed on ensembles. Such a ' completion' 
is sought to be achieved by constructing a ' hidden variable theory' where one in- 
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eludes in the characterization of the state of a system, certain additional variables 
or parameters, (which are '  hidden' as far as quantum theory is concerned), over and 
above the quantum-theoretic state of the system. The general framework of such 
hidden variable theories is the following (For general reviews of the subject, we refer 
to Belinfante 1973; Bell 1966, 1971a; Bohm and Bub I966; Bub 1974; Capasso et al 
1970; Clauser and Shimomy 1978; d'Espagnat 1976, 1979; Fine 1976; Koehen and 
Specker 1967; Jammer 1974; Roy 1980; Selleri and Tarozzi 1981; Vandana Shiva 
1978; Virendra Singh 1980 and Wigner 1980). 

Associated with each quantum system is a measure space (F, B) such that the fol- 
lowing conditions are satisfied: 

(I) With each density operator p is associated a probability measure /~P on (F, B); 
with each self-adjoint operator `4 is associated a real valued random variable 
XA: F ~ R. 
(II) For each state p and observable A, 

P ~  (A) = Tr [p pA (A) ] : / ~ P  [X~ ~ (A)], (2) 

for all Borel sets A c R. 
The interpretation of the above framework is the following. F is the set of all 

'completely-specified states' (or the so-called 'dispersion-free states ') which are 
now characteristic of individual systems; in other words, each point ~ c F is thought 
of as providing a 'complete-specification' of the state of an individual system. 
In the general framework discussed in this paper, no further assumptions are made 
regarding the space F, though in many models it turns out that each point ?t E F is 
specified by a collection of variables (p, 01, 02,..) where p is a density operator (i.e. 
the quantum-theoretic state of the system) and 01, 0a,.. are the additional (or 'hid- 
den ') variables needed to complete the quantum-theoretic description. Now, if an 
individual system is in the completely-specified state )t c F, then the value of an 
observable A, (that one obtains in a measurement of  ̀ 4), is the number X A (A). Also, 
if an ensemble of systems is prepared according to a procedure characteristic of the 
quantum state p, then associated with this ensemble is a probability measure t~ p on F, 
which describes the way in which the various individual systems of the ensemble are 
distributed over the points of F. The requirement (II) is precisely the condition that 
the individual systems of the ensemble are distributed over the points of F in such a 
way that the statistical distribution of experimental outcomes is exactly the same as 
that predicted by quantum theory. 

Apart from (I) and (ID, another requirement that we need to impose on a hidden 
variable theory is the following spectrum rule (see Fine 1976): 

(IIl) For each observable A, 

xa  s (`4); (3) 

where a(`4) is the spectrum of `4. 
This requirement follows from the generally accepted principle of quantum theory 

that in any experiment to measure .4, the outcome is always a number belonging to 
the spectrum of .4. 
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It is well-known (Bell 1966; Bub 1974; Fine 1976; Kochen and Specker 1967; 
Wigner 1970) that there do exist models which satisfy the requirements (I) to (III). 
In fact to show that (I) to (III) are consistent, we only need to consider the space 

r = n ,~(a) (4) 
A (all obser- 

vables) 

together with the canonical projection 1I: F ~ o(A). 
A 

associated with the observable A, can be defined to be 

x a = ~ a o  a,  
A 

where 1 A is the identity map on o (A). 

(,~) = ~ e ~  (a), 

Then the random variable X A 

then we can define the measure/~P on r by 

A 

It is trivial to check now that conditions (I)-(III) are satisfied. 
Historically, there has been quite some confusion surrounding the possibility of 

hidden variable theories, mainly because of the several proofs o f '  impossibility' of 
such theories. These proofs only demonstrated the incompatibility of (I)-(III) 
with some additional requirements, mostly in the nature of certain additional condi- 
tions on the map A .+ X A (between the self-adjoint operators and the associated 
random variables) such as the following: 

Ca) g(x  A) = Xgcm 

for all Borel functions g : R ~ R; or equivalently, 

(8) 

- 1  
x 2 CA) = xpAc~> (1) 

for all Borel subsets A c R; 

(9) 

(b) X a + B = X a +  X B, 00) 

for all compatible observables A, B; 

