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In this paper we study the reaction-diffusion equation ut = Au+f(u ,  k(t)) 
subject to appropriate initial and boundary conditions, where 
f (u,  k(t)) = u p - k(t) or k(t)u p, with p > 1 and k(t) an 
unknown function. An additional energy type condition is imposed in 
order to find the solution pair u(x, t) and k(t). This type of problem is 
frequently encountered in nuclear reaction processes, where the reaction 
is known to be very strong, but the total energy is controlled. It is 
shown that the solution blows up in finite time for the first class of 
functions f ,  for some initial data. For the second class of functions f ,  
the solution blows up in finite time if p > n / ( n -  2) while it exists 
globally in time if 1 < p < n / ( n -  2), no matter how large the initial 
value is. Partial generalizations are given for the case where f (u,k(t))  
appears in the boundary conditions. 

1. I n t r o d u c t i o n .  

Cons ide r  a chemica l  reac t ion-di f fus ion  process ,  where  it is 

known  that the react ion is very strong,  say like u p with p > 1, but  

the rate with respec t  to this p o w e r  is unknown,  say k(t) ,  a funct ion 

of  t. On the o ther  hand,  let us a s s ume  the total ene rgy  is cont ro l led  

in the sys t em in order  to p revent  b l o w - u p  p h e n o m e n o n ,  that  is 

f u(x,  t )dx  = g(t).  
f2 
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This leads to an inverse problem where one needs to find the 

solution u(x ,  t) as well as the coefficient of the reaction. Another 

model arising from nuclear science occurs when the growth of 

temperature is known to be very fast, like u p , but some absorption 

catalytic material is put into the system so that the total mass is 

conserved. These two models lead us to consider the following 

parabolic inverse problem: Find u(x ,  t) and k ( t )  such that 

(1.1) ut - A u  -- f ( u , k ( t ) )  

Ou 
(1.2) --~-v (x, t) = 0 

(1.3) u(x ,  O) = uo(x)  

for (x, t) (~ Qr  = ~ • (0, T], 

for (x, t) ~ Sr = 0f2 • (0, T], 

for x E f 2 ,  

where f2 is a bounded domain in R" with smooth boundary S = 0fl ,  

and v is the outward normal on S. An additional energy condition 

is prescribed by 

(1.4) / u ( x , t ) d x  = g( t ) ,  t >_ O. 
I2 

The above mathematical problem can also be used to model 

phenomena in population dynamics and biological sciences where 

the total mass is often conserved or known, but the growth of 

a certain cell is known to have some definite form. Research on 

the well-posedness of parabolic inverse problems is classical and 

well-known; the reader can find a large number of references in 

[4]-[6] and the recent proceedings [9]. The essential difference 

between previous inverse problems and the present one is that 

solutions of (1.1)-(1.4) may blow up; this fact is well known when 

k ( t )  is given. On the other hand, since the function k ( t )  is given 

in terms of the solution, the problem may have a global solution 

because of the stabilizing effect of this function. A natural question 

then is whether or not the stabilizing factor is strong enough to 

prevent blow-up. We shall study this problem for two classes of 

functions f ( u , k ( t ) ) ,  namely, 

(1.5) f ( u , k ( t ) )  = u p - k ( t )  and k ( t ) u  p. 
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When the function k(t)> 0 is given, there are many papers 

dealing with various qualitative properties such as finite time 

blow-up, blow-up rate, blow-up set, etc. (cf. [2], [10], [14], [17] and 

the references therein). When f(u, k(t)) has the form (1.5), with 

an unknown k(t), it is not difficult to see that condition (1.4) and 

equation (1.1) imply either 

k(t)=-lf2]l (fuPdx-g'(t))or fg'(t) .uPdx 
J 

f2 

Hence the reaction term in (1.1) can be written in the form 

l I o r  i t'u  
(1.6) f = uP 1~21 uedx 

f~ 

In general, it is not clear which terms will dominate the reaction. 

As there are non-local integral terms in (1.6), a comparison principle 

is invalid. Nevertheless, by applying the energy method, we prove 

for the first class of functions that solutions will blow up in finite 

time for a class of initial data. For the second case, one might also 

believe that the solution will blow up in finite time. Surprisingly, 
it turns out that both finite time blow-up or global existence can 

occur, depending upon the exponent p and the space dimension n. 

It will be seen in Section 3 that the solution exists globally if 

p < n/(n- 2), no matter how large the initial datum is. On the 

other hand, the solution will blow up in finite time if p > n/(n- 2), 

provided the initial data satisfy appropriate conditions. This is quite 

different from the case of regular reaction-diffusion equations (cf. 

