
RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO 
Serie II, Tomo XLV (1996), pp. 19-24 

A Q U A N T I F I E D  VERSION 

OF THE D I R I C H L E T - J O R D A N  T E S T  
IN L1-NORM 

E MORICZ(*) - A. H. SIDDIQI 

We introduce the notion of bounded variation in the sense of Ll-norm 
for periodic functions and prove a version of the classical Dirichlet-Jordan 
test for the convergence of Fourier series in Ll-norm. We also give an 
estimate of the rate of convergence. 

1. Introduction. 

The classical Dirichlet-Jordan test asserts that the Fourier series 
of a 2zr-periodic function f of  bounded variation on [ -J r ,  z r] 
converges at each point. Bojanic [1] gave a quantified version of  
this by estimating the rate of  convergence. 

It is well known that the Dirichlet-Jordan test may be generalized 
by weakening the requirement that f is of  bounded variation. (See, 
e.g., [2,3,4].) 

In this note, we prove a sufficient condition for the convergence 
of  Fourier series in L l-norm. In particular, we consider functions 
that are of  bounded variation in the sense of L 1-norm and obtain a 
version of the Dirichlet-Jordan test for the convergence in L 1-norm. 

2. Definitions. 

Let f be a real-valued 2rr-periodic function, integrable on 
[-Tr, yr] in Lebesgue's sense, in sign: f ~ L21~. We say that f is of  
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bounded variation (on [-Jr, rr]) in Ll-norm if there exists a positive 
constant C such that 

~_, I f ( x  -1- t k )  - -  f ( x  + tk-l) ldx < C 
k = l  a 

for all subdivisions -J r  = to < tl < t2 < . . .  < tn = yr, n > 1. The 
smallest such C is called the total variation of f in L 1-norm, 
denoted by Vl ( f ) .  

Set 

(2.1) dpx(t) := f ( x  q- t) -F f ( x  - t) - 2f(x) .  

Given a subinterval I C [ -rr ,  Jr], define 

(2.2) f2(~, 1) :=sup{f_~ldpx( t ) -dpx( t ' ) ldx  " t , t ' ~ l } .  

It is plain that 

(2.3) f2 (q~, I) _< 2Zol(f, I/I), 

where Ill denotes the length of the interval I and 

{; } 091( f,  8) := sup I f ( x  -I- t) -- f ( x ) l d x  " Itl < 8 , ~ > 0, 
- - r r  

is the integral modulus of continuity of f .  

We note that f l ( r  I) may be considered as a kind of local 
integral modulus of continuity of dpx(t), or perhaps as a kind of 
oscillation of Ckx(t) in Ll-norm restricted to the interval I in 
a certain sense. Later on, we shall see that this quantity taken 
over appropriate subintervals Ikn of [--rr,~r] controls the rate of 
convergence of the Fourier series of f in Ll-norm. 

3. Resul t s .  

Denote by sn(f ,  x) the nth partial sum of the Fourier series of 
a function f ~ L21~. Set 

krr (k + 1)zr 1 (3 .1)  Ikn:= k = 0 , 1  . . n a n d n >  1 
rid-1 ' n + l  . . . . .  " 
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Our main result gives a sufficient condition for the convergence 
of the Fourier series of f in L l-norm. 

THEOREM I f  f ~ L I~ and n is a positive integer, then 

f= ( 1 ) ~ _ ~  1 ft(~p, ,k,,), (3.2) Isn(f, x) - f ( x ) l d x  <_ 1 + 
-~ k=O k + 1 

where g2(~b, I) is defined in (2.1) and (2.2). 

COROLLARY 1. (Dini-Lipschitz test in L 1-norm). If  f ~ L~ r 
and n > 1, then 

(3.3) I s n ( f , x ) - f ( x ) l d x < 2  1 +  o91 f , ~  In(n+2), 
- n + l  

where wl (f ,  8) is the integral modulus of continuity of f .  

COROLLARY 2. (Dirichlet-Jordan test in Ll-norm). If  f 
bounded variation in L l-norm, then 

(3.4) lim Isn(f, x) - f ( x ) l d x  = O. 
n--~ .oo  

--7l" 

is of  

4. Proofs. 

We start with the well-known representation formula 

(4.1) sn(f, x) - f ( x )  = ~ ~x(t)Dn(t)dt, 

where ~x(t) is defined in (2.1) and 

1 ~'~ sin(n + 1/2)t 
Dn(t) := -~- a t- 2.., coskt --- , n > 0, 

k=l 2 sin t /2 -- 

is the Dirichlet kernel. We shall make use of the following inequality 
(see [1]): 

(4.2) D~(t)dt < ( n +  l ) x '  O < x  <_~r andn >O. 
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Proof of  the Theorem. The idea of  the proof goes back to that 
of  [2, Lemma 1]. Let n >  1 be fixed. Set 

kzr 
Okn:= k = 0 , 1  . . . .  , n + l .  

n + l  ' 

Then lk, = {0kn,0k+l.n] (cf.(3.1)). By (4.1), we estimate as 
follows 

(4.3) 

f 
Ilr 

--7"( 

Is ,( f ,  x) - f ( x ) l d x  _ --~JTr to, [~x(t)Dn(t)ldtdx 

+ ~-- I{q~(t) - ~(Ok~)}On(t)ldtdx 
k = l  n" n 

+ T -7 k=~ epx(Ok.) dx  

= An + B, + C, ,  

say. 

First, we use the obvious inequality 

IDn(t)l < n + 1/2 

and the fact that (Px(0)= 0 in order to get 

'L Y (4.4) An < - -  IDn(t)idt [~bx(t) - ~Px(O)ldx < f2(~p, Ion). 
7l" n - ~ r  

Second, by the inequality 

sin t /2  > t/Tr, 0 < t < 7r, 

we obtain 

(4.5) 

Bn <_ IDn(t)ldt Iq~x(t) - qbx(O~n)idx 
k = l  n - s t  

_< a(~,  1k,,) -~- 
k = l  n 

N 1 

k = l  
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Third, to estimate Cn we set 

Rkn := Dn (t)dt,  k = O, 1 . . . . .  n + 1. 
Okn 

Clearly, Rn+l,n -----0, while by (4.2), 

1 
[Rknl < -~, k = O, 1 . . . . .  n. 

A summation by parts gives 

" ) ~  ()d ~lqb (Ot)(R k~=l qbX(Okn Dn t t = x n kn -- Rk+l.n) 

= E { ~ x ( O k n )  - -~x(Ok- l .n)}Rk , , .  
k = l  

(4.6) 

Thus, we conclude 

Cn < - -  Iqbx(Okn) -- qbx(Ok-l,n)ldx 
7/" k = l  - r r  

Yr k----I 
K 

Combining (4.3) - (4.6) yields (3.2). 

Proof of  Corollary 1. Inequality (3.3) is an obvious consequence 
of (3.2) and (2.3). 

Proof of  Corollary 2. As is well known, 
f e L l ~  

l im wl - -  = O. 
n ~  n + 1 

By (2.3), for a fixed k0 > 1 we also have 

I,o 1 
lim 

n ~  oo ~ . ~  k + l  
Ik ) = o.  

for any function 
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On the other hand, by definition, 

n 1 

k + l  
k = k 0 + l  

2 
f2(q~, Ikn) -< ~ V l ( f ) .  

k o + 2  

The right-hand side here can be made as small as we want  by 
choosing ko large enough. This completes the proof of (3.4). 
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