(c) xA~ = xA x~ (11) 

for all compatible observables A, B. 
Ever since the critique of Bell (1966) it has been generally recognised that these 
additional conditions (on the map A ~ XA) are not motivated by any physical argu- 
ments, and in fact their violation is actually understandable from the basic principles 

(5) 

If we define the measure/~1 on o (A), by 

(6) 
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of the quantum theory of measurement. We need to only remark in this connection 
that the measurement of the observables g(A), A q- B" or AB, is very different from 
that of A, or of A and B separately. We may also draw attention to the fact that 
recently it has been shown (Fine and Teller 1978) that (in a Hilbert space of dimension 

3) the condition (a) (Kochen-Specker condition) is incompatible with merely 
the requirement (I), and that the conditions (b), (c) are incompatSble with merely 
the requirements (I), (III)--so that, there is no need even to invoke the requirement 
(II) (that a hidden variable theory should reproduce the quantum--theoietic proba- 
bilities) in order to iule out the additional conditions such as (a)-(c). 

The rest of this paper is devoted to an investigation of whether a hidden variable 
theory is compatible with certain other requirements which, unlike the conditions 
(a)-(c), are more basic and are based upon some of the fundamental notions of rela- 
tivity and quantum theory. In § 2, we first extend the framework of hidden variable 
theories described above, by introducing a requirement (IV)--that the theory also 
specify the outcomes of a sequence of experiments performed on a system. This leads 
us to a discussion of the important result of Bell (1964) that every hidden variable 
theory (which satisfies the requirements (I)-(IV)), has to be necessarily non-local--i.e. 
it violates the condition of 'local causality '. In § 3, we shall show that hidden 
variable theories (which satisfy the requirements (I), (I1)), are also incompatible with 
the conventional interpretation of mixed states and the mixing operation in quantum 
theory. The implications of this result are discussed in § 4, wherein it is concluded 
that in order to have a hidden variable formulation of quantum theory, it is neces- 
sary to give up not only ' local causality ', but also the conventional interpretation 
of ' mixed' ensembles based on the usual assumption of quantum theory that the 
density operator is sufficient to provide an adequate characterization of an ensemble. 

2. Sequential measurements, local causality and Bell's theorem 

Apart from specifying the probabilities (1) for the outcome of a single experiment, 
quantum theory also specifies the joint probabilities for the outcome of a sequence 
of experiments (see for example, Wigner 1963, Srinivas 1975), by means of the so- 
called ' collapse postulate ', which specifies the change in the state of a system in a 
measurement process (depending on the particular outcome that is obtained). Since 
the usual prescription (due to vonNeumann and Ltiders) for the change of state in a 
measurement is applicable only to observables which have a purely discrete spectrum 
(see for example, Srinivas 1980), we shall restrict ourselves only to such observables. 
Let A, B be two such observables, with the corresponding spectral resolutions 

A = ~ ~p,,l (a), (12a) 
t t  

B = ~ fl pB (fl), (12b) 
fl 

where a, fl are the eigenvalues and PA(a), pB(fl) are the projectors onto the associated 
eigensubspaces. Let us assume that we are in the Heisenberg picture and that the 
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B-measurement refers to a time later than that of A. If we start with an ensemble 
of systems in state p and if this ensemble is first subjected to a measurement of A then, 
according to the vonNeumann-Liiders collapse postulate, the post-measurement 
state of that subensemble of systems which gave the outcome a is given by the density 
operator 

ea(~) p Pa(~) 
Tr (PA(a) p) 

Hence, the conditional probability for obtaining the outcome/3 in the later B-measure- 
ment, given that the outcome ~ is obtained in the earlier A-measurement (when we 
start with an ensemble of systems in state p) is given by 

Tr (pA(a) p pA(c 0 pB(/3)) 
Tr (pA(a) p) 

Therefore, the joint probability Pr~. B (a,/3) that the outcome pair a, 13 is obtained 
when an ensemble of systems in state p is subjected to an A-measurement followed 
by a B-measurement, is given by 

Pr~, B (a,/3) ---- Tr (p pA (a) pB (fl) pA (a)). (13) 

If a hidden variable theory is to predict the outcome also of a sequence of experiments 
performed on a system, then we need to add the following requirement (IV) to the 
ones already considered:* 

(IV) For each ordered pair (A, B) of observables (with a purely discrete spectrum) 
there is associated a (R2-valued) random variable 

such that, 

XA, B: r -~  ~(A) × ~(B), 

P~A, B (a,/3) = Tr ~o pA (a) pB ([3) pA (~)] 