[2], [10], [14], etc.). 

We mention that diffusion equations with non-local reactions 

have been considered by a number of authors (cf. [1], [7]-[8], 

[17], etc.). However, none of these papers deals with problems 

of the type (1.1)-(1.4), since the energy in the previous problems 
blows up in finite time. More recently, problem (1.1)-(1.4) with 
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f 
l 

f ( u , k ( t ) )  = u 2 -  u2dx was studied in [3] for the case of one 
0 

space dimension. They proved blow-up of solution for some special 

initial values and also discussed blow-up rate. On the other hand, 

their argument is not suitable for the present situation. 

The paper is organized in the following way. In Section 2 we 

study the problem with f ( u , k ( t ) ) =  u p - k ( t ) .  In Section 3 we 

prove global existence for the case where f ( u ,  k ( t ) ) =  k ( t )u  p with 

p < n / ( n -  2), and also prove global existence for p : n / ( n -  2) 

when the initial value is large enough. In Section 4 we consider the 

case p > n / ( n -  2) and prove that the solution blows up in finite 

time for suitable radially symmetric initial data. Section 5 deals 

with the case where the function f ( u ,  k ( t ) )  occurs in the boundary 

conditions. 

2. Blowup for f ( u ,  k ( t ) )  = u p - k ( t ) .  

Throughout the paper, the letter C denotes various generic 

constants, unless otherwise indicated. Since we shall not require 

that u ( x , t )  is nonnegative, we write lul p-i instead of u p. We 

assume moreover that g ( t ) =  c o n s t a n t  (say 1), as is the case in 

some applications. The equation (1.1)-(1.4) can now be rewritten as 

follows (with g ( t ) =  1): 

u, = A u  + lul t ' - lu  -- k ( t )  

~U 
(2.1) - - 0  

8v 

u(x, O) = uo(x) 

where 

for x e ~ ,  t > 0 ,  

for x e O ~ ,  t > 0 ,  

for x ~ f 2 ,  

'(/ ) k ( t ) -  IK21 lu lp- ludx " 
[2 

The following conditions on the data are assumed throughout 
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this section: 

(2.2) Uo(X ) E C 3 ( ~ )  and f .o(x)dx = 1. 

The existence and uniqueness of  this system for small t is clear, 

by the standard theory of parabolic estimates and the contraction 

mapping principle. It is also clear that the solution can be extended 

in the variable t, as long as the L ~176 norm of the solution remains 

finite. On the other hand, we have the following 

THEOREM 2.1. The solution of  (2.1) blows up in finite time if  
p > 1 and 

f 1 iVuol2dx + ~ luolP+ldx. 
2 ~ p + l  

is suitably large. 

Remark 2.1. The condition on Uo(X) in Theorem 2.1 can be 

satisfied if we choose 

uo(x) = 1 -t- ~.ul(x), f u t ( x ) d x  = 0, ul(x) ~ 0, 
f~ 

where UI(X ) is smooth and ~. >> 1. It is clear that in this case the 

expression 

2 IVu~ + ~ 1 f luole+ld x 
p + l  

2 IVull2dx + ~v+l + ul dx 
~2 ~2 

is dominated by the term involving ~p+l, and therefore is large 

when ~. is large. 

Proof. We use convexity argument (see Levine and Payne 

[15]). Multiplying the equation by u and u,, respectively, and then 
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integrating over ~ ,  we obtain 

(2.3) 

~ \ 2 J n  / . 

= f , u : + l d ~  _ _ _ I f  . a IX21 lult'-ludx' 

nu~dx + ~ "2 [Vul2dx = dt p +  1 lulP~adx " 

Let 

if i f  J(t) = - 2 IVul2dx + -  lule+ldx 
a p + l  n 

The second identity of (2.3) gives 

(2.4) J'(t) = f uZtdx > O, 
f2 

and it follows that 

(2.5) J (t) = J (O) + fo' f u~dxdt. 
f2 

Introduce a new function 

I (t) = u2dxdt + A + Bt 2, 

where A and B are two constants to be specified later. Clearly 

l ' ( t ) = f u 2 d x + 2 B t ,  l " ( t ) = d f u 2 d x + 2 B .  
dt f2 

By the first identity (2.3), 

l"(t)= ff-~fu2dx+2B 
~2 

= - 2 f  I v,,12dx 
fa 

+ 2 l l u l P + l d x  - _ _  
~t 

g2 

2/ 
IK2I l u l p - l u d x  

f2 

+ 2 B .  
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We claim that there exists a constant 3 > 0 such that 

(2.6) I'(t) >_ 4(1 + 3 ) J ( t ) .  

