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The trousers problem revisited 
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Abstract. Anderson and DeWitt considered the quantization of a massless scalar field in 
a spacetime whose spacelike hypersurfaces change topology and concluded that the topology 
change gives rise to infinite particle and energy production. We show here that their 
calculations are insufficient and that their propagation rule is unphysical. However, our 
results using a more general propagation rule support their conclusion. 
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1. Introduction 

The trousers topology was introduced by Anderson and DeWitt (1986; see also DeWitt 
1985) to model the effects of topology change in quantum gravity. Instead of the 
gravitational field, they consider a massless scalar field on a background spacetime 
whose spatial cross-sections change topology. By comparing the "natural" Fock vacua 
before and after the topology change, they conclude that infinite particle and energy 
production occurs, and that the topology change therefore does not take place. 

We re-examine their procedure and show that it is incomplete. Fundamental to 
the solution of the problem is a choice of propagation rule as well as of "in" and 
"out" mode functions. We show that their propagation rule is unphysical and 
furthermore that their choice of mode functions is incomplete. 

More specifically, we introduce as a physical constraint on the Bogolubov 
transformations between in and out modes that they be time-independent and show 
that this determines the propagation rule completely up to a single free parameter. 
The shadow rule of Anderson and DeWitt (1986) does no t  satisfy this constraint. 
Anderson and DeWitt only give a general argument for the presence of an energy 
density proportional to the square of a delta function; we calculate the energy density 
explicitly and attempt (unsuccessfully) to use the free parameter to set the coefficient 
of this term to zero. 
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A re-examination of the problem also shows that the set of modes used was 
incomplete, and that there are in fact new modes associated with the topology change. 
A satisfactory treatment of this problem would require quantizing these modes as 
well; we postpone a discussion of this to a future paper. 

In § 2 we describe the trousers topology and establish the general framework for 
the problem. In § 3 we consider the question of which propagation rules are allowed. 
A complete tabulation of the explicit forms of the propagated mode functions so 
obtained is deferred to the Appendix, and it is seen that the shadow rule of Anderson 
and DeWitt (1986) is not acceptable. The inner products (Bogolubov coefficients) 
between in and out modes are also given in the Appendix. Section 4 contains the 
calculation of the energy density, and in § 5 we discuss our results. 

2. The trousers topology 

We consider the massless scalar wave equation propagating on a two-dimensional 
spacetime whose spatial cross-sections change topology from S 1 to S 1 + S 1. At early 
times the spacetime will be a two-dimensional cylinder with circumference 22, while 
at late times it has split into two disjoint cylinders, each with circumference 2; see 
figure 1. The spacetime looks like an inverted pair of trousers. 

At early and late times the cylinders can be chosen to be flat and Lorentzian. 
However, if we take the region where the topology change occurs to be smooth, then 
there must be a coordinate patch at the crotch of the trousers which is Euclidean; 
there is no global Lorentzian metric on the manifold shown in figure 1. But if the 
metric changes signature then the determinant of the metric changes sign, and therefore 
must either be zero somewhere or be complex-valued. In either case, the interpretation 
of the wave eauation is unclear. To avoid these problems we will shrink the Euclidean 

O x 

Figure 1. The trousers topology. At early times the cross-section is a circle of circumference 
22, while at late times the cross-section consists of two, disjoint circles, each of circumference 
L There is necessarily a coordinate patch, indicated by dotted lines, where the manifold is 
spacelike, i.e. the metric there is positive definite. 
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patch to a single, extremely singular point and then remove this point from the 
spacetime. The resulting manifold is Lorentzian everywhere and may be chosen to 
be fiat; see figure 2. We choose coordinates x, t with 

teR; x e E - 2 , 2 ]  (1) 

and where for t < 0 the line x = 2 is identified with x = - 4, while for t > 0 we identify 
x = + 2,with x = 0 ± . We will call the region t < 0 the trunk or "in" region, and t > 0 
the legs or "out" region. Note that in the legs the coordinate line "x = 0" is ill-defined 
and one must specify which leg is being referred to. The point where the topology 
changes is represented by t = 0, x = - 4 ,  0, 2 and is removed from the manifold. 

