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Charged particle orbits in Kerr geometry with electromagnetic 
fields as viewed from locally non-rotating frames 
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Abstract. The charged particle orbits in electromagnetic fields on Kerr background 
as viewed from a locally non-rotating frame do not exhibit non-gyrating bound orbits, 
which was an essential feature in the earlier study of Prasanna and Vishveshwara, thus 
showing the non gyration to be due to the effect of dragging of inertial frames produced 
by the rotating black hole. 
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While studying the orbits o f  charged particles in an electromagnetic field on the Ker r  
background geomet ry  Prasanna and Vishveshwara (1978) had found that  the particles 
execute L a r m o r  mot ion  (gyration) in their bound orbits only when they are completely  
outside the ergosphere o f  the black hole generating the space-time curvature.  This  
was found to  be so because of  the inertial f rame dragging effect which precludes 
completely any  retrograde motion within the ergosphere. But it is known tha t  this 
f rame dragging arises mainly because of  the Boyer-Lindquist coordinates and  tha t  
i f  one goes over  to a Locally Non-Rotat ing Frame (LNRF)  as defined by  Bardeen 
(1970) there is no frame-dragging. I t  is essential to see whether as a result of  this, the 
non-gyrat ion o f  charged particle also is a Boyer-Lindquist effect which m a y  not  
exist in L N R F .  With this in mind we now consider the orbits of  charged particles 
for  the same set o f  parameters  as in the earlier case but  as viewed f rom the L N R F .  

The Ker r  geometry as expressed by Boyer-Lindquist (B-L) coordinates 

ds 2 : - -  ( 1 - - 2  mr/Z )  c 2 dt 2 - -  (4 tara~2") sin20 c dt d$ 

+ (2"/A) d #  + 2" dO 2 + ( A / Z )  sin~O d$ 2, 

with 27 = (r  ~ + a 2 c o s 2 8 ) ,  A = (r 2 + a S -  2 mr), 

A = (r z + a~) ~ - -  A a S sin~0, m = MG/c  2 (1) 

when expressed in cannonical  form is given by (Breuer 1975) 

ds~ = - -  [(2'1/2 A1/~IAln) e dr] ~ + [(2:1/"/A1/2) dr] ~ 

+ [2"1/~ d012 + [(AX/~ sin0/2"l/~) {d4, - -  (2 mariA) edt}] ~, 

= - -  (0o)~ + (01)3 + (0~)~ + (0')~. (2) 
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If  U' represents the four-velocity as given by L N R F  0 t it will be related to U ~ the 
four-velocity in the B-L coordinate frame through the transformation 

(3) 

0 0 0 

(~/A) in 0 0 

0 271/z 0 

0 0 (A/27) 1/~ sin 0 

A A 

U ~ : eJ U ~ 

wherein the transformation matrix eJ is given by 

(27A/A) 1/~ 

0 
/ k  

e J =  0 

(~12marl  ~-i~] sin 0 

Similarly defining 

F 5, = e l , eJ~F~ 

(4) 

(5) 

¢ 7 ,,, 7 e~, (6) 

A 

wherein ek is the inverse matrix of  e J, we can obtain the differential equations govern- J 
i n g  the motion in equatorial plane from those in B-L coordinates as given in the 
earlier paper (Prasanna and Vishveshwara 1978). 

p d~p _ 1 IA~/, (1 - -  a~/p 3) (d¢/dcr) ~ + 2a (3 + a~lp 2) (d¢/da) (dT/da) 
A 1/z d ~  .B p 

1 

pa A:/~ 
- -  [(p~ + a'~) z - -  4 a ~ p] (dr/da)21 

+ ~ A 1/z ~$, p (d$/da) + 2__~a 

_ 1  11 A1/2 
p ( p -  1) (dp/da)=~, 

A 
(7) 

d~/d~ -- ( L -  ~I~)/~ ~/~, (8)  

1 
[B (E + A~.) - -  (2 a/p)  ( L  - -  , ~ ) ] ,  

(B A) 1/2 
d~'/da -- - -  (9) 
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with B : -  (p~ q- a ~ + 2 a2/p), A = (p~ - -  2 p + as), (10) 

whereas p, a, cr, L, ~" and ~I~ are being the same as defined earlier. 