Indeed, the desired inequality is equivalent to 

-2 f. IXTul2dx + 2 f lulP+ldx - 2 ~lulP_ludx + 2 B  
If21 

> 4(1 +6) - IVul2dx + ~ lulP+adx 
- p + l  

Now H61der's and Young's inequalities imply that for any 

6 1 > 0  

f luledx <_ ~, f lule+'dx + C(~1, 1if21). 

Since p > 1, we can choose 6 and 31 small enough such that 

4(1 + ~) 
2 ~1 > 0 .  

l + p  

Then we have the desired claim if we simply take B > C(6x, 1ff2l), 
Clearly 

(2.7) f f'f f l'(t) = u2dx + 2Bt = 2 uutdxdt + u2dx + 2Bt. 
0 f2 f2 

It follows that, for any e > O, 

(2.8) 
fo' f f'f: I ' ( t )  2 _< 4(1 + e) u2dxdt u dxdt 

f~ 0 ~ 

+ ( 1 - t - 1 ) [ f  u2dx+2Bt] 2. 
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Combining the above estimates, we find that, for ot > 0, 

l ' ( t ) l ( t )  - (1 + c t ) l ' ( t )  2 

[ ss ] [/o/ ] > 4(1 + 5) J (0)  + u 2 d x d t  u 2 d x d t  -t- A + B t  2 
o ~2 12 

[ iooi, ss, 1 - (1 + ct) 4(1 + e) u 2 d x d t  u d x d t  
0 n 1 

_ <, l ,  + . 

Now we choose E and ot small enough such that 

(2.9) 1 + 8 > (1 + or)(1 + e). 

If  

(2.10) J (0)  > 4(1 + t / )  (1  + 1 )  B 

and A is chosen large enough, then 

l " ( t ) l ( t )  - (1 + u ) l ' ( t )  2 > 0. 

f'f It follows (cf. [15]) that u 2 d x d t  
o f~ 

t ime T*. 

will blow up in a finite 

[]  

Remark  2.2. When U o ( X ) =  M is a constant, then u(x ,  t ) =  M 

is always a solution. In this case, the proof  is invalid since in the 

inequality (2.6) the constant B depends on ]f2J, but the condition 

(2.2) implies MI~I---- 1. Consequently, B depends on M, as do the 

other constants in the proof. Therefore, it is impossible to choose 

J (0)  to satisfy the desired inequality (2.10). Of  course in this case 

the condition of Theorem 2.1 also fails, since 

f , f  1 [Vuoledx + ~ [uolP+ld x = 
2 p + l  ~ ( p + l ) l ~ l P  
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cannot be made arbitrary large. 

3. Global Existence for f ( u ,  k ( t ) ) =  k( t )u  p. 

For simplicity, we shall assume that g ' ( t ) =  1 in Sections 3 

and 4. It is not difficult to see that the results can be immediately 

carried over for a general function g(t)  > 0 with g'( t )  > 0. In this 

case the problem (1.1)-(1.4) is equivalent to 

u, = Au + k( t )u  p for 

au 
(3.1) = 0 for 

Ov 

for u(x, O) = uo(x) 

x r f 2 ,  t > 0 ,  

x e 0 ~ ,  t > 0 ,  

x r ~ ,  

where 

(3.1) k( t )  = 

f uP(x, t )dx  
[2 

We shall assume throughout this section that Uo(X) is smooth, 

Uo(X) > 0 on (2, and satisfies the compatibility conditions ~gu0 _ 0 on 
Ov 

r 
Of 2. (In (1.1)-(1.4), we also require that / U o ( x ) d x  = g(0) -- m > 0; 

[2 

this is not an assumption since we do not specify g(0) here). 

By the standard theory of parabolic estimates and the contraction 

mapping principle, the existence and uniqueness of a solution of this 

system for small t is guaranteed. The solution can be extended in t 

as long as it remains finite. Since we assume that the initial data are 

positive, the solution u(x,  t) is positive, by the maximum principle. 

THEOREM 3.1. Suppose that 1 < p < n / (n  - 2) f o r  n > 3, and 

I < p < oo when n = 1 or 2. Then there exists a unique global 

solution to the system for  all t 6 [0, oo). 
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Proof. We give proof  only for n > 3. The proof for n = 1 and 

n -- 2 can be obtained with obvious modifications. Fix a large number 

fl so that (fl + 1 ) / p  > (n + 2 ) / 2 ,  and without loss of  generality 
1 1 

assume that IX21 = 1. For any 0 < a < 1, and - -  + - -  = 1, we 
q q* 

have 

(3.2) 

l/q* 

There are two free parameters a and q to be determined. We 

first let 

(3.3) (p  + f l )aq  = (fl + 1 ) - -  
n 

n - - 2  

If q = n / ( n - 2 )  (it is clear that 0 < a  < 1 with this choice of  

q, since p > 1), then 

(3.4) 
n 

(p + ,8)(1 - a ) q *  = - ~ ( p -  1) < p. 