Since the metric is chosen to be fiat everywhere, the massless scalar wave equation 
takes the familiar form 

( -  ~? + ~x~)~ = 0. (2) 

The Klein-Gordon inner product between any two solutions ~b, ~ of (2) is 

I (q~, ~) = i (q~*tk - q~*~)dx (3) 
- 2  

where the integral is over any surface ~ = {t = constant} and where • denotes complex 
conjugation and dot denotes derivatives with respect to t. We assume that ~b satisfies 
the appropriate periodic boundary conditions, namely 

4 ( -  ~, t) = 4( + 4, t) (t < 0), 

~b( + 4, t) = ~b(0 -+, t) (t > 0). (4) 

Note that we do not require ~b to solve (2) at the singularity; we will return to this 
fundamental issue in § 3. 

x-  - y  x - - y  

x-o_ 
o" 

x-o+ 

o" 

x.y ~ x.Y 
o 

Figure 2. The  unrol led  t rousers  topology.  Fo r  t < 0 the line x = 2 is to be identified wi th  x = 

- 2, while for t > 0 the line x = + 3. is to be identified wi th  x = 0 -+. The  point  p where the 

topo logy  changes  is removed  from the manifold.  
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The quantization of ~b on a cylinder of radius 22 proceeds as follows. The modes 

= ~_______exp[i(kx - l k l t ) ]  k = __, 0 q: nE~' (5) Uk 
x/41k12 

are orthonormal with respect to (3), i.e. 

(Uk, Uk') = 6U' = -- (U*, U~,) (6) 

(U~, U?,) = O. 

However, the set {Uk, U~} is not complete. Unlike the case of unbounded Minkowski 
space, on the cylinder the constant mode and the mode proportional to t have finite 
Klein-Gordon product with each other and are orthogonal to Uk and u* and therefore 
must be included in the complete set of modes. Note  that these "zero-frequency" 
modes have zero norm.** 

The quantum field tk can be expanded as 

~p = ~ (akUk + atku *) + Q% + Pflo, (7) 
k#O 

where the operators Q and P are Hermitian. Demanding the usual equal time 
commutation relations 

["[~(X, " t t), 4 ,(x,  t ) ]  = i 6 (x  - x ' )  (8) 

leads to the commutation relations 

Ea~, a~,] = 6kk'; [Q, P]  = i (9) 

(all others zero). We define the vacuum state 10in) by 

akl0i,) = 0  =PI0 in)  (10) 

so that it will be the state of lowest energy. (The Hamiltonian has a term proportional 
to p2.) 

The apparent contradiction between (9) and (10) (try evaluating (01[Q,P] I0) )  is 
resolved by noticing that Q is not a well defined operator on eigenstates of P and 
furthermore the vacuum 10) is not normalizable. Vacuum expectation values of powers 
of Q are divergent; we will return to this point in § 5. 

The procedure used by Anderson and DeWitt (1986) is to assume that at early 
times (i.e. in the trunk) ~b can be expanded as in (7) in terms of the trunk modes Uk 
while at late times (i.e. in the legs) ~b possesses a similar expansion in terms of leg 
modes. More specifically, we introduce leg modes utL, ~L, flL (uzR, ~R, fiR) for t > 0 
having support only in the left (right) leg, where they satisfy 

l 
* * O n e  can  in fact in t roduce  o r t h o n o r m a l  modes  u o, Uo* given by e.g. u0 = ,~Z-~,~ (1 - it). However ,  we will  

choose  the modes  ~o = N e R  and  flo = t(1/22N). 
~zzj • 
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Utz = 1/(21112)* exp [i(lx - [llt)] 

O~ L = N L ~ R ,  

1 

in the left leg and zero in the right leg, and 

u~R = 1/(2[ll2) ½ exp [i(lx - I I t) ] 

aR = N R ~ ,  

1 

4 
(11) 