- ~ -~ (14) - [ x ~ , n  (a, #)] 

for each (a,/3) ~ ,  (A) × ~ (B), and all quantum states p. 
We should emphasize that requirement (IV) is consistent with (I)-(III), as we can 

easily extend the model constructed in § 1, so as to satisfy (IV) also. If we now write 
for each h e F 

xA, B (~) = (x]:B (~), x~: n (~)), (15) 

then clearly X ~1~- (~) is the outcome of the A-measurement and X~,B (,~) is the out- A, B 
come of the B-measurement, when an individual system in the completely- specified 

*For the sake of simplicity, we shall restrict ourselves to sequences composed of two measure- 
ments only. 
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state ~ ~ F is subjected to a sequence of two experiments to measure A and B, in that 
order. Now, the obvious requirement of causality that a performance or non-per 
formance of a later B-measurement should not in any way affect the outcome of the 
(earlier) A-measurement, will entail that 

X~ 1) a, n (a) = x A (;~). (16) 

Before going into further discussion of the above causality condition, we shall first 
state the following result, which is of course well-known in the literature (see for 
example Bub 1976; Fine 1976; Lochak 1976, etc.), though not in the following form: 

Theorem 2.1: Requirements (I)-(IV) are incompatible with the following condition: 

xa, B (~) = (xA (~), xB (~)) 07) 

for all pairs (,4, B) of observables with a purely discrete spectrum. 

Proof." From (IV) and (17) it follows that 

(18) 

From (18) and (I)-(][II), it is easy to see that 

(19) 

But it is well-known that the quantum-theoretic joint probabilities (13) violate (19) 
when A, B are incompatible---a phenomenon which is sometimes referred to as the 
'quantum interference of probabilities' (de Broglie 1948; Lochak 1976, Srinivas 
(1975, 1978, 1982)). Hence we have a contradiction between IV and (19), thereby 
etablishing the above theorem. 

Theorem 2.1 essentially states that the quantum-theoretical joint probabilities are 
not expressible in the 'Flassical' form (18), whenever A, B are incompatible. This is 
of course quite understandable as the earlier A-measurement can be expected to alter 
the completely-specified state A of the system. Therefore, while it is necessary to 
demand (16) for the purposes of causality, it is definitely not reasonable to suppose 
that (17) be satisfied; for, the latter assumption also implies that 

x'J;B (~) = xB (~), (2o) 

which would definitely not be the case ff the (completely-specified) state ~ of the 
system has changed in the process of the earlier A-measurement. In fact, a physically 
reasonable model would specify that in an A.measurement the (completely-specified) 
state of a system changes from ~ to eA (~), where 

E x : F--> r ,  (21) 
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is a measurable map, which (like the collapse postulate) characterises the way the 
(completely-specified) states change in an A-measurement. The difference between 
the collapse postulate of quantum theory and the above transformation (21) lies in 
the fact that there is nothing ' stochastic' about the way A E F transforms, as the 
outcome of the A-measurement (i.e. X A (A)) is completely specified once A e F is 

known. We can therefore replace (17) by the following more reasonable condition: 

xA, n = (XA XB ('4 (22) 

So far as we are aware, there has not been any general investigation as to whether 
the condition (22) is in general compatible with the requirements ( I ) -  (IV). We 
should of course note that the model constructed by Clauser (1971) (as an extension 
of the hidden variable model constructed by Bell (1964, 1966)) incorporates something 
like the transformation (21) for the case of a spin- 1/2 system. 

Perhaps the only result known so far, which shows that the requirements (I)-(IV) 
come into conflict with a certain important and physically-required property, is the 
famous theorem of Bell (Bell 1964, 1971a, 1975, 1980; see also Wigner 1970), that a 
hidden variable theory necessarily violates a certain (very reasonable) requirement of 
' locality' or ' local causality '. To explain this condition, let us consider a situation 
where the observable A, B refer to local measurements performed in two space-like 
separated space-time regions. Then, from the usual causality requirement of rela- 
tivistic quantum theory, that the statistics of the outcomes of the A-measurement 
should not depend on whether or not a B-measurement is performed, it follows that 
A and B commute and (13) reduces to 

Pr~l, B (a, fl) = Tr [e pA (a) pB (/3)]. (23) 

The important point is that in addition, in a hidden variable theory, the particular 
outcomes X A (A) or X B (A) of the A-measurement or B-measurement, when per- 

formed alone, should also be the same as those obtained in a situation when both A, B 
are measured. In other words, we should have the following property (of ' local 
causality '): 

xA, B (x) = (xA (a), x B (a)), (24) 

whenever A, B refer to space-like measurements*. The theorem of Bell is the 
following: 

Theorem 2.2 (Bell's Theorem): Requirements I-IV are incompatible with the follow- 
ing condition o f '  local causality ': 

x a = (xA xs 

for all compatible observables A, B which refer to space-like separated measure- 
ments. 