However,  the choice q = n / ( n -  2) will not be good enough in 

the following proof. Since we have a strict inequality in (3.4) when 

q = n / ( n  - 2), we can take q > n / ( n  - 2) and q - n / ( n  - 2) << 1 

so that (3.4) is still valid for this particular choice of  q. Using 

H61der's inequality, we obtain, (recalling that If21 = 1), 

(3.5) 

f uP+~dx ~2 
< u(~ + ) ,-2 d x  u(P+P)(1-a)q*dx 

<(fu(fl+l)n--Zfdx)l/q(f uPdx) (p+fl)(1-a)q* 

Next, multiplying the equation (3.1) by u a and integrating over 
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f2, we obtain 

(3.6) 
1 fn uP+#dx 

l,u.,x y u.+,,x 

Integrating the equation (3.1) over f2, we immediately get 

f u(x, t)dx = f uo(x)dx + t. 
f2 

Hence by H61der's inequality (1~1 = 1), 

(3.7) / ( / ) ' ( s  )' uPdt > uo(x)dx + t > uo(x)dx 
~2 

= m P > O .  

Combining (3.4), (3.5), (3.6) and (3.7), we obtain 

(3.8) 

fn 1 u,+idx ) 
15+1  

4fl f iVu(~+lV2i2d x 
+ ( / ~ + 1 ) 2  f2 

< C u (~+);=r-2dx 

Let v = u (~+1) /2 .  Then 

( i )  4. j 1 v2dx + IVvl2dx <_ C 
15+1 n 4( /5+1)2  n 

t 

1/q 

Now we use the following (elliptic) Sobolev embedding theorem 

(cf. [16]) in the above inequality,yielding ( .n)  
Ilwllv(a) < C(llVwllL,(a) + IlwllL=<n)), r - -  - -  . 

- n - 2  

Since q > n/(n - 2), we obtain 

(3.9, (fv2dxl +LlvvlEdx<Ca(LvEdx+, ). \n It 
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By Gronwall 's  inequality, we conclude that the right-hand-side 

of the inequality (3.9) is bounded. Therefore 

(3.10) 

n - 2  (/ u~+ldx + u(~+l).'-~-2dx < 

\ f~ It 

(i Is( !  sup u~+ldx + u(#+l) ."-~-2 dx  < C#, 
0<t<T \ f2 ] 0 

It follows that u is bounded in L :+l .  Thus the LP-estimate (cf. 
2,1 [13]) implies that u is in Wi#+z)/p(Qr). Since ( /7+ 1)/p > (n + 2 ) / 2 ,  

Sobolev 's  embedding theorem implies that u(x , t )  is Hf lder  

continuous in (2 x [0, T] for any T > 0. Therefore Schauder 's  

estimate for parabolic equations implies that u ~ C2+~"I+~'/2(Qr) for 

some ~ ~ (0, 1). Thus we obtain a global solution. [] 

We now consider the case that p is equal to the critical 

number,  i.e., p = n / ( n -  2). The above proof  with q = n / ( n -  2) 

gives (recalling that If~l = 1) 

(3.11) 

(f u~+'ax) + f lvu(~+')/Zl2dx 
f~ / t  ~2 

< C~ 

< C~ 

n - 2  ) u(~+l) ."-~_2 dx  

f \'1" 
.I u'd~ ) 

n - 2  

t + f.o(x)dx, 
~2 

where at the final step we have used the inequality (3.7). By 

Sobolev 's  embedding theorem (recalling that (/J + 1 ) /p  > (n + 2) /2) ,  
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the numerator in the right-hand-side of (3.11) is dominated by 

C 

where the constant C is the (elliptic) embedding constant and is 
P 

independent of T. Therefore by choosing ] u o ( x ) d x  large enough, 
a 

we obtain the same estimate as (3.10). Consequently, we proved 

THEOREM 3.2. Suppose that p = n/(n - 2) for n > 3. Then the 
P 

solution exists for all t E [0, oo), provided that / Uo(x)dx is large 

enough. [] 

4. Blow-up of solutions for f ( u ,  k ( t ) ) =  k(t)u p. 

In this section we shall construct a solution which blows up in 

finite time when p > n / ( n -  2). 

