
RENDICONT1 DEL CIRCOLO MATEMATICO DI PALERMO 
Serie II, Tomo XLVI (1997), pp. 89-118 

F I X E D  P O I N T S  O F  A S Y M P T O T I C A L L Y  

R E G U L A R  S E M I G R O U P S  

IN B A N A C H  SPACES 

JAROSLAW GORNICKI 

In this paper we study in Banach spaces the existence of fixed points 
of (nonlinear) asymptotically regular semigroups. We establish for these 
semigroups some fixed point theorems in spaces with weak uniform nor- 
mal structure, in a Hilbert space, in LP spaces, in Hardy spaces HP and 
in Sobolev spaces W r,p for 1 < p < oo and r > 0, in spaces with Lif- 
shitz's constant greater than one. These results are the generalizations of 
[8, 10, 16]. 

Introduction. 

Let (E,  I1" II) be a Banach space, C a nonempty closed convex 

subset of  E and G an unbounded subset of  [0, + o o )  such that 

t 4 - h e G  for all t, h e G ,  

t - h e G  for all t, h e G  with t > h  

(e.g. G = [0, 4-oo) or G = No, the set of  nonnegative integers). 

Let  J = {Tt �9 t e G} be a family o f  mappings f rom C into 

itself. J is called an asymptotically regular semigroup on C if 

1) Ts+tX = TsTtx for all s, t e G and x e C,  
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2) for each x 6 C, the mapping t ~ Ttx from G into C is 
continuous when G has the relative topology of [0, +00) ,  

3) for each x 6 C ,  h 6 G ,  

lim IITt+hx -- TtxII : O. 
l--+ Oo 

The concept of  asymptotic regularity is due to Browder and Pe- 

tryshyn [4]. It is known that if C is bounded and if T is nonexpan- 
sive then Tt := t �9 I + (1 - t) �9 T is asymptotically regular for each 

0 < t < 1. (There are no restrictions on the geometry of the Banach 
space; see [5, Th. 2.1]). 

1. Fixed Points in Banach spaces with weak uniform normal  
structure. 

To proceed, we establish some preliminaries. Recall that the mo- 
dulus of  convexity of  E is the function ~e defined on [0, 2] by 

{'  } 6E(e) = inf 1 - ~ �9 IIx + yll " x ,  y ~ BE with Ilx - yll ~ e , 

where BE is the closed unit ball of E. E is said to be uniformly 
convex if ~e(e) > 0 for all 0 < e < 2. 

Recall that the normal structure coefficient N(E) of E is the 
number defined by 

i n f [  d i amC C a bounded convex subset of  E l  
N(E) 

= I I rc(C) with more than one point ' 

/ \ 
where r c (C)  --- inf [ sup l l x -  y]l/ is the Chebyshev radius of  C 

xeC \y~C ! 
relative to itself. 

Bynum [6] defined the weakly convergent sequence coefficient 
WCS(E) for a Banach space E which is not Schur (i.e. the weak 

and strong convergence for sequence in E do not coincide) as the 
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number 

WC    =inf / O ,xn,  / 
inf{ ,xn-y, y  lxn } 

where the first infimum is taken over all weakly (not strongly) con- 
vergent sequences {xn} in E and 

D({xn})  = lim (sup{llxi - x T I l  " i ,  j > n}) 
n---~ o o  

is the asymptotic diameter of {xn}. 

A Banach E has weak uniform normal structure if W C S ( E )  > 

1. 

Bynum proved the relation 

1 < N ( E )  < W C S ( E )  < 2 

in reflexive spaces and computed 

W C S ( e  p) = 2 t/p, 1 < p < oo, W C S ( g  ~176 = 1. 

Thus 

W C S ( f f )  = 21/p > 2 (?-l)/p = N(g p) for 1 < p < 2, 

and gP is an example of reflexive Banach space such that N ( E )  and 
W C S ( E )  are different. Moreover, if E is a reflexive Banach space 
with modulus of  convexity BE, then 

(1) N ( E )  > (1 - S e ( 1 ) )  - l .  

Suppose E is uniformly convex Banach space. Then it is easily 

seen that the equation 

(2) a2 .6~1  1 -  " W C S ( E )  - 1 

has a unique solution a > 1. 
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LEMMA 1. Let E be a uniformly convex Banach space, y > 1 
be the solution o f  the equation 

(3) y �9 (1 - ~E(y-l))  = 1 

and ot > 1 be the solution of  the equation (2). Then y < a. 

Proof Observe that 3E is strictly increasing. From (3) we have 
8~1(1 _ y - l ) =  y-I  This together with the inequality 

! 1 
= < N ( E )  < WCS(E)  

1 < y 1 - -  ~ E ( y  - l )  ` (  1 - -  B e ( l )  - -  --  

implies 

y2. ~El ( l  _ ~_)  " 1 
WCS(E)  W C S ( E )  

< 1  

and hence y < or. The proof is complete. 

Recently Dofnguez Benavides, L6pez Acedo and Xu [9] proved 
that 

(4) WSC(E)  = sup{M > 0" M.  lim IIx. - nil 5 A({xn})} 
t/---> OO 

where the supremum is taken over all weakly (not strongly) conver- 
gent sequences {xn} in E and u is the weak limit of {xn} and 

A({xn}) = ,,--,oolim (limn~oo I l x~ -xml l ) .  

Recall that a Banach space E satisfies Opial's condition [23] for 
weach topology if xn---~y in E implies that 

l i m  Ilx,, - y l l  < l i m  IIx,, - z l l  
/'1"'4"OO /'1----> OO 

for all z ~ y .  

All spaces lP(I < p < +o~) have Opial's property but LP[0, 2rr] 
with p e (1, +o~)\{2} laks it [23]. 