From the normalisation condition 

~7¢~, U9 U ) " :  - -  1, (11) 

we find that putting U ~ = 0, the effective potential for the p-motion is given by 

V¢ff -= E r n i n -  A.r q- K /R ,  

K = 2~ (L - -  ,,i~) + A 1/= ( , ' -  (L - -  ,,I~)~ + p R } l n ,  

g = (p3 + ~ p  + 2 ~ ) ,  (12) 

which is the same as what  it was for the earlier situation. Thus the turning points 
of  the orbits remain the same and hence fixing the constant physical parameters a, L 
and E and integrating the system of  equations (7) to (9) with the initial condition 

(tip/do) ° = 1 {__ Ao - -  (1 - -  2/p0) [ L -  (ii~)o]2 
Po 

~ 4 ~  
[E + (A~-)o 1' [ L - -  (t/4,)o12 q- Bo [E -[- (A~-)o]' l 1/,, (13)  

Po 2 

wherein Bo, A3, (A~-)o and (,'i~)o are the values of  these quantities at p : po, we can 
obtain the particle orbits. 

Figures 1 to 3 show the plots of  the orbits for different parameters a, L, E and ,~ 
for the dipole case with the Petterson vector potential: 

A.r k4 (1 - -  aS)S/s/ 1 (1 - -  a2)1/~1 ~ ., 
(14) 

e i ¢ : ( - - 3 h  ) I  __  ~g)l12] 2a2/p) 
8 (]----~)a/2 [2 (1 (1 -[- p -[- 

1 ÷ (l  - -  ~x2) 1/2/~ 
, , - -  1 - -  ~ / )  ' 0 5 )  

a = elz/m2c ~, 

whereas figures 4 to 6 show the plots for the case of uniform magnetic field with the 
Wald vector potential 

t = e Bo m/c  2 (17) 
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As may be seen from the plots the gyration exists in all cases irrespective of the fact 
whether the particle is completely inside (figures 2 and 5), or completely outside 
(figures 1 and 4) or moves in and out of the ergosurface (figures 3 and 6). 

In fact if we examine this analytically through the condition (dg~/d~)pg = 0, i.e. 
L : (A~)Po, we find that 

= [ A  1/2 B (E -1- Ar)2~ 1/z] (dp/d )pg L 7  I-- 1 + Jp, 

which can be made real irrespective of what pg is. Thus it is clearly borne out that 
the inertial frame dragging of Kerr geometry is a coordinate effect which does not 
appear for a locally Lorentz observer. 

The analysis made above clearly shows that an LNRF observer will continue to 
see the charged particle gyrating in its orbit whether inside or outside the ergosurface. 
But for a distant stationary observer (following the global time-like Killing vector) 
the charged particle does not gyrate when it is inside the ergosphere because of the 
frame dragging effect which in turn is due to the angular momentum of the black 
hole. This implies that in the LNRF the effect of  frame dragging has been cancelled 
out completely at least in regard to the motion of charged particle around Kerr black 
hole. The analysis as seert from an LNRF may be considered as similar to the case 
of the analysis of a co-moving observer in the surface of  a collapsing sphere who 
would cross the event horizon in finite time whereas for the distant observer this 
will happen only asympotically as t ~ oo. 

Even though the emission characteristics as seen by the local observer with LNRF 
may not drastically change at the ergosurface, for a distant observer, there would be 
a change analogous to the changes that one encounters between rotating frames 
while studying the electromagnetic phenomena, and therefore the possible spectral 
cut off as pointed out earlier (Prasanna and Vishveshwara 1978) for emissions from 
non-gyrating orbits may be worth looking for. 
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