THEOREM 4.1. Suppose that p > n/(n - 2 ) .  Then there exists a 

radially symmetric initial datum Uo(X) in [2 = B1(O) such that the 

corresponding solution u(x , t )  of  (3.1) blows up in finite time at 

x = O. Furthermore, x = 0 is the only blow-up point. 

Proof Let 

(4.1) r = 

where we choose 

1 
rot  

O/ 

2&a+2 

2 
0 /  - -  - -  

p - 1  

for d < r <  1, 

- - r  z ~ r O < r < 6 ,  
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It is clear that ~o 6 C~[0, 1] N C~176 8) U (8, 1]), tp'(0) = 0 and 

tp'(r) < 0. A direct calculat ion gives /l fl 
n O g n ~ o P ( r ) r n - l d r  = n O ) n r n - l - p ~ d r  + o"1(8) 

0 aO 
(4.2) 

nOOn 
- - -  + o ' 1 ( 8 ) ,  

n - -  a p  

where  

(4.3) 

f ~  trl (8)  = - -  n o g . r n - t - p a d r  

0 

+ nWn 1 + -~- 28~+ 2 r 2 r n - l d r  
0 

=O(6.-~p), 

and co. is the volume of  the unit ball in R ' .  Thus or I ( 8 )  ~ 0 as 

8 --+ 0 + ,  since p > n / ( n  - -  2).  From our choice of  or, we find that 

for each 8 ~ (0, 1), 

n - 1  c~ 
~Orr =~" r qg~ - -  r ~+2 ((a + 1) - (n - 1)) 

= - u ( ( n - 2 ) - t ~ ) t p  p f o r S < r  < 1, 

and 
n - -  1 not 

~rr -[- r ~o r - -  8~+------ f - -  na~o p (8)  

--not~oP(r) for 0 < r < 8. 

Since ~o 6 cl[o,  1], the inequality 

n - 1  
(4.4) q g . +  qgr > - f l ~ 0  e f o r 0 < r  < 1 

F 

is satisfied in the distribution sense, where 

fl = max [a ( (n  - 2) - a ) ,  n a ] . '  
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Let uo(r)=/z~o(r), then 

n - 1  1 
(u0).  + (u0)r + r 5- 

(4.5) 

1 

i nw.(Uo)Pr"-ldr 

>-- ( - u ~ )  + 7 no~. 
- -  n t- O" 1 ( 8 )  
n -- t~p 

(uo) v 

1 n - u p  
> lz-e(Uo) e>(uo) t" f o r 0 _ < r  < 1, 
- 4 n o 9  n 

provided we take /x and 8 such that 0 < / Z < # o ,  0 < 8  < 8 o  for 

some sufficiently small #0 and 60. We now fix # - - / Z o .  Thus uo(r) 
will be uniquely determined by the choice of 8. 

Next, we want to give an estimate for the modulus of continuity 
/ ,  

of the integral [ uP(x,t)dx near t = 0 such that the estimate 
t t g  

B, (0) 

is uniformly valid for small 8. Since we want to prove that the 

solution blows up in finite time, we will assume for the contrary 

that it exists for all t; especially, it exists for 0 < t < 1. Clearly 

m = fs~(o) uo(x)dx 

1 ( 2 + c t  
- -  " 4 -  n p COn n ot 2-n 

(4.6) 

2(n + 2) n - o~ 

Therefore m is bounded from above and below uniformly for 

6 < 60. As in Section 3, we have 

(4.7) / u(x, t)dx = t + m. 
Bi (0) 

Notice that uo(x)= uo(r) is monotone decreasing in r.  By 

applying the maximum principle to ( r" - lur ) ,  we obtain that 
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Ur(r, t) < O. Hence 

fr fr u(r, t )w . r  n = u(r, t) n to . zn - ldz  <_ u(z ,  t ) n w . z ' - l d z  
"0 0 

/' 
<_ u(z ,  t )nw ,  z ' - l d z  = t + m,  

0 

which implies 

t + m  l + m  
(4.8) u(r, t) <_ ~ < - -  

O)n rn  OOn rn 
for 0 < t < l .  

Thus u(r, t) is uniformly bounded, say, in [1/2, 1] x [0, 1). Next, 

by H61der's inequality, one can easily derive 

1 w~ p-t  
(4.9) k ( t ) -  < - -  for 0 < t  < 1. 

f -- mP u e d x  
BI (0) 

The function w(r, t ) =  r'-lur satisfies the equation 

(4.10) .L ,e [w]=0 for 0 < r < l ,  0 < t < l ,  

where .2'[.] is defined by 

(4.11) .2"[~1 ~- 1]Z t - -  ~/r "t- 
n - 1  

!lrr - pk( t )uP-lap.  
r 

Comparing w with a function v which satisfies the same 

equation .2'[v] = 0, but equals to 0 on r = 1/2 and on r = 1, and 

equals to r ' - l (Uo)r(r )  on t = 0, we easily derive that 

(4.12) Ur(3/4, t ) < - c 0  for 0 < t  < 1, 

where the constant Co is independent of 3 because of the estimates 

(4.8) and (4.9). 