THEOREM I. Let E be a uniformly convex Banach space with 
Opial's property, C a nonempty convex weakly compact separable 
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subset of E and J = {Ts : s e G} an asymptotically regular 
semigroup with 

l im II T~ II = k < c~, 
s--;- oo 

where ot > 1 is the unique solution of the equation (2). Then there 
exists z in C such that Tsz = z for  all s e G. 

Proof. The  separabil i ty of  C makes  it possible to select  a se- 
quence  {st3 } such that 

l i m  II Ts II : l i m  II T~, II : k < a 
S----~ O0 ~--'~ (X) 

and 

{Tsr converges  weakly  for every x e C. 

Now we can construct  the sequence  {x.} C C in the fo l lowing  
way: 

x0 e C arbitrary, 

x.+l = o9-  l im Ts, x. ,  n = 0, 1 ,2  . . . . .  
/ 3 ~ o o  

Write r .  = lira IIx.+,- Ts, x.ll. By (4), we have 

1 
rn < �9 A({Ts~xn}) 

WCS(E)  

and 

A({T~,x.})= l im ( lirn l lT~,x . -  T.rx.II ) 
~ ---4, 00 

< t~--'~lim ( y l i ~  (llTs#x,, - Ts,+srX. II + IITs,+syx,, - T.~,x.ll)) 

< l im IIT.~,II �9 l im IIx. - Tsyx.ll, 

that is 

k 
(5) rn < 

WCS(E) 
�9 d ( x . )  
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where 

d ( x n )  = sup{llx,, - Zs• " s~ ~ G}.  

If d(x~)  = 0, then Tsyx~ = xn for S~, ~ G and for all s e G, 
by the asymptotic regularity we have: 

IIT~x~ - x n l l  = IITs(Ts, x~) - Ts, x .  ll = IITs+s~x. - T s ,  xnll ~ 0 

as ?'---> oo. 

We may assume d ( x n )  > 0 for all n > 0. Let n > 0 be fixed 

and let e > 0 be small enough. First choose sx e G such that 

I IT~x.+l  - x .+ l  II >_ d ( X n + l )  - e 

and the choose so e G so large that for all s/~ > so 

IIZ~ax~ - X n + l  II _< rn + e 

and 

II Ts~xn - Zs~ xn§ II ~ l i m  ll Zsaxn - Zs~ xn§ l II 

< lim ( l lT ,~x , , -  Ts~+sax~ll + IITsx+s~xn - T~xn+l l l )  
,6~oo 

5_ I IZ~xl l ' l iml lZs~xn - Xn+lll _< k"  (r,, + E ) .  

It then follows that 

1 

for all s~ >_ so, and hence (by Opial's property) 

rn < lim T.~xn - (xn+l - T~x~+l) - r ~ ~ 
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Taking the limit as e $ 0 we obtain 

[ rn<_k'rn" I - ~ E  ~ - _ ~  

and 

d(xn+,) < k ' rn  " E '  (1 - 1 )  

which together with (5) implies that 

d(Xn+l) <_ 
k 2 

WCS(E)  
.<x. 

Hence 

(6) d(xn+l) < A �9 d(xn) < A n �9 d(xo) 

where A = 
: 

WCS(E)  ,~t _ 

< 1 by assumption. Noticing 

Ilxn§ - xnll ~ l i m l l x n + l  - Zs,aX,,ll + limllZ.~,axn - xnll 

< rn +d(xn) < WCS(E)  + 1 �9 d(xn) 

we see from (6) that {Xn} is norm Cauchy and hence strongly con- 

vergent. Let z = lim xn. Then we have for each s/~ e G, 

Ilz - Z.~,:II ~ llz - xnll + ltx,, - T.~,~xntl + IlZsaxn - Z.~#zll 

(llZs, II + 1) .  IIz - x n l l  + Ilxn - Ts,~xnll. 

Taking the limit superior as 15 ~ oo, we obtain 

lim I I z -  Z.~:ll ~ (l + k ) .  I I z -  xnll + d(xn)  
fl---* oo  

_< (1 + k) �9 IIz - x,, II + An �9 d ( x o )  ~ 0 

as n ~ o0, and, by the asymptotic regularity, we have for s ~ G 
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with l[ Ts II < + ~ :  

IlZsz - zll ~ IIT~z - Ts+sazll + I I~+.~az - T~,zll  + IIZ~az - zll 

_< I I L l l "  IIz - T~azll + I lZs+~az - Zs, zll + I I L ,  z - zll 

= (llZsll  + 1 ) .  IIz - Z~azll + IIZ~+spz - ~ a z l l  ~ 0 

as /~ ~ oo. Hence, Ts, z ---- z for all s~ E G, and for all s ~ G, by 
the asymptotic regularity, we have: 

( * )  I lTsz  - zll : I lZ s (Z~z )  - Zs ,  zll = 

: I lZs+s~z - Zs ,  zll ~ 0 

This completes the proof. 

Remark 1. We note that for a Hilbert space ,.~', u ~  = ( v / 3 -  
1) l/e ~ 1.1687, and for e p spaces (2 < p < <x~), 

1 
o~p = -}-(2 p-I + x/1 + 23-p) l/e. 

We do not know the estimate of the constant O~p for ep spaces 
if 1 < p < 2 .  

THEOREM 2. Let E be a Banach space with W C S ( E )  > 1, C 

a nonempty convex weakly compact and separable subset o f  E, and 
J = {Ts " s ~ G} be an asymptotically regular semigroup with 

lim IlZs [I = k < x / W C S ( E ) .  
$----~ O0 

Then there exists z in C such that Tsz = z for  all s ~ G. 