*We can also arrive at (24) from the causality condition (16), by noting that when A, B refer to 
space-like separated measurements, either of them can be considered the prior measurement. 

Fo----4 
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The proof of Bell's theorem in the above form (Wigner 1970; Bub 1974; Fine 
1976, 1982) is based on considering a system of two spin-1/2 particles in singlet spin 
state ~, with the particles moving away in opposite direction. When the particles 
are sufficiently far apart, measurements of their spin components (such as 

~r 1 . ~, ~ .  b) could be taken as space-like separated measurements. It can then be 
shown that the requirements ( I ) -  (IV), together with the condition (24) lead to 
the following inequality due to Wigner (1970): 

Pr y . ^ ^ (1, 1) <~ Pr~ ,'~ e,.c^ (1, l) + Pr~ . a,  ^ 0"2 .^b (1,  1) (25 )  
0"1 at,  0"2 • C I • t 

^ ^ 

where ~1, 0.3 are the spin operators of the two particles and ~, b, c, are arbitrary 
directions. The fact that the quantum-theoretic joint probabilities do not obey 
(25) leads to the conclusion that a hidden variable theory necessarily violates the local 
causality condition* (24). 

3. The incompatibility of hidden variable theories with quantum theory 

In this section we shall show that apart from violating local causality, a hidden vari- 
able theory is also necessarily incompatible with the conventional interpretation of the 
mixed states and the mixing operation in quantum theory. We may note that in order 
to prove this we need to invoke only the requirements (I) and (II), and hence the result 
is independent of the spectrum rule (III) and also of any assumptions (such as (IV)) 
regarding the joint probabilities for sequential or simultaneous measurements. 

The conventional interpretation of the mixed states and the mixing operation is 
the following: Suppose we have an ensemble of N systems prepared in quantum 
state p~, and anothei ensemble of N systems prepared in quantum state p~. By 
selecting a fraction v (0 ~< v ~< 1) of systems from the first ensemble and a fraction 
(1 -- v) from the second ensemble, we can form a new ensemble of N systems. Then, 
for N large enough, this new ensemble can be considered as an ensemble of N sys- 
tems in quantum state p given by 

p = vp~ + ( 1  - O P t .  (26) 

It is important to note that in the above statement there is no restriction that Pt, Pz 
be sure states, or that they be '  orthogonal ' in some sense or the other. A well-known 
consequence of the above statement is the fact that there are sevetal different ways of 
preparing an ensemble of systems in a mixed (quantum) state p for, any mixed state 
can be expressed as a convex combination of other states in several different ways, 
say as in the following equation 

t 

p = vpl + (1 - 0 p~ = ~' d + (1 - ¢ )  p~, (27) 

p a 

where Pl, p2, Pl, and p~ are all different. One of the main features of the conven- 
tional formulation of quantum theory is that all these differently prepared ensembles 

*Bell (1975, 1980) has outlined an argument which seems to show that quantum theory itself 
(i.e. without any reference to a hidden variable formulation) is incompatible with 'local casuality'. 
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are to be considered identical, as long as they are charaeterised by the same density 
operator p. 