We next introduce the auxiliary function as in [10], 

J = w(r,  t) + er"u q, 



SEMIL1NEAR PARABOLIC EQUATIONS WITH PRESCRIBED ENERGY 495 

where we fix q such that q < p, and 2 p / ( q - 1 ) <  n (This is 

possible since 2 p / ( p -  1 ) <  n). We assume that 

1 4 (4.13) u(3/4,  t ) > ~ U o ( 3 /  ) - - )7  for O < t  < V o  

(we shall justify this assumption later on with Vo to be determined). 

Then by maximum principle, 

1 
u ( r , t ) > u ( 3 / 4 ,  t ) >  ~ U o ( 3 / 4 ) = ) 7  for 0 < r < 3 / 4 ,  0 < t  <vo .  

A direct calculation shows that 

.L-('[J] -= e { - ( p  .4- q)k(t)rn u p+q-I 

_ 2nquq-lrn-lur _ rnq(q - 1)uq-2(ur) 2} 

= e{--(p + q)k(t)rnu p+q-l - 2nquq- l[J  - ernu q] 

- r"q(q - 1)uq-2(u~) 2} 

= 2 e n q u q - l j  +ec(r ,  t), 

where the coefficient of J in the above equation is bounded as long 

as the solution u(r, t) remains bounded. Since u(r, t)>_ O, 

c(r, t) = r" u2q-l[--(p + q)k(t)u p-q + 2neq] - rnq(q - -  1 ) u q - 2 ( U r )  2 

< r"u2q-z[ - (p  + q)k(t)rl p-q + 2neq] 

< 0 ,  

provided 

(4.15) 
p - q  

e < ~ k ( t ) r l  p-q. 
2nq 

The above inequality is valid for small e if we have a lower 

bound for k(t) .  We assume that (we shall justify this assumption 

later on) 

(4.16) k(t) > l k ( o )  for 0 < t < Vo, 
L 
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then (4.15) is valid for small e. 

On {t = 0}, for 0 < r < 8, (notice that trp = t~ + 2), 

(Uo)r + e r ( u o )  p = - l z - ~ 2 - ~ r  + e r l z  p 1 + ~ -  28.+ 2 

<_ - r + r u 1 + 

- - r 2 1  p 

-- 8a+2/Z [ - -Ot+~: /zP-I (1  + - ~ )  p] 

< 0 ,  

if  e is small enough ( independent  of  8). For  8 < r < 1, 

ot 1 
(UO)r + e r ( u o )  p = --lz-z--~.~ r + e r l z  e -  

rap 

/x 
+ el2 p-I 

ra+l 

for small e. Since p > q 

that 

< 0  

and u0 > 17 for 0 < r  < 3 /4 ,  it fol lows 

(UO)r -k- er(uo) q < (UO)r -t- F.rlq-Pr(uo)P < 0 for 0 < r  < 3 / 4 ,  

for e small enough ( independent  of  6). Thus J < 0 on 

{t = 0 , 0  < r < 3/4}. By (4.8) and (4.12), we can choose e 

to be small enough ( independent  of  S) so that J < 0 on 

{r = 3 /4 ,  0 < t < v0}. We now fix such an e. Obviously,  J = 0 on 

{r = 0, 0 < t < v0}. Thus, the max imum principle implies that J < 0 

on {0 < r < 3 / 4 , 0  < t < v0}, as long as (4.13) and (4.16) remain 

valid for 0 < t < v0. 

Integrating - u r  > 8 r u  q, we obtain 

ul-q(r ,  t )  > q --  1 --  1 - - e r  2 + u l - q ( O , t )  > q e r  2, 
2 2 
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i.e., 

2 ]q - I  
u(r,  t) < - - -  

- ( q  1)e 

1 [ 2 ] q l  
r 2~(q-l) (q 1)e r r  

f o r 0 < r < 3 / 4 , 0 < t < v 0 ,  

where y = 2 / ( q  - 1) < n / p .  It follows that 

(4.17) 
f 

~ 

sup n w . u e ( r ,  t ) r " - l d r  < 
0<8<_8o" 0 

[ 2 ]P(q-l) ~. n-'p 
nog~ ( p - - 1 ) e  n - - y p  

Since u (r, t) is uniformly bounded in the domain 

{~ < r < 1, 0 < t < 1}, the standard parabolic estimate implies that, 

for any )~ > 0, 

li f (4.18) lim sup nognuP(r, t ) r n - l d r  - n ton (uo)prn - ldr  = O. 
t--~0 0<8_<8o k 

The estimates (4.17) and (4.18) imply that 

f0 / (4.19) lim sup nw.uP(r ,  t ) r " - l d r  - n o ) . ( u o ) e r " - l d r  
t--*0 0<8_<80 0 

-~0.  