Proof. The separability of  C makes it possible to select a se- 
quence {sty} such that 

lim II rs  II = 
5"--'~ O0 

and 

lim 11~ II = k < v / W C S ( E )  

{Ts~x} converges weakly for every x e C. 
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Now we can constrct the sequence {x,,} C C in the following 
way: 

{ x o ~ C  

xn+l = o 9 -  lim Ts#xn, n = O, l,  2 . . . . .  
1~--* oo 

arbitrary, 

Note that the asymptotic regularity on C ensures that 

Xn+l = o J -  lim Ts#+s.X. ,  so, E G.  
~ --* oo  

Now we show that {x.} converges strongly. By (4) we have 

rn = l i m l l x . + l  - Lax.II 5 
W C S ( E )  

. A ( {T .~xn} ) .  

From the asymptotic regularity and the w -  l.s.c, of the norm 
of E, it follows that 

A ( { T ,  axn})  = ,im (lirnllT#:xn- Ts.x. ll) 
�9 j~"r  OO " 

lim ( l i m ( l l T . , # X n -  Ts,,+~:x,,ll + IIT~,,+~:x,,- T~,,x,,I])'~ < 
~ "--r OO \~--+ oo / 

5 l i m l l T s ~  II �9 ,~--.oolim IIx.  - T,.x.II 

< ,  

_<k ~,--.~'im (~lim(llTs.x.-, - T~.+s.X.-lll + llT~+..x.-, - T~.x~ll)) 

< k 2 l i m  IITs~x.-i x.II k 2 �9 _ = . r n _ i . .  
u--~ o o  

Hence 
k 2 

rn <-~ " rn-I = A �9 r n_l, WCS(E) 
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k 2 
where A -- < 1 by assumption. Now, using the asymptotic 

W C S ( E )  
regularity and the c o -  1.s.c. of the norm of E again, we deduce that 

]lXn+l--Xnll <_~ l i "  IlXn+l - Ts#xn[I -]- I i m  ]lTs#xn - Xnll 

< rn + lim (~'irnllTs, x n -  Ts~Xn-lll) 
~--* oo 

< rn + iim (~lim (llTs~xn - Tso+.~axn-I II + IIT.~=+.~x~-I- Ts=x,,-I I])) 
igloo 

< r n + k �9 rn-1 

which implies that {xn} is Cauchy. Then lim xn = z ~ C and /l---).oo 
T~z = z for all s 6 G (see the proof of Theorem 1). This completes 
the proof. �9 

EXAMPLE 1. Recall that the James quasi-reflexive space J con- 
o~ 

sist of all null sequences x = {x i} = E e i  ({ei} is the standard basis 
i=1 

in Co) for which the squared variation 

(7) 

I m ]1/2 
E(a ' - x J-')2 

L j=2 Pl <...<pin 

is finite. Denote by 11" I1~ the norm of x given by (7). The other two 
norms I1" 112 and I1" 113 are defined by 

(a) I[xl[2 = sup (xp2,-~ - x r2J )2  , 

P| <...<P2 m 

(9) Ilxl[3 = sup (x pj - xPJ-') 2 + (x pm - xPl) 2 

Pl <...<Pro 

Recently, Domfnguez Benavides, L6pez Acedo and Xu [9] pro- 
ved that each of James' spaces (J, I1' IIj), j = 1,2, 3, has weak uni- 
form normal structure and W C S ( J ,  I1" IIj) = ~ for j = 1,2,  and 
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WCS(J, I I . I I 3 ) : ( 3 )  1/2. �9 

If f2 is a a-finite measure space, then for p > 2, WCS(L p 
(f2)) = 2 l/p. If  1 < p < 2 and f2 satisfies an additional property ~ '  
(so that the "Rademacher"  sequence of  functions can be constructed, 
for instance LP[O, 1]), then WCS(LP(~) )= 2 (p-I)/p, [7]. 

A general formula for WCS(E) in arbitrary Banach space is not 
known. 

LEMMA 2. Let E be a uniformly convex Banach space. If 1 < 
WCS(E) < [1 - 3 E ( 1 ) ]  -2 and et > 1 is the unique solution of the 
equation (2), then ~/WCS(E) < or. 

Proof Let W C S ( E ) >  1 and 

( ' / ' 
(s/WCS(E)) 2.,5~ ~ I - s/WCS(E) " WCS(E) < 1 ,  

~ i (  1 1 ) < 1 .  
4 W C S ( E )  

Be(') is continuous on [0,2) and strictly increasing. From this it 
follows that 

1 
1 < ~E(I). 

4 W C S ( E )  

Hence, WCS(E) < [1 - 8 e ( 1 ) ]  -2, and the proof is complete.  �9 

2. Fixed points in p-uniformly convex Banach spaces. 

It is well known that many problems in a Hilbert space Jr :  are 
solved by applying the following identity: 

(10) ll3. .x+(1 -3 . ) .y l l  2 = 3." IlxllZ+(1 -3.)" I1Y]12-3.'(1 -~.)-Hx -Yll 2 

for all x , y  ~ ~ and 0 _< 3. < 1. Therefore, one of the natural 
methods to solve problems in Banach space E is to establish equa- 
lities and (usually) inequalities in E analogous to (10). 
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Let p > 1 and denote  by Z the number  in [0,1] and by Wp(~) 
the function ~. �9 (1 - Z)P + ~.P �9 (1 - ~.). 

Recall  that E is said to be p -un i fo rmly  convex if there exists 

a constant  d > 0 such that 

~e(e) > d . e p for 0 < e < 2 .  

We note that a Hilbert  space ~ is 2-uniformly convex ( indeed 

6o~o(e) = 1 - 1 - > - - .  e 2) and L p space (I  < p < ~ )  is 
- 8 

max(2,  p ) -un i fo rmly  convex.  

Xu [29] proved that real Banach space E is p -un i fo rmly  convex  

if  and only if there exists a posit ive constant  cp such that for all 

L ~ [0, 1] and x, y ~ E the fol lowing inequali ty holds: 

(11) I I )~ .x+(l -L) .Yl l  p < ~ . . l [ x l [ P + ( l - X ) . l l Y l [ P - w p O O . c p . l l x - Y l l  p. 