We should emphasise that it is the above interpretation of mixed states and the 
mixing operation which leads to the usual requirement that the quantum theoretic 
probabilities (for single or sequential measurements) have to be affine functions of the 
density operator (see eq. (28) below). And, it is this feature of the quantum-theore- 
tic probabilities which leads to the fact that unlike in classical probability theory, 
there is an 'interference of probabilities' in any sequential measurement of two 
incompatible observables. This point can be seen very clearly from the following 
result essentially due to Wigner (Wigner 1932, 1971)--see also Srinivas and Wolf 
(1975) and Mugur-Schiichter (1977)) and Davies (1976): 

Theorem 3.1 (Wigner.Davies Theorem): Let A, B be two self-adjoint operators and 
let us suppose that, for each density operator p, there is associated a joint probability 
measure (on R~), 

A1 x A2 ~ R,~, B(A1, A~) E [0, 1] 

such that the following conditions (i)--(iii) are satisfied: 

(i) R~,'B+(I-v)P ' (A,, A2) = v R~' B (At, A,) + (l -- ~) R§' B (At, A,) (28) 

for all v (0 ~< v ~< 1) and for all density operators Pt, p2; 

(ii) R~I, B (A, R) = Pr~l (A) = Tr (p e a (a)) (29) 

for each density operator p; 

(iii) RPA, B (R, A) = PrP B (A) = Tr (9 pB (A)) (30) 

for each density operator p. 
Then A and B ate compatible (i.e. their spectral projectors commute) and 

R~, B (A1, Az) = Tr [9 pA (A1) pB (Az)] (31) 

The above theorem is a direct consequence of the theorem 2.1 of Chapter 3 of 
Davies (1976), once we recognise that conditions (i)-(iii) imply that there exists a 
positive-operator-valued measure (on R 2) 

A 1 × A s ---> M (A l, A~), 

such that 

and 
M(A, R) = e a (A), 02a) 

M(R, A) = ~ (A). (32b) 
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As Davies has shown, (31a) and (31b) are possible only when A and B are compatible, 
and then 

M (Ai, A2) = pA (Ai) pB (Az), (33) 

from which the above theorem follows. We may also add here that the quantum- 
theoretic joint probabilities as given by (13) satisfy only the conditions (i) and (ii), 
but not (iii) whenever A, B are incompatible and the B-measurement is assumed to 
follow the A-measurement. 

We shall now employ the Wigner-Davies theorem to prove the following theorem 
which constitutes the main result of this paper: 

Theorem 3.2: Requirements (I), (II) of a hidden variable theory are incompatible 
with the following condition: 

/ pl+(1-v)p¢ = V /2, pi + (1 - -  v)/~Pffi, (34) 

for all v (0 ~< v ~< 1) and for all density operators pi, P2. As a consequence, a hidden 
variable theory which satisfies the requirements (I), (II) is necessarily incompatible 
with the conventional interpretation of mixed states and the mixing operation in 
quantum theory. 

Proof." Let us consider two incompatible observables A, B and, for each density 
operator p, form the real valued set function (on R 2) 

Ai x As B (Ai, a2), 

given by 

R 4,s = 1 n (35) 

It follows from (I) that R~, B (Ai, As) given by (35) defines a joint probability measure 
on R 2. It is now quite straightforward to see that (34) and the requirement (II) 

together imply that RP4 ' B (6~, A2) satisfies the conditions (i)-(iii) of the Wigner-Davies 
theorem. Hence it follows that A, B are compatible, which contradicts the assump- 
tion we made to start with, thereby establishing that the condition (34) is incompatible 
with the requirements (I), (II) of a hidden variable theory. 

To prove the second assertion of the above theorem, we shall show that the condi- 
tion (34) is actually a consequence of the requirement (I) and the conventional inter- 
pretation of mixed states and the mixing operation in quantum theory. For this 
purpose, let us consider two ensembles 27 l, Z' 2 each of N systems prepared in (quan- 
tum) states Pl, Pz respectively. When N is large enough, the individual systems of 
these ensembles are distributed over the space F as per the probability measures/~pl 

and/,P~ respectively. Now, if we select a fraction v (0 ~< ~ ~< 1) of  the systems of 
ensemble 27 l, and a fraction (1 -- v) of the systems of the ensemble 2' 2, then we can 
form a new ensemble of N systems 27. It follows from (I) that the individual systems 
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of E (when N is large enough) are distributed over the space F as per the probability 

measure v p pl + (l--v)/~p2. To show this, let us consider an albitrary measurable 
subset ~ C F. It follows from (I) that out of the v N systems selected from 2'1, the 
number of systems which lie in ~ is vN/~Pl (~),  (if N, and hence, v Nis large enough), 
and similarly out of the (l--v) N systems selected from Z'2, the number of systems 

which lie in ~ is (l--v) N/~P~ (t2), (if N, and hence, (1 --v) N is large enough). Hence, 

out of the N systems of the new (mixed) ensemble 2", N ~v/~P~ (f~)+(1--v)/~P~ ( ~ ) )  
systems lie in ~ .  Since ~ was chosen to be an arbitrary measurable subset of F, 
it follows that the individual systems of the ensemble 2" are distributed over F as per 

the probability measure v/z p~ -1- (l--v) pP~. Having shown this, the crucial point 
now is to realise that it follows from the conventional interpretation of mixed states 
and the mixing operation in quantum theory that 2" can be considered as an ensemble 
of N systems in the (quantum) state p = v Pl d- (I--v)p2. It then follows from 
(I) that the condition (34) i.e. 