Therefore, by the continuation argument in t, there exists a 

Vo ~ (0, 1/2) such that (4.13) and (4.16) are valid for 0 < t < v0, 

where v0 is independent  of 8. It follows that all of  the above 

estimates are valid for 0 < t < v0. 

We now compare  u ( r , t )  with the solution v ( r , t )  of  the 
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following problem 
1 

Vt = A v  + -~k(O)v p 

Ov 
- - C  ~ 

Or 

Ov 
= 0  

Or 

for 0 < r  < 1, t > 0 ,  

for r = 1, t > 0 ,  

for r =  1, t > 0 ,  

v(r, O) = uo(r) for 0 < r <  1, 

where 
I 

c * - Ou--2~ ] 
Or I r=l  

By the comparison principle, u(r , t )  >_ v (r , t ) ,  as long as 

both solutions exist and 0 _< t < v0. Let ~ = v t - v  ?, then 

- -  > 0  on { r =  1, t > O}. By using (4.5), we obtain lp > 0  on 
Or 

{0_< r _  1, t = 0 } .  Thus by using the equation for ~p, we derive 

that ~p >__ 0, as long as the solution exists. Hence 

v(r, t) > ) 1/(p--l) " 
1 

p--I ( p -  1)t 
u 0 (r) 

Especially, 

v(0, t) >_ 
1 ) 1/(t,-1) �9 

ug_l(o ) ( p -  1)t 

Therefore, the solution v(r, t) blows up at a t ime T* < v0, if 6 

is chosen to be small enough. This proves Theorem 4.1. [] 

Remark  4.1. For a general function g( t ) ,  Theorem 4.1 holds if 

g(t)  > go > 0 and g'(t)  _> go > 0 for some positive constant go. 
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5. Nonlinear Boundary Value Problem. 

In this section we study the problem with f ( u ,  k(t)) appearing 

in the flux boundary condition. We first consider the case where 

f ( u ,  k ( t ) )  = lulP-lu - k(t): 

ut  - -  A U  

~U 
- -  lule- lu -- k(t)  

av 

for x e ~2, t > 0 ,  

for x e O~2, t > O, 

u(x,  O) = uo(x) for x e ~2, 

where v is the outward normal on af2. An additional condition is 

imposed as follows: 

(5.2) f u ( x , t ) d x  = 1 for t > 0. 
f~ 

Assume that p > 1. It is known (cf. [11], etc.) that when 

k(t)----0, the solution blows up in finite time for any nonnegative 

uo(x) which is not identically zero. 

It is clear from the standard theory of parabolic equations that 

the problem (5.1)-(5.2) has a local solution. Will the stabilizing 

factor k(t) in the boundary condition be able to prevent the blow-up 

phenomenon? The answer is negative for certain initial values. We 

shall assume that uo(x) is smooth, say in C3((2), for convenience. 

THEOREM 5.1. The solution 

time if 

J(O) = - - -  

is large enough. 

of  (5.1)-(5.2) blows up in finite 

1 IVuol2dx + _ _  luolP+ld s 
2 n p + l  

Proof. The proof is similar to that of Theorem 2.1. Multiplying 

the equation (5.1) with u and ut, respectively, and integrating over 
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f2, we obtain 

(5.3) 

10~21 lulP-luds; 

(5.4) 

Let 

and 

S u,,x+,_:. ,(i: ) ~ [ V u l 2 d x  = ulP+Ids . 
dtn ~-  p + l  t 

1 L J ( t )  - 2 V u 2 d x  + - -  lule+lds '  
p + l  

f /  I ( t)  = u 2 d s d t  + A + B t  2. 
0 al2 

A similar calculation shows that there exists a constant ct > 0 

such that 

I ( t ) I " ( t )  - (1 + ot)l ' ( t)  2 > 0, 

provided that J (0)  is large enough. We shall omit the detail he re .o  

Next we consider the case with f ( u ,  k ( t ) ) =  k ( t )u  p appearing 

in the flux boundary condition. In this case, since the embedding 

inequality is different from the situation considered in Section 3, we 

have a different inequality about p and n to ensure the existence of  

a global solution. For simplicity, we again assume that 

u ( x ,  t ) d x  = g ( t )  - t + m,  

where m = / U o ( x ) d x .  It is not difficult to see that the result can 
I2 

be carried over for a general bounded smooth function g ( t )  with 

g ( t )  > 0 and g ' ( t )  > O. 
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The problem is equivalent to: 