The fol lowing L e m m a  is a crucial tool to prove Theorem 3. 

LEMMA 3. ([29, L e m m a  2]). Let p > 1 and let E be a p- 

uniformly convex, C a nonempty closed convex subset of  E and 

{xn} C E be a bounded sequence. Then there exists a unique point 

z in C such that 

lim Ilxn - zll p <_ lim Ilxn - xll p - cp . IIx - zll p 
tl-"-~ O 0  tl----~ OO 

for  every x in C, where Cp > 0 is the constant given in (11). �9 

THEOREM 3. Let p > 1 and let E be a p-uniformly convex 

Banach space, C a nonempty closed convex subset of  E and J = 

{Ts " s ~ G} be an asymptotically regular semigroup with 

lim IlZsll = k < [1 + ce] ~/p 
S"'-~ OO 

Suppose there is an xo in C such that {Tsxo " s ~ G} is bounded. 

Then there exists z in C such that Tsz = z for  all s ~ G. 

Proof Let {s,~} be a sequence  such that 

lim I I~ l  = lim ][Tsal[ = k  < [1 +ce] 1/p 
S----~ OO ~-'-~" OO ' 
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X OO By L e m m a  3, we can inductively construct a sequence { ~}~--o 

in C such that xn is the unique point such that 

lim IITs,~x,,-1 - x n l l  p ~ lim IlZs,~xn-I - x l l  p - c p .  I I x -  x~ll z' 
t ~ " *  (X) 0/'-"~ O0 

for every x in C,  where Cp > 0 is the constant given in (11). 

Then for each fixed n > 1 and all s,~, s~ e G,  by the asymptot ic  

regularity, we have: 

O "  IIx~ - Tsaxnll p 

_< lim IITs~xn - Tsuxn-ill  p - lim Ilxn - T~,,xn-Ill p 
0~'---~ (X) ~r O0 

limoo ([IZ~xn - Zs,~+sax,~-lll + IITs,~+s~Xn-, - Zs,~Xn-,ll) p 

- lim Ilxn - T~,~xn-lll p ~ (llZ~all p - 1 ) .  lim IIx~ - Z~,xn-lll p 
0t'-'~ OO 0~-"-~ (X) 

( l lTsall  p - 1 ) .  lira Ilxn-~ - T~,~x,~-lll p. 

Taking the limit superior as fl ~ cx~ on each side, we get 

l im IIx~ - T~axnll p ~ A �9 lim IIx~-I - T~c, xn- i I I  p 
~---* O0 t~--~ O0 

where 
k p -  1 

A - - - - < I  
Cp 

by assumption of  the Theorem. Since 

I Ix .+l  - x .  II _< IIx~+l - Tsax,,ll + IlZsaxn - x,,ll 

0im < 2 .  IIx,, - Zsaxnll r' 

( _< 2 .  A n �9 lim Ilxo - Ts~xoll p 
,6--*oo 

- -+0 

as n ~ oo, it fol lows that {x,} is norm Cauchy. Thus {xn} converges 

to a point z in C,  which is a fixed point of  Ts for all s e G (see 

the proof  o f  Theorem 1). This completes  the proof. �9 
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By the identity (10) we immediately obtain from Theorem 3 the 
following result: 

COROLLARY 1. Let C a nonempty closed convex subset o f  a 

Hilbert space ~ and J = {Ts : s ~ G} be an asymptotically regular 

semigroup with 

lim II Zs I] < 4'-2. 
.~.--+ oo 

Suppose there is an xo in C such that {Tsxo : s ~ G} is bounded. 

Then there exists z in C such that Tsz = z fo r  all s ~ G. �9 

For Lp spaces (1 < p < oo) we have the following inequalities 
analogous to (11): 

LEMMA 4. 

(a) I f  1 < p < 2, then we have for  all x ,  y 6 LP and )~ ~ [0,1], 

I1~." x + (1 - ~) .  yl] 2 < ~.. []xl] 2 4- (1 - ~.). Ilyll 2 

- ~.- (1 - z.). (p - 1). Ilx - yH 2. 

(b) Assume 2 < p < oo and tp is the unique zero o f  the function 

g (x )  = - x  p-I + (p  - 1) .x  + p - 2 in the interval (1, oo). Let 

cp = ( p  - 1 ) .  (1 + tp)  z - p  - 

and we hav ethe fol lowing inequality 

1 + ( tp )p  -~ 

(1 + tp)P -1 

II~..x-I- (1 -~.).Yll p ~ ~.. IlxllP +(1 -~ . ) .  IlYll p - Wp(~.).Cp. [[X --yl[ p 

f o r  all x, y ~ L p and ~ ~ [0, 1]. 

Remark 2. The inequality (a) is contained in [20, 27], and the 
inequality (b) in [19, 20]. All constants appearing in the inequalities 
(e.g. the ( p -  1) and Cp) are the best possible. 

By Lemma 4 we immediately obtain from Theorem 3 the fol- 
lowing results: 
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(1 
semigroup with 

lim II Tsl < V ~ .  
S---F O0 

Suppose there is an xo in C such that {Tsxo " s ~ G} is bounded. 

Then there exists z in C such that Tsz = s for  all s E G. 

COROLLARY 2. Let C a nonempty closed convex subset o f  L p 

< p < 2) and J = {Ts " s  ~ G} be an asymptotically regular 

COROLLARY 3. Let C a nonempty closed convex subset o f  L p 

(2 < p < oo) and J = {Ts �9 s E G} be an asymptotically regular 

semigroup with 

lim IIT~I < Xp = [1 + (p - 1) �9 (1 + tp)Z-P] I/p 
S---~ OO 

where tp is the unique zero of  the function 

g (x )  = - x  p-l  + (p  - 1) �9 x + p - 2 

in the interval (1, oo). Suppose there is an xo in C such that {Tsxo" 

s ~ G} is bounded. Then there exists z in C such that Tsz = z fo r  

all s ~ G. �9 

Using the result of  Prus and Smarzewski [24, 26] we can obtain 
from Theorem 3 the fixed point theorem for asymptotically regular 

semigroups, for example, for Hardy and Sobolev spaces. 