p,v p~+cl-v~ p~ = v ~px + (l--v) p?~ 

should be satisfied for all v (0 ~< v ~ 1) and all density operators Pt, P~. Since we 
have already shown that the above condition is incompatible with (I) and (II), we can 
therefore conclude that any hidden variable theory which satisfies (I) and (II) is in- 
compatible with the conventional interpretation of mixed states and the mixing 
operation in quantum theory. The same result can also be stated as follows: If the 
conventional interpretation of mixed states and the mixing operation is assumed, 
then every hidden variable theory satisfying (I), is necessarily incompatible with (II) 
--i.e. the theory will not reproduce the quantum mechanical probabilities. 

4. Discussion 

One important feature of a hidden variable theory, as defined by conditions (I)-(II), 
is that it specifies the actual outcome (say X A (A)) of any experment (say, to measure 

A) made on an individual system, provided we know the completely-specified state, 
~t ~ F, of the system. It is therefore possible in such a theory to view the outcome of 
any experiment to be merely a property of the system (and the particular experi- 
mental arrangement) which is merely revealed in the measurement process. In other 
words, as Bell (1975) would say, the conventional notion of 'observables' can now 
be replaced by that o f '  beables '. Also, as Bell (1971a, b) has emphasised, one of 
the important motivations for a hidden variable theory is that it seems to get rid of 
the entire problem of defining 'what constitutes a measurement ?' and of understand- 
ing'  what happens in a measurement ? ' - -both of which appear to have no definitive 
answers, so far, from within quantum theory itself. 

Now, the question is whether quantum theory is consistent with a viewpoint where 
the outcomes of experiments are viewed as being actually the properties of the system 
(and the experimental arrangements) which are merely revealed in each measurement 
process. In this connection we should of course take into account the fact that the 
quantum state of a system changes in a measurement process. This however does not 
come into conflict with the above viewpoint, provided we accept that a measurement 
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process, while revealing an actual property of the system (and the apparatus), also 
alters the state of the system as in say, (21). A more important problem arises due 
to the fact that in quantum theory we have incompatible observables (like say, posi- 
tion and momentum) which cannot be measured simultaneously on the same system. 
The question now is: can we ' theoretically' specify the values of all observables 
(including the ones which are mutually incompatible) for each individual system 
(even though they are not measurable), and still have no conflict with quantum 
theory 9 For example, can we ' theoretically' specify simultaneous values for posi- 
tion and momentum, or more generally a ' p a t h '  for a particle, and still have no 
conflict with quantum theory? 

Both the theorem of Bell (theorem 2.2) and the theorem 3.2, imply that the answer 
to the above questions would be in the negative, (and that too for very different 
reasons), unless some basic changes are made in some of the fundamental notions 
of both relativity and quantum theory. Bell's theorem shows that even when one 
considers two experiments (say, to measure two compatible observables A and B) 
which are conducted in space-like separated space-time regions, the outcome (say, 
XA(A ) and XB(A) ) assigned to each of them when it is the case that only one of the two 

experiments is performed, will not be the same as the outcomes (say X~,~(A) and 

X~2~(A)) that should be assigned to them when both the experiments are performed 

together. Hence in any hidden variable theory, it is necessary that while assigning 
an outcome to any experiment, we have also to specify what other experiments are 
being performed even at space-like separated space-time regions, so that the theory 
becomes clearly non-local. The implications of this feature of hidden variable 
theories are being widely discussed in the literature. 

