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The Vaidya solution in higher dimensions 
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Abstract. The Vaidya metric representing the gravitational field of a radiating star is 
generalized to spacetimes of dimensions greater than four. 
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The possible existence of dimensions greater than four has been seriously considered 
in recent times. This has come about from approaches in particle physics to the 
unification of all forces including gravitation like Kaluza-Klein theories and more 
recently superstrings. This was followed by a number of investigations into possible 
observational consequences of the extra dimensions both in the cosmological and in 
the black hole contexts. Issues addressed in the Kaluza-Klein cosmologies include, for 
instance, dimensional reduction via generalized Kasner solutions (Chodos and 
Detweiler 1980), the entropy problem (Alvarez and Gavela 1983), variation of 
fundamental constants on cosmological time scales (Chodos and Detweiler 1980), 
effect on thermal history of the early universe (Sahdev 1984), classification of 
homogeneous cosmologies (Demianski e t  a l  1987) and so on. In connection with 
localized sources, higher dimensional versions of the spherically symmetric 
Schwarzschild and Reissner-Nordstr6m black holes (Chodos and Detweiler 1982; 
Gibbons and Wiltshire 1986)have been obtained, as also generalization of the rotating 
Kerr black hole (Myers and Perry 1986; Mazur 1987; Frolov e t  al  1987; Xu Dianyan 
1988) and black holes in compactified spacetime (Myers 1987). Questions oflinearized 
stability (Gregory and Laflamme 1988), no hair theorems (Sokolowski and Carr 1986), 
thermodynamics and Hawking radiation (Myers and Perry 1986) have also been 
investigated. In four dimensions, the only exact solution representing a radiating star is 
the Vaidya solution (Vaidya 1951). Although it cannot describe the radiation of 
angular momentum, it has nevertheless been used in model computations of the 
evolution of a black hole under Hawking radiation (Hiscock 1981). It would thus be of 
interest to obtain the generalization of the Vaidya metric in higher dimensions. And 
this is what we derive in this paper. As we shall demonstrate, Vaidya's treatment may 
be adapted to higher dimensions in a straightforward manner. Our conventions 
are as follows: The spacetime dimensions are D = n + 2; signature ( -  + + + +.-.); 
coordinates 1 ,2,3. . .n+2 respectively being t , r ,  On. . .O~; Rgca=Fba,¢ "", Rab--Racb, 
units 8r iGa  = c = 1. 
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We are looking for spherically symmetric solutions of the Einstein field equations 

G=b = T°l, (1) 

in D dimensions, where 

Thus, 

where 

rob = pV°Vb, VoV ° = o (2) 
2 2 ds 2 = - exp (2~b(r, t)) dt 2 + exp (22(r, t)) dr 2 + r df~., 

d r2  = d02 + sin2 0.( d02-1 + sin2 0._ 1 ( d02- 2 + " "  + sin2 02d02)) "'')), (3b) 

is the metric on the n-sphere in polar coordinates. 
Introducing the basis one-forms 

091 = exp (~) dt 

092 = exp (2) dr 

093 = r dOn (4) 

09.+2 = rsin 0,. . .sin 02 d0t, 

one can conveniently compute the Einstein tensor and write down the field 
equations (1) explicitly. For radial outflow of radiation V ° = (1, 1,0, 0 . . .  0) and the 
non-vanishing vielbein components turn out to be 

G~ = n e x p ( -  22)2' n(n-  1) 
r 2 ¢,= T~=  - p  

G~= nexp(-r 22)~b' n(n 2 1 ) ~ = T ~ = + p  

. . . . . .  G,+2 = e x p ( - 2 2  ) q~" -I- ~b'2 - ~b'2 ' 

- e x p ( -  2~)(1" + i 2 - i#[) (n - 1)(n - 2) ~b = 0 
2 

= T ]  = T ~ = .  " r . + 2  

G~= n e x p ( - ( 2 + ~ ) ~ = T ~ = p  
r 

(n-l)_~' - # ) )  

(5) 

(6) 

(7) 

(a) 

where ' and .  refer to differentiation with respect to r and t respectively, and 

1 exp ( - 22) 
~b = r2 r2 

(9) 

From eqs (5) and (6) we have 

T~ + T~ = 0, (10a) 
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i . e .  

n e x p ( -  22)(2' - ~b') + n(n - 1)~O = O, 
r 

while (5) and (8) give 

T 1 + T~ = O, 

nexp (22)2' + ~ 0 4  n e x p ( - ( 2  + ~b))~ = 0. 
r r 

(10b) 

( l la)  

Thus eqs (10b), ( l ib)  and (8) are three equations for three unknowns ~b, 2 and p. 
To solve them we start with the ansatz 

2m(r, t) 
e x p ( -  22) = 1 r~_ 1 (12) 

Equation (1 lb) then implies 

rh 
exp (~b) = - ~7 exp (4) (13) 

which may be rewritten as 

dm d O O 
d--~- = 0; ~ - =  exp(-~b)~-~ + exp(-2)Orr " (14) 

Substituting (13) in (10b) yields 

m ' ( t h y  2 m ( n -  1)( 2 m ) - '  
7.- =0.  05) 

Recalling that ' is partial derivative with respect to r keeping t constant, and is 
partial derivative with respect to t keeping r constant whereas it is more 
convenient to evaluate the partial derivatives holding m constant one obtains 

m'\  0r 1 .  r-- , 

which can be integrated to give 

It now remains to verify that on using the eqs (12), (13) and (16), eq. (7) is also 
satisfied. As in four dimensions, this is tractable if instead of direct substitution one 
uses the covariant conservation of T~,. Writing down the r-th component of 

Q m T b: a -- 0 

and converting to the vielbien components, we have 

T22, + exp(2 - ~b)T~,, + T t exp(2 - ~)(2 - 4) + ~'(T~ - T[) 

(17) 

+ (~ + ;DT~ exp (2 - ~b) + n(T2 - T]) = 0. (18) 
r 
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Using eqs (10), (11) and (5) we obtain after some manipulation, 

n T ~ = -  r"+ 1 exp (3~ , )d ( rn ' ( 1 -  2m--i-)), (19) 

which as a consequence of eqs (16) and (14) yields 

= 0. (20)  

Thus eq. (7) is identically satisfied. 
In conclusion, we have shown that the 'shining star' Vaidya metric in n-dimensions 

takes the form 

ds 2 = -  1 - r ~ _ l ) f z d t  + 1 2m -1 2 2 

where 
2 m  

m=m(r,t) ,  m'(l--r-g~-_x)= f(m). (21b) 

Introducing a coordinate u = u(m) defined by 

dm dr + dt I - F ' (22) 
du - f (m) 

the (n + 2)-dimensional metric may alternatively be written as 

d s 2 = r 2 d . 2 - 2 d u d r - ( l  ~_(ut)) du2 • (24) 
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