Let H p, 1 < p < oo, denote the Hardy space [13] of all 

functions x analytic in the unit disc [z[ < 1 of the complex plane 
and such that 

Ilxll = r--+l_lim \2-~-~ J0 Ix(rei('~)lPd| < +oo. 

Now, let f2 be an open subset of  ~ n .  Denote by wr'P(~-2), 
r >_ 0, 1 < p < cx~, the Sobolev space [3] of distributions x such 
that D~'x ~ LP(~) for all lot] = o q  + C t z + . . . + o e n  _< r equipped with 
the norm 



104 JAROSLAW G O R N I C K I  

Let (f2c~, E,~,/z,~), ot ~ A, be a sequence of  positive measure 

spaces, where the index set A is finite or countable. Given a sequen- 

ce of  linear subspaces X,~ in LP(f2~, Z~ , / z ~ ) ,  we denote by Lq,p, 

1 < p < oo and q = max(2, p) ,  the linear space of  all sequences 

X = {Xg E X~ 'or E A} E gq(A) 

equipped with the norm )'q 
Ilxll = IIx~ II~,,~ , 

where I1" IIp,~ denotes the norm in LP(f2~, E,~,/z,),  [22]. 

Finally, let L p = LP(SI ,  El, /Zl)  and L q = Lq(s2,  ~]2,/.t.2), 
where 1 < p < o~, q = max(2, p)  and (Si, ]~i, lzi) are positive 

measure spaces. Denote by Lq(Lp)  the Banach space [12, Ill.2.10] 

of  all measurable LP-valued functions x on $2 such that )'q 
Ilxll = I]x(s)llqtz2(ds) 

These spaces are q-uniformly convex with q = max(2, p)  and 

teh norm in these spaces satisfies 

[IX. x + (1 - X). yll q < x .  Ilxll q + (1 - ~.)-Ilyl[ q - Wq(X). d .  IIx - yllq 

with the constant 

1 
d = dp = ~ - . ( p - 1 )  for 

1 
l < p < 2  and dp - , -p .2 - - - -  T for 2 < p < o o . :  

Hence the next result follows from Theorem 5. 

COROLLARY 4. Let  C be a nonempty closed convex subset  o f  

the space E, where E = n p or E = wr'p( f2)  or E = Lq,p 

or E = L q ( L r )  and 1 < p < oo, q = max(2, p), r > 0 and 

J = {Ts " s ~ G} be an asymptotically regular semigroup with 

l im IIT,,I < [1 + d] I/q. 
,~ -'-'~ OO 
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Suppose there is an xo in C such that {Tsxo : s ~ G} is bounded. 

Then there exists z in C such that Tsz = z for  all s ~ G. �9 

3. Fixed points in Banach spaces with Lifshitz's constant 
~(E)  > 1. 

For a metric space ( M , d )  we write B ( x , r )  = {y E M : 
d(x ,  y) < r} for the closed ball of  center x and radius r. We shall 

use the notion of  the Lifshitz characteristic ~c(M) of a metric space 
M [18], which is defined by 

there exists a > 1 such that for all 

t c ( M ) = s u p  b > 0 "  x, y 6 M  and all r > 0 ,  d ( x , y )  > r  
implies there exists z 6 M such 
that B(x,  br) N B(y ,  ar) cc_ B(z,  r) 

Obviously K(M) > 1, and if M is a nonreflexive Banach space, 

K(M) = 1 [17, Section 37.5]. Define K0(E) to be the infimum of 
K(C) where C ranges over all nonempty closed bounded convex 

subsets of  the Banach space E with more than one point. Downing 

and Turett in [11] proved that for a Banach space E,  K0(E) > 1 
if and only if co(E) < 1, where co(E) = sup{e : 8E(e) = 0}. In 
particular, when E is uniformly convex, Ko(E) > 1 and for a Hilbert 

space ~ ' ,  Ko(~ '~) = ~/-2. 

The relationships among above geometric coefficients of  Banach 

spaces are the following [1, 28]: 

1 < K0(E) < N ( E )  < W C S ( E )  < 2. 

THEOREM 4. Let (E, I1" II) be a Banach space with x ( E )  > 1 
and J = {Ts : s ~ G} be an asymptotically regular semigroup defined 
on E such that 

lim IITsl = k < ~c(E). 
s---+ OO 

Suppose there is an xo in E such that {Tsxo : s ~ G} is bounded. 

Then there exists z in E such that Tsz = z for  all s ~ G. 
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Proof Let {st~ } be a sequence such that 

lim [ITsl = lim IITspll = k < K(E).  
S"--~ OO ~ ' - '+  0 0  " 

For  any y ~ E,  let 

r ( y ) = i n f { R > O "  3 x e E l i m  l l Y - T s a x l l  <_ R } .  

Observe  that r ( y )  = 0 implies Tsy = y for all s 6 G. Indeed, for 
s 6 G with IlZsll < + o o ,  we have: 

IlZsy - Yll -< IITsy - Zs+soxll + [[T~+sax - Z.~xll + IlZs~x - Yll 

_< ( l lZsl l l+)  . llTsax - Yll + IITs+,~x - T~x l l  --+ 0 

as /3 --+ oo by the asymptot ic  regularity. Hence  Tsoy = y for all 
s~ ~ G  and by ( . )  T s y = y  for alia s 6 G .  