Theorem 3.2 shows that assigning values to incompatible observables come into 
conflict with quantum theory itself, and in particular with the conventional inter- 
pretation of the mixed states and the mixing operation. To see this clearly, let us 
repeat the chain of arguments which led to the theorem 3.2, for the case of an en- 
semble of spin-½ systems in some quantum state p. We only need to consider two 

incompatible measurements say, of the spin-components ~ .~and o'.balong two 

different directions (i.e. I a.b I < 1). If, to each member of the ensemble, we assign 

particular values for both the spin-components ~.~ and a.b, then we can use these 

value assignments to construct a joint probability distribution R p ^ ¢$(~,fl) (a,#= ± 1), 
O ' . a ,  . 

which satisfies (29) and (30). Now, the crucial point is that the conventional inter- 

pretation of the mixing operation implies that R p ^ ¢.~ (a, 8) is an affine function 
O ' . a ,  

of the density operator p. Hence it follows as a consequence of the Wigner-Davies 

theorem (theroem 3.1) that ¢'~ and o'?b are compatible, which contradicts the suppo- 
^ 

sition that we made to start with that ~.~ and O'.b are incompatible. 
Finally, the above analysis also indicates how the conventional formulation of 

quantum theory could be modified so that a hidden variable theory would not get 
ruled out. The main point would be to modify the conventional interpretation of 
the mixed states and the mixing operation, at least to an extent that tit would affect 
only those predictions of a hidden variable theory which are considered to be outside 
the purview of quantum theory, in the sense that the latter is supposed to deal only 
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with the statistics of measurement results. This could be done as follows. Suppose 
we have distinct pure state density operators P~I' P~ '  P~;' PC;' such that 

(36) 

where 0 < v, v' < 1. Then the conventional interpretation of mixing operation 
would imply that the ensemble which is obtained by mixing two ensembles of systems 
in pure states $1, $~ in the ratio v : 1 -- v, should be deemed identical with the en- 
semble obtained by mixing two ensembles of systems in pure states $1, $'z in the 
ratio v' : 1 -- v', because both the mixed ensembles are characterised by the same 
density operator p. For the same reason, even while defining a hidden variable 
theory, we assumed (in condition (I)) that both the ensembles are distributed over 
the space F according to the same probability measure/zp. We shall now suppose 
that, at least as far as hidden variable theories are concerned, the two ensembles 
are not identical, even though they are characterised by the same density operator p*. 
Firstly, we shall replace the condition (I) by the following: 

(I') With each pure state $ (a unit ray in Hilbert space), is associated a probability 
measure)/~$ on (F, B) . . . .  (rest as in (I)). 

The main point is that in (I') we no longer assume that for each density operator p 
there is a unique probability measure/~p on F. In fact, if we now employ the usual 
interpretation that, given an ensemble of systems in a pure quantum state $, the 
various individual systems of the ensemble are distributed over the various points of  F 
as per the measure/~¢**, then we shall see that there are several distinct ways in which 
an ensemble of systems, characterised by a (mixed state) density operator p, could 
be distributed over the space F. For example, if we consider the ensemble prepared 
by mixing two ensembles of systems in pure states $1, $~ in the ratio v : 1 -- v, 
then the individual systems of this ensemble are distributed over F as per the proba- 
bility measure v/~l + (1 -- v)/~*. On the other hand, if we consider the ensemble 
of systems which is obtained by mixing two ensembles of systems in the pure states 

! ! t $1, $2 in the ratio v' : 1 -- v , then the individual systems of this ensemble are 
distributed over F as per the probability measure v'/~¢~ + (1 -- v')/~ y$ ' .  Theorem 
3.2, now merely implies that these two probability measures are in general different, 
even though the two ensembles were characterised by the same density operator p. 
In conclusion we may thus state that apart from necessarily violating ' locality' or 
' local causality ', a hidden variable theory would also necessarily violate the usual 
assumption of quantum theory that the density operator provides an adequate charac- 
terization of any ensemble of systems, pure or mixed. As we have shown, a hidden 
variable theory would necessarily treat as distinct, two (mixed) ensembles eharac- 
terised by the same density operator, but prepared differently by mixing ensembles 
of systems in different sets of pure states. 

*The conventional view that the density operator provides an adequate characterization of any 
ensemble of systems has been questioned on various other grounds earlier in the literature--see for 
example, Benioff and Eckstein (1977), Ghirardi et al (1975, 1976) Haag and Barmier (1978), Mielnik 
(1974) and also Newton (1976). 

* *Notice that in (I') we continue to assume that any ensemble of systems in a pure state is completely 
eharacterised by the quantum mechanical state vector 6. 
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