1 2rim ¢m~7/), =-f-,0 

(12) 

in the right leg and zero in the left leg. q~ is now assumed to satisfy the expansion (7) 
in the trunk, and the expansion 

t , Qr~tr + PrflL d? = ~ (atru,r + a,rUtr ) + 
I-CO 

t , PRflR (13) + ~ (a~RuIR + atRutR) + 9-.R~R + 
I~0 

in the legs. 
The energy density is given by 

T,, = ½(4 2 + ¢,2) 

= ~b,~ + q~,2, (14) 

where prime denotes differentiation with respect to x and u = t - x, v = t + x. 
The idea is now to treat T. as an operator T. °"t by inserting (13) into (14), and to 

evaluate the expectation value 

(Oi.I YttOUt [Oi.) 
E = (15)  

(0in 10in ) 

of the "out" energy density in the "in" vacuum t01n) defined by (10). The way to do 
this is to expand the leg operators atL , etc., in terms of the trunk operators ak, etc., 
using Bogolubov transformations. However, in order to do this we must be able to 
compare the two expansions (7) and (13), and to do so we must have a propagation 
rule which tells us how to propagate trunk modes into the legs and vice versa. 

3. Propagation rules 

Consider a smooth solution ~b of (2) in the trunk satisfying the periodic boundary 
condition 
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~b(x + 22, t) = q~(x, t) (t < 0). (16) 

Just prior to the topology change, at t = 0- ,  we can represent ~b in terms of its Cauchy 
data 

A propagation rule is a mapping 

n }  \ n L }  \ n R /  

from Cauchy data in the trunk (t = 0- )  to Cauchy data in the legs (t = 0+). After the 
singularity, the Cauchy data (at t = 0 ÷) will again propagate according to (2). 

Away from the singularity there is no problem--causali ty requires that until one 
crosses the future light cone emanating from the singularity the propagation is uniquely 
determined by (2). Thus, at first it seems natural to assume a propagation rule of the 
form 

tp~(x) = [1 - 0(x)]tp(x + 2) + 0(x)q~(x) (0 ~ x < 2), 

~t.(x) = [1 - O(x)]tp(x) + O(x)q~(x - 2) ( - 2  < x ~< 0), (19) 

~R(x) = [1 - O(x) ]rc(x + 2) + O(x)r~(x) (0 ~ x < 2), 

r~t.(x) = [1 - O(x)]n(x) + O(x)n(x - 2) ( - 2  < x ~< 0), (20) 

with q~, nR, q~L, r~L periodic with period 2 and where O(x) denotes the step function.** 
But note that, except in the special case ~b(x + 2) = ~b(x), the data (19) is discontinuous. 
This suggests that one must allow for the possibility of delta functions in nk and nL. 
On the other hand, there is no way to determine the coefficient of these delta functions 
uniquely--one has freedom to add "data" at the singularity. We therefore assume a 
propagation rule of the form (19) but replace (20) by 

nR(x) = ~R(x) + aft(x) (0 ~< x < 2), 

nL(x ) = fcL(x ) + bfi(x) ( - 2  < x ~< 0), (21) 

with nR, nL periodic with period 2 and a and b arbitrary (~b-dependent) constants. 
Analogously, in the other direction, starting from ~R, ~bt. which are smooth in the 

legs, we assume a propagation rule of the form** 

~o(x )  = [ 1  - O(x)]~oL(x) + O(x)~oR(x) + O(x - 2 ) [ ~ o L ( x  - 2 2 )  - ~ o R ( x ) ]  

~(x) = [1 - O(x) ]~L(x ) + O(x)ltR(x ) + O(x - 2)I-~L(x-- 22) - 7zR(x)] 

- cfi(x) - df(x - 2) 

( - ~ . < x  ~< +2)  (22) 

**To avoid having to deal with step functions and delta functions defined at the boundary of the given 
range of x, one could replace the range of x throughout (19), (20), (21) with x E [ -  2/2, ,t/2] using periodicity. 
A similar comment applies to (22) with the range of x replaced by x e [ -  2/2, 32/2]. 
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with q~, n periodic with period 22 and where c, d are arbitrary (4'L, 4'R dependent) 
constants. 