I f  x ( E )  = 1, then k < 1. Without loss of  generali ty we can 

assume that IIZ~al] < 1 for all st~ 6 G. The Banach Contract ion 
Principle implies that for some s ~  6 G,  T~o has a fixed point in 

E.  Let  z 6 E and Ts~oZ = z, Assume that for some s 6 G - {St~o} 
with IIZ,~ll < + o o ,  I I T s z - z l l  > 0. Then 

0 < IIT~z - zll = IITsz - T~ozll 

<_ [ITsz - Z~ozll -t- IITspo Z - Z~oZll 

_< IITsll" I I z -  Zs~ozll + IIZ~o I1" I I Z ~ z -  zll 

_< IlZs~o II. IIT~z - zll 

< IIZ~z - zll, 

contradiction. Hence,  T ~ z  = z for all st~ 6 G and by the asymptot ic  
regulari ty and by (*), T~z = z for all s 6 G. 

Assume  that k > 1. For  b 6 (k, tc(E))  there exists a > 1 such 
that 

'r165 - vii > r =~ 3 w e E B ( u ,  b r )  f3 B ( v ,  a r )  C B ( w ,  r)] .  
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Take ~ . e  ( 0 , 1 ) s u c h  that y = m i n ( Z . a , - ~ b ) > l .  We claim 

that there exists sequence {y~} C E having the property: 

(12) u  < L .  r (y~)  and IlYn+l - Y,,II _< (,k + y )  �9 e(y~)].  

Indeed, rake Yl to be an arbitrary point in E and assume Yl, 

Y2 . . . . .  Yn are given. We now construct  Yn+l. If r (yn)  = 0 then 
Yn+l = Y~. If  r(yn) > 0 then there exis ts  s/~ e G such that 

llT~a~y~ - Y,,II > ~." r(y~) and IIT~,~ II -< k .  y.  

From the definition of  r (yn)  there exists x ~ E for which 

lim IlY,, - Ts~xll < r (yn )  < y �9 r(y , , ) .  
~ o o  

Hence  

IIZ.~ox - Zsa~ II ~ IIZ~x - T,a§ xll + IIT.,o+.,o x - L,~ Ynll 

<_ IIZ~ax - Tsa+s~xll + IlZs~, II �9 IIZ~ax - Y~II. 

Taking the limit superior as fl ---> c~, by the asymptot ic  regula- 

rity, we get 

l i r n  l lZ~x  - Z~oxll  <_ k .  y �9 r (yn) .  

Since 

B(yn ,  y . r (y , , ) )  f) B(Ts~, y,,, k . y �9 r ( yn ) )  

B (yn ,  a . ~. " r ) )  N B(Tsa~yn, b " ~. " r ( yn ) )  = D 

the set D is contained in a closed ball centered at w with radius 

~. �9 r (yn) .  Thus 

l i r n  [[w - Ts~x l l  <_ ~. . r (yn) ) .  

Take Y,,+I = w. It follows f rom the above that the sequence  {Yn} 
satisfies condit ion (12). Since ~. < 1, {Yn} converges to z ~ E.  But 

since r ( z )  = O, z is a fixed point o f  Ts for all s ~ G. �9 
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Remark 3. Let E/~ be the James spaces, i.e. Et~ = (e2, I" 1~), 
where I" It~ = max{[[. 112, fl" I1" II~}, 1 _< fl < c~. Recently, Domfnguez 
Benavides in the paper [8] proved that for the James spaces E~ 

a:o(E/3) = ~/1 4- f l - 2  _ 2.  ] ~ - 2 .  ~r __ 1 
43 

for 1 _ < f l < - -  
2 

43 
If t3 > - -  it is known [30, Ex. 2.1.10] that xo(E~) = 1. 

- 2 

Let E be uniformly convex Banach space and 

Cp(~) = ~P + Cp(~), 0 _< ~ _< 2, p >__ 1. 

where 

i n f  / ~" IlxllP -4- (1 4- ~). Ilyll p - I1~. x 4- 1(1 - ~). YllP 
Cp(~) / w.(~) 

x, y ~ B(O, 1), 

IIx - Yll _> e, 

0 < ~ < 1  

Then ~p is continuous and strictly increasing. Observing that 
~pp(0) = 0 and Cp(1) > 1, we have a unique ~p ~ (0,1) such 
that ~p(~p )=  I. Ayerbe and Xu [2] proved that in uniformly convex 
Banach space E, 

Jc0(E) > s u p  �9 1 < p  < o o  . 

In particular, if E is p-uniformly convex for some p > 1 and 
Cp > 0 is the constant appearing in (11), then 

go(E) >_ (1 + Cp) lip. 

For L p spaces (1 < p < ~ )  from Lemma 4 we have 

[ 14-(tP)P-I] I/p i f  p > 2 a n d x o ( L P ) > n / ~ i f  p < 2 .  
Ico(L p) > 1 + (1 + tp )P  -1 - - 
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Webb and Zhao [28] obtained the same lower bound for K(LP) 

[which is not less than K0(LP)] for p > 2; while their lower bound 
for K(LP) for p < 2 is implicit; it involves the computation of the 
maximum of a complicated function. 

Recently, Domfnguez Benavides and Xu [10] introduced a new 
geometrical coefficient for Banach spaces. 

Let E be a Banach space and C be a nonempty bounded convex 
subset of  E. Suppose r is a topology on E. 

DEFINITION ([10]). 

(i) A number b > 0 is said to have property (P  r) with respect to C 

if  there exists some a > 1 such that f o r  all x,  y ~ C and r > 0 

with IIx - y l l  > r and each t-convergent  sequence {xn} C C for  

which l im IlXn - x l l  < a .r  and lim Ilxn - y l l  -< b . r ,  there exists 
II----~ O 0  n --~ o 0  

some z ~ C such that lim IIx,, - zll _< r. 
n-..~ (X) 

(ii) t o t ( C ) =  sup{b > O" b has property (Pr) w.r.r C}. 