Ut "- AU 

~U 
= k(t)uP 

Ov 

u(x, O) = uo(x) 

for x e ~2, t > 0 ,  

for x~Of2 ,  t > 0 ,  

for x ~f2, 

where 

k( t )  = 

f u P ( x , t ) d s  
a~ 

We assume that Uo(X)> 0, Uo(X)~  C3(~) and that uo(x)  

satisfies the compatibility condition: 

~uo(x) u~(x) 
~v f ur 

O~ 

for e Of 2. 

Again the classical theory of parabolic equations implies that 
the problem (5.5) has a unique classical solution locally in time. 
Moreover, the strong maximum principle implies that u(x, t) > 0 for 
x e (2 as long as it exists. 

THEOREM 5.2. For 1 < p < (n - 1)/(n - 2 ) ,  i f  n > 3, and 

1 < p < o o ,  i f  1 < n < 2 ,  the problem (5.5) has a unique solution 

for  all t E [0, oo). 

Proof. The proof is similar to that of Theorem 3.1. For any 
/~ > 0, we multiply the equation by u g, and integrate over ~ to 
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obtain 

(5.6) 

( l  fu..,xl 
f l + l  f2 Jt 

4fl ~ iVu(a+l)/21Zdx 
+ 4(3  + 1/2 

f up+l)ds 

- f . . s  

By H61der's inequality, 

f uP+~ds < u(P+fl)aqds 
o~ 

fu a~ (p+fl)(1-a)q*ds) 
1/q* 

We choose, for n > 3  (in the case n =  1 or n = 2  we choose  

q to be large enough),  

n - 1  n - 1  n - 1  
q > - - ,  q - -  << I, ( p + f l ) a q = ( / 3 + l ) ~  

n - 2  n - 2  n - 2  

Then q* ~, n - 1, and (p + fl)(1 - a)q* ~, (p - 1)(n - 1). Since 

(p - 1)(n - 1) < p,  we have 

(p + fl)(1 - a)q* < p. 

Therefore 

f up+flds 
a~ 

~u..s <C 

l/q 

(5.7) 

I f  we define v(x, t ) =  u(x, t) (~+1)/2, then by (5.6), 

(1 f:,x) 
f l + l  n / t  

4, f + 4(13 + 1) 2 IVvl2dx 
~2 

2(n-I) 

<_ C v ~-2 ds 
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Now we use the following trace inequality (cf. [16]): 

IlwllL,(an) < C(llVwllt~(a) + IlwllL~<a)). 

where 

r - -  
2(n - 1) 

n - - 2  
for n > 3, r can be arbitrary for n ----- 1 or 2. 

Since q > (n - 1)/(n - 2 ) ,  we obtain 

t x2 

(5.8) 

Using Gronwall 's inequality, we have 

sup f u~+l(x, t)dx 
O<t<_T 

n - 2  

n--I  

+ u(~+~)Tzr-2dx < C~, 
\ a~ I 

n--2 

n--I 

+ u(~+bT:~-~dx dt < C~, 

where the constant C depends only on the known data and T. 

Fix /~ so that /~ + 1 > n(p - 1), then by Theorem 1.1 in [12], 

(5.9) sup sup u (x, t) < C. 
O<t<T xE(2 

Thus by Theorems 7.1-7.2 

the assumptions (7.4)-(7.6) of 

immediately obtain that 

in Chapter V of [13] (it is clear 

[13, Chapter V] are satisfied), we 

Ilullc,+-.,,+o,/2(OT~ < C, 

for some ot e (0, 1). This estimate implies that the function k(t)u p 
is uniformly bounded in the space C 1+~'d+~)/2. Consequently, we 

can use Schauder 's  estimate to obtain 

Ilullc2§ ~ C. 
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With the above a priori estimate in hand, we can obtain the 

existence for t ~ [0, T], for any T > 0. I=1 

Remark  5.1. Similar to Theorem 3.2, the above argument works 

for the critical number  p = ( n - 1 ) / ( n - 2 ) ,  provided inf  Ilull/.,(a~)(t) 
O<_t <T 

is large enough, which is the case if we assume that minu0(x)  is 

large enough. Global existence is guaranteed in this case. 

Remark  5.2. We conjecture that the solution of (5.1)-(5.2) will 

blow up in finite time for certain initial values if p > ( n -  1 ) / ( n - 2 ) .  
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