What restrictions can we impose on the constants a, b,c,d? Although the inner 
product (3) is independent of t both in the trunk and in the legs, it is not necessarily 
conserved between the trunk and the legs since 4' does not need to solve the wave 
equation at the singularity. It does, however, seem physically reasonable to impose the 
condition that (3) be conserved. We now show that this reduces the countably infinite 
number of degrees of freedom inherent in the choice of a, b, c, d for a given basis to 
a single degree of freedom! 

Consider two solutions 4', ~ which are smooth in the trunk and propagate them to 
the legs using (19) and (21). Then direct calculation at t = 0 ± yields 

(4', ~)legs "~ (4', (~)trunk "~- i [ aq~(O)  -- a*(pR(O)] + i[b'(#~(O) - b*OL(O)]. (23) 

But from (19) we have 

q, . (0)  = ~0L(0) = ½[~o(0) + q,(,~)] (24) 

since smoothness of the trunk solution implies that ~o(-2)= q~0-). We therefore 
conclude that 

a + b = 0. (25) 

A similar calculation assuming that 4'~., 4'R, 4'L, 4'R are smooth in the legs and are 
propagated to the trunk using (22) yields 

c + d = 0. (26) 

Finally, assuming that 4' is smooth in the trunk and 4'L, 4'R are smooth in the legs 
(note that now (24) does not hold), and equating the values of (4', ~) in the trunk and 
in the legs yields 

&p*(0) + dq~*(2) = a*~bR(0) + b*q3L(0). (27) 

Using (25), (26) we get 

~*(0)-~*(2) _OR(0)--0L(0) (28) 
a* ~ ' 

which finally yields (since (28) must hold for all 4', 4'R, 4'z) 

a[,;b] = - b [ 4 ' ]  = A[~o(0) - ~o(2)] 

c[4'L, 4'R] = --d[4'L, 4'R] = A*[tPR(0) -- ~0L(0)], (29) 

where A is an arbitrary constant, i.e. the amount of delta function added in each case 
to the (propagated) rt data is proportional to the discontinuity in the (propogated) ~o 
data. If we now further require that 4', 4'* should propagate to the complex conjugates 
of each other then A must be real. 

One additional requirement on a propagation rule is that it should be invertible--if  
a propagated solution is propagated back again, it should agree with the original 
solution. Although the mappings (19), (21), (22) have only been defined for smooth 
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functions, they can be extended to discontinuous functions in such a way that this 
condition is satisfied. 

4. Energy density 

We now turn to the evaluation of the energy density (15). Consider first (cf. (14)) the 
term 

Out OUt (0i.l~,u ~,u 10i.) 
E , -  (30) 

(Oin lOin)  

evaluated in the right leg. Using (13) and the fact that each leg mode has support in 
one leg only, we obtain** 

PR (31) 
~b'°~ut{i'r'. = ,>0 ~ ( - il)[a,Ru,R -- a~Ru':a] -~ 2NR2. 

From (13) we obtain 

a,R = (u,a, ~b), 

a~a = - (u'R, q~), 

PR = - i(~R, C~). 

(32) 

We use (7) and (32) to rewrite the expansion (31) in terms of trunk operators (whose 
expectation values in the trunk vacuum 10i,) are known) and Bogolubov coefficients 
which are given in the Appendix. A messy but straightforward calculation then yields 

Eu = ~ ~ , -;2 exp [-(2~i/2)(m + m')u] 
n>Om.,.'=-~°eTCA n 
n o d d  

m. x A + l + - n  A + I  n+~m,)+(A-1)2 +2,.>0 

(33) 

It turns out that this expression is valid in both the left and right legs. A similar 
calculation for Ev, defined as in (30) with u replaced by v, yields 

1 exp[-(2rci/2)(m + m')v] 
E,,= ~ 4n22 n n > 0  ??l.m ' =  - -co  

nodal  

[ ( + 4tn "](A 4m' " ] ] + n _ ~ m "  
x ( A + I ) 2 +  A - 1  ~ 2 m m J \ - 1  n_2m,] I 2">o 