(iii) Kr(E) = inf{tcr(C) " C as above}. 

It is easily seen that xr (C)  > K(C) for all nonempty bounded 
convex subsets C C E. If r is the weak topology r E*) of 
E,  then we write tco,(C) and x,o(E), respectively. If  E is a dual 
space and r is the weak * topology of E,  then we write K~o,(C) 
and K,o,(E) for these two coefficients. 

THEOREM 5. Let E be a Banach space and r a topology on 

E. Suppose C is a nonempty convex t-sequentially compact subset 

o f  E and J = {Ts " s ~ G} be an asymptotically regular semigroup 

such that 

lim II Ts II = k < Kr (C). 
S--+ O0 

Suppose there is an xo in C such that { T s x o ' s  ~ G} is bounded. 

Then there exists z in C such that Tsz = z fo r  all s E G 

Proof. Let {s~} be a sequence such that 

l im  II Ts II ---- l im II Ts~ II = k < tot ( C ) .  
S--'+ O0 1~--+ OO 
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For any y 6 E,  let 

r (y )  = inf{R > 0" 3xee lim Ily - T~axll ~ R}. 

If  r ( y ) =  0, then exists a subsequence {s#,} such that 

lim [ [y  - T, xll = lim Ily - T~r x l l  = 0 .  
$ - - 3 " 0 0  0e ----~ (X3 

Analysis similar to that in the proof of  Theorem 4, shows that 

T s y = y  for all s 6 G .  

If  Kr(C) = 1, there exists z 6 C such that T~z = z for all s 6 G 

(see the proof of Theorem 4). 

Assume that 1 < k < Kr(C). For b ~ (k,K~(C)) there exists 
a > ! satisfy the above definition (i). Take v 6 (0, 1) such that 

I x = m i n ( v . a , - Y @ - ~  > 1. It is readily seen that there for every 

x, y 6 C with IIx - y l l  _ v .  r and any r-convergent  sequence {~y} 

in C for which lim IIG - xll _< Ix" r and lim IIG - Yll -< k .  Ix. r ,  
y - - + o o  y----~ oo  

there exists some z in C such that lim I I G - a l l  _< u. r Without loss 
y - - + o o  

of  generality, we may assume that IIZ~a II _< Ix" k for all st3 ~ G. We 
claim that there exists a sequence {y,,} C C having the property: 

(13) VneN[r(yn+l) <_ V . r(yn)  and IlYn+l - ynll < (v + Ix).  r (y . ) ] .  

Indeed, take Yl to be an arbitrary point in C and assume Yl, 

Y2 . . . . .  Yn are given. We now construct Y,,+I. If r(yn) = 0 then 

Yn+l -= Yn. If r(yn) > 0 then there exists s ~  6 G such that 

IITsa~yn - Y, II > v . r ( y , ) .  

From the definition of  r(yn)  there exists x E E for which 

lira Ily.  - Zs~xll ~ r(yn) < Ix" r(yn) .  
r oo 

Take a subsequence {Ts~xX } of {Ts~x} such that 

lim I lY , -  Zs~xll = lim I lY , -  Zs~xxll. 
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Since C is r -sequent ia l ly  compact ,  we may assume that {Ts~x}  
r -converges .  Hence  

11Ts~x x - Tsa~ Yn II 5 II Zs~ x - Tsa~x+s~= x l[ + II Z ~  +s~= x - Zs~ Yn II 

<_ IIZ~axx - Zsax +sa~xl[ + IlZso~ II �9 IlZ.~xx -Ynl l -  

Taking the limit superior as ~. ~ oo, by the asymptot ic  regula- 

rity, we get 

lim I I T ~ x  - T ~ y , [ I  <_ k . lz . r(yn).  
~. ---~ o o  

By definition o f  r it follows that there exists z 6 C such that 

lim IIz - Zsaxll <_ v .  r(yn).  

Take Y,,+l = z. If follows from the above that the sequence  {yn} 
satisfies condit ion (13). Since v < 1, {Yn} is a norm Cauchy  sequence  

and thus strongly convergent  to a point z 6 C. But since r(z)  = O, 

z is a fixed point of  T~ for all s ~ G. �9 

Recall that a Banach space E is said to satisfy the uniform 
Opial condition [25] if for each c > 0, there exists an r > 0 such 
that 

1 + r < l im IIx + x .  II 
n----~ O0 

for each x ~ E with IIx[[ >_ c and all weakly  null sequences  {x,,} 

in E such that lim IIx,,ll >_ 1. Clearly this condition implies the 
n--..* o o  

classical Opial condition. 

Opial's modulus re  of  E (or r~ of  E relative to the topology 
r )  is defined by ([21]): 

re(c )  = inf{ lim IIx + x ,  II - 1}, c > 0, 
n--.* o o  

where  the inf imum is taken over all x ~ E with Ilxll ~ c and 
sequences {xn} in E such that w -  lim Xn = 0 (or r - converg ing  

tl.---F OO 

to 0) and lim IIx, II >_ 1. It is easy to see that the function rE is 
n--.~ o o  
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nondecreasing and that E satisfies the uniform Opial condition (r-  
uniform Opial condition) if and only if re(c)  > 0 (rr(c) > 0) for all 
c > 0 .  For example, if E = s  (1 < p < o o )  then ([21]) 

rep(C) = (1 + c P )  l i p  - 1, c >_ 0. 

For the space s equipped with the weak * topology 

ro). (c) = c, c > 0. 

In the paper [10] Domfnguez Benavides and Xu proved that for 
a Banach space E with the uniform Opial condition 

x,o(E) = 1 + rE(I).  

In particular, 

(14) x~o(s p ) = 2  I/r if 1 < p < o o  and K,o.(s I ) = 2 .  