(34) 

**Note that for k > 0, u~ = uk(u), while for k < 0, Uk = Uk(V). Compare footnote in Appendix A. 
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The expressions (33) and (34) are of course divergent; we have not yet implemented 
any renormalization procedure. Normal ordering the expression (30) with respect to 
leg operators will, among other things, remove the last sum in (33), (34) which has 
support everywhere and which is proportional to ,52(0) (i.e. it is of the same order as 
is ordinarily removed by normal ordering in Minkowski space). However, the leading 
order divergence in (33) goes like 

(A2+ 1 ) ~  1 ~ exp(--2nimu/2) ~, exp(--2nim'u/2). (35) 
r l >  0 f /  r r t =  - -  co m ' = - - o O  

n o d d  

The last two sums are each proportional to `5(u) and the first sum contributes a 
logarithmically divergent factor as well. This term is not altered by normal ordering. 
(34) has exactly the same divergence, with u replaced by v. Since (35) has support 
only along u = 0, the divergences in E, and Ev cannot cancel each other. The only 
way to remove them is therefore to choose the coefficient in front to be zero. But this 
is manifestly impossible as this coefficient is strictly positive. It is worth mentioning 
that this would still be true if the calculation were repeated with A allowed to be 
complex. 

5. Discussion 

The general argument given by Anderson and DeWitt (1986) for the presence of 62 
terms (i.e. 62(u) and 62(v)) in the energy density, leading to infinite total energy, does 
not take into account the possibility of the coefficients of these terms being zero. 
Furthermore, as the Minkowski divergence is proportional to 62(0) one could hope 
that renormalization might remove the 62 divergences anyway. Also we have shown 
that the shadow rule used by Anderson and DeWitt (1986) is unphysical because it 
does not lead to well-defined inner products, and that there exists only a one-parameter 
family of physically acceptable propagation rules. 

However, calculating the energy density explicitly using these propagation rules 
shows that the leading divergence is worse then 5̀2 due to the presence of an additional 
logarithmically divergent factor. This term cannot therefore be removed by normal 
ordering. Furthermore, the coefficient of this term is strictly positive, independent of 
the choice of parameter. Our calculations therefore tend to support the conclusions 
of Anderson and DeWitt (1986) that a change in the topology of spacetime would 
require an infinite amount of energy. 

It is also of interest to consider the time-reversed problem, i.e. the expectation value 
of the "in" energy density in the "out" vacuum. Although the calculation is formally 
identical, the result turns out to involve terms like 

<0ou, IQ~10ou,> 

<0o., I Oo~,> 
(36) 

which are divergent. That these terms are absent in the calculation considered above 
can be traced directly to the fact that the trunk modes %, •0 propagate smoothly to 
the legs, whereas the leg modes ~t R, fiR, %,/?L do not propagate smoothly to the trunk. 

This raises the intriguing possibility that the divergences (36) might cancel the 
others, leading to an "entropy" law reminiscent of black hole physics: one cylinder 
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could not split into two, but two could join together to form one. While we are 
pursuing this possibility, it seems so far that the Q2 divergence also enters the energy 
density in a positive-definite way. 

Bosonic string interactions can be thought of as massless scalar fields X" propagating 
on the trousers topology. Why, then, doesn't the conclusion of Anderson and DeWitt 
(1986) apply to string theory and prevent strings from interacting'? The answer is that 
in string theory the scalar fields represent the physical coordinates embedding the 
string in a higher dimensional spacetime. This embedding is continuous. Physical 
strings only interact when they can, i.e. when they touch in the embedding space; our 
"strings" are forced to interact regardless of whether or not they "touch". In fact, if 
the conclusion of Anderson and DeWitt (1986) were shown to be false, it would 
probably imply the existence of nonlocal string interactions! 

There is however one more possibility to be considered before accepting the 
conclusions of Anderson and DeWitt (1986). Throughout the calculation it has been 
assumed that the expansions (7) and (13) are complete (or at least equivalent) so that 
the Bogolubov transformations make sense. Furthermore, one can verify by direct 
calculation that the Bogolubov coefficients satisfy the appropriate relations, e.g. the 
analogue for a non-orthonormal basis of the usual relations (Birrell & Davies, 1982) 

- # #  = I ;  - = O, 

ata _ flrfl, = I; ~tfl _ [3r~, = O. (37) 

Contrary to popular belief, the fact that the Bogolubov coefficients satisfy (37) does not 
imply that the two sets of modes are complete (Dray and Manogue 1988). One must 
then ask if there are additional modes which have been overlooked. 

Surprisingly, the answer appears to be yes. Consider the functions 2:o, Y defined by 
(A3), (A6), (A15) and assumed to be zero elsewhere. These functions are illustrated in 
figure 3. Since they are a linear combination of purely right- and left-moving functions, 
they satisfy the wave equation everywhere (except at the singularity). But Yo is 
orthogonal to all trunk modes, while y is orthogonal to all leg modes! It thus appears 
that one must include Yo in the expansion (7), and y in (13), and that they constitute 
extra degrees of freedom which must be quantized. The point is that unlike standard 
problems our modes are fundamentally discontinuous objects, and so it is not clear 

0 

r, 

o o 

X 

Figure 3. The new mode functions Yo,Y defined by (A3), (A6), (A15). Yo is orthogonal to all 
trunk modes, while 7 is orthogonal to all leg modes. 
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which space of functions the field ~ belongs to. We are actively pursuing these 
questions. 
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Appendix 

We first give the results of applying the propagation rules discussed in § 3 to the trunk 
and leg modes discussed in § 2, thus obtaining two sets of mode functions which are 
defined on all of spacetime. We then tabulate the inner products between the two 
sets of mode functions. A s s u m i n 9  that the two sets are equivalent these inner products 
are just the Bogolubov transformations. (This assumption is discussed in § 5). 

Applying the propagation rule given by (19), (21), (29) to the trunk modes Uk, Vk 

for k = (rm/2), n even and to %, flo shows that these modes are unchanged.** However, 
applied to Uk, Vk for k = (rm/2), n odd yields in the right leg (t ~> 0, xe[0,2]) 

1 
U~ = (41kl ;.) t exp( -  i k u ) . = _ x  ~ ( - 1)" [O(u - n2 + 2) - O(u - n2)] 

(A+I )  
~ 7 o ,  (A1) 

1 
Vk = (4 l k l2 )  ~ e x p ( - i k v )  .=~-1 ( -  1)" [0(v - n2) - O(v - n2 - 2)] 

( A -  1) 
+ (~]~1~7o, (A2) 

where 

70 = ~ [O(u - n2) + O(v - n2 - 2)]. (A3) 
n = O  

and in the left leg (t/> 0, x e [ - 2 , 0 ] )  

t 
Uk - ( 4 1 k l 2 , ) ~ e x p ( - i k u )  

n = - - I  

( -  1)" [0(u - n;O - O(u - n,~ - 2)] 

(A-q- l) 
+ (41kl 2) ~7°' (A4) 

**For ease of calculation we have introduced the right- and left-moving trunk modes Uk(U)=Uk, 
Vk(v) = u-k for k > 0. We will also use the notation U-k = U~', V_~ = V*. Analogous definitions hold in 
the legs. 
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ot~ 

Vk = ~ e x p ( - i k v )  =~, l ( -  1)" [0(v - n2 + 2) - O(v - n2)] 

(A - 1) (A5) 
~ Y o ,  

where here 

~o = - ~ [O(u - n2 - 2) + O(v - n2)]. 
n = O  

(A6) 

The first (7o independent) part of each of (A1), (A2), (A4), (A5) corresponds to the 
shadow rule of Anderson and DeWitt and takes fight (left) moving solutions in the 
trunk to fight (left) moving solutions in the legs. Note that no value of A yields the 
shadow rule for both right and left moving modes. This means that the shadow rule 
does not have the form required by (29) and therefore does not conserve inner products 
and is unphysical. Physically propagated modes are no longer purely right (left) 
moving. 