Applying Theorem 5 and (14) we have the following Corollaries: 

COROLLARY 5. Let C be a nonempty closed convex subset of  

s for  1 < p < o0 and J = {Ts " s E G} be an asymptotically 

regular semigroup such that 

lim IlZs[I < 2 I/p. 
S'--4" OO 

Suppose there is an xo in C such that {Tsxo ' s  ~ G} is bounded. 

Then there exists z in C such that Tsz = z for  all s ~ G. �9 

COROLLARY 6. Let C be a nonempty weak * compact convex 

subset of  s 1 and J = {Ts " s ~ G} be an asymptotically regular 

semigroup such that 

lim 11Tr II < 2. 
S---~ OO 

Then there exists z ;n C such that Tsz = z for  all s ~ G. �9 

Remark 4. Note that for g.P spaces (2 < p < cx~) the unique 
solution of (2) (see Remark 1), Otp < 2 lip. 
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Recently, in the paper [8] D0mfnguez Benavides proved that for 
reflexive Banach space E, 

t%(E) < W C S ( E ) .  

The following theorem is a generalization of Theorem 2 in [8]. 

THEOREM 6. Let E be a reflexive Banach space, C a nonempty 
bounded closed convex subset o f  E and J = {T~ �9 s ~ G} be an 
asymptotically regular semigroup such that 

l( ) 
lim IlTsll = k  < - -  1 + ~ / 1  + 4 .  W C S ( E ) .  (K ,o (E) -  1) . 

s--,oo 2 

Then there exists z in C such that Tsz = z for  all s ~ G. 

Proof Let {st~ } be a sequence such that 

lim II Ts II = lira II Zs~ II 
S--'+ OO ~" -+  OO 

= k < - ~ - I  ( l + 4 1 + 4 . W C S ( E ) . ( K o ~ ( E ) - 1 ) )  

For any x 6 E, let 

r(x)  = inf{R > 0 �9 3y6E lim IIx - Ts~Yl[ <_ R}. 
#--,~ 

Observe that r(x)  = 0  implies Tsx = x  for all s ~ G (see the 
proof  of Theorem 5). Denote W C S ( E )  = W and K,o(E) = K. By 
Theorem 5 and the following inequality 

l( ) 
~ c < - -  I + ~ / I + 4 . W . ( K - - 1 )  < W ,  

- 2 

1 (1 + ~ / I + 4 . W - ( K - - 1 ) ) .  we can assume 1 < i( < k < ~- 

k x - 1  k b - 1  
Since W < k - 1  choose b < x such that W < k - I  

Let a > 1 be the corresponding number  to b in the definition of  
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x ,o(E)  = K such that 

1 + 2 e  
- - a < l .  

a 

b 
k a 

- -  < 

W k - 1  
Next, choose e > 0 such that 

Let x an arbitrary point C and without loss of generality we 

assume that the sequence {Ts, x}  is weakly convergent. If r ( x ) # O  

choose y E C such that lim [[Ts,yll < r ( x ) .  (1 + e). There are two 

cases: 

W . r ( x )  �9 (I + e) 
(a) lim I I x -  Ts, x ll < 

t~--*~ - k �9 a 

Choose arbitrary I />  0 and y such that 

W .  r ( x ) .  (1 + e) 
- + r /  if f l > y .  IIx Ts, xll < k " a 

Le t  sv > s u > s• If sv - s  u < s• then IIZ.~x - Ts~xll < 0 for 
s u large enough�9 If s v -  s u > s~, we have 

IIT~x - Zs, xll ~ IIT.~x - T.,.,+s~xll + IlZs,+.~x - L~xll 

IlZs~x - T.~,+s~xll + IlZ.~ I1" IIZ.~x - x l l  

. . . .  + r  1 . < IIT.~x T~,+,~xl[ + IITs~, II k . a  

Thus the asymptotic diameter of  the sequence {Ts, x}  

D({Ts ,  x } )  < lim (llZ.~x - Ts~,+s~xll + IlZs,,ll �9 

( W . r ( x ) . ( l + e ) ) )  
�9 " + 0  

k . a  

W .  r ( x )  �9 (1 + e) 
= + r l .k .  

a 

Since rl is arbitrary we obtain 

W . r ( x )  �9 (l + e) 
D({Ts ,  x } )  < 

a 
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which,  by the definit ion of  the W C S ( E )  coefficient,  impl ies  

{ iLrn } r (x)  . (1 + e) inf IlTs, x - yll " y ~ conv{T, ax} < a 

Then there exists z in C such that 

l im IIT,~x - zll ~ ) iml lZs~x  - zll < 
/3--+ ee  

r ( x ) .  (1 + 2e) 

a 
< a .  r(x) .  

Hence r(z)  < ce . r (x)  and [[z - xll <_ ( l  + --~-) . c~ . r (x) .  

(b) l im I I x -  Ts, xll > 
t~--'~ " k �9 a 

W . r (x)  �9 (1 + e) 

In this case there exists y such that 

b 
W .  r(x)  �9 (1 + e) k a 

I I x - L ,  xll > and - -  < 
k -  a W II T,~ II - I 

Choose  y ~ C that l im I I T , , y -  xll < r ( x ) .  (1 + e) and a 
r er 

sequence  {Ts,vy} such that l im I I T , , y - x l l - -  lira IIT,~vy-xII .  Using  
fl  ---'~ O0 1,'--~ O0 

the asymptot ic  regulari ty of  T we obtain 

) i m l I T : ~ x  - T,,~yll ~ l i r a  (lIT,~x - T,~+.,.,~Yll + IIT~§ - T,#~yll) 

_< IIT~ II" lira IIx - T,:,yll 
I~---~ O0 

= IIT~,ll �9 lira l i t a n y - x l l  
: - - *oo  

< IIT, ll . r ( x ) .  (1 -Fe) .  
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Choose  ~. such that 

b 
- -  - -  