Applying the propagation rule given by (22), (29) to the leg modes yields in the 
trunk (t < 0, x ~ [ -  2, 2]) 

1 
U m =  ~ e x p ( - i l u )  

n = - - 1  

[O(-u  - 2n2) - O(-u  - 2n2 - 2)] 

(A - 1) 
+ 2(21ll2)~-Y, (A7) 

UtL -- (21/12) ( exp( -- ilu), = _ 1 [ 0 ( -  u - 2n2 + 2) - 0 ( -  u - 2n2)] 

(A - 1) [A8) 
- 2(21/12)~7, 

1 
V,R = ~ e x p ( -  ilv) .= -~ [ 0 ( - v  - 2n2 + 2) - 0 ( - v  - 2n2)] 

(A + 1) 
+ 2(21ll2) ~ y '  (A9) 

I ( -  ilv) 
VIL = (21/12) (exp  .=-1  [ 0 ( -  v - 2n2) - 0 ( -  v - 2n2 - 2)] 

(A + 1) 
2(21/12)~-7, (A10) 

=NR ~ [ O(--u--2n2)--O(--u--2n2--2)] 
2 .=-x + O ( - - v - - 2 n 2 + 2 ) - - O ( - - v - - 2 n 2 ) J  +I-ANRT'2 Ot R (A11) 
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NL ~ [ O(--u-2n2+2)--O(--u-2n2)]  1 
otL=~--=~ 1 +O(_v_Zn2)_O(_v_Zn2_2)_ j -~ANLy ,  (A12) 

v 1 ~ [ (u + n~)O(- u -  n)~)] 
/~. = ~ + 2-~R2 .~o ( -  1)" - (v  + n2)O(- v - n,~) J (A13) 

u 1 ~ . , .[ (v+n~.)O(-v-n2)] 
]~z = 2N.2 + 2 -~2 .~o  ( -  1) L_(u + n2)O(-u- n2)J (A14) 

= =~, F + 0 ( - u - % [ _  2 n 2 ) - O ( - u - 2 n 2 - 2 ) ]  
7 0 ( -  v - 2n2) - 0 ( -  v - 2n2 - 2) J - 1. (A15) 

Again the first (7 independent) part of (A7)-(A14) corresponds to the shadow rule of 
Anderson and DeWitt. No choice of A yields the shadow rule for all leg modes. 

Now we give the inner products between the trunk and leg modes. By construction, 
these do not depend on where they are evaluated. First consider the case k = nn/2 
with n even. We have 

1 
(Uk, UIR) = ~ 6 ~ 1  = (Vk, V~R) 

1 
(U-i,, U-t~) = X~6k~=(V-k,V-zR), 

(k > 0) (A16) 

N 
(%, ]3~) = ~ i  

N R 
(flo, %) = - ~ - i  (A17) 

with all others zero; the same results hold for the left leg modes with R replaced by 
L. Now consider the case k = rm/2 with n odd. We have 

- i  /'A k + l'~ 
(Uk, UlR) = (21kl122)~, + kLS-1)" 

- i  k + l~ (A18) 
(Vk, Vm) = ~ ( A  - k - l / '  

- i  
(Uk, VzR) = (2[kl[22)i(A + 1), 

- i  
(Vk, UtR) -- (21kl122)i(A - 1), 
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- -  iN R._ 
(u~, ~R) = ~ t A  + 1) 

-- iNR 
(Vk, aR) = ~ ( A -  1), 

1 
(UR, fiR) -- NRk(I k123) ½' (A 19) 

- 1  
(Vk, fla) = Nak({k{23)~, 

where k, l take on both positive and negative values.** For the corresponding results 
in the left leg, replace R by L and multiply by - 1. 
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**For ease of calculation we have introduced the right- and left-moving trunk modes U~(u)=uk, 
Vk(v) = u_~ for k > 0. We will also use the notation U-k = U*, V-k = V~. Analogous definitions hold in 
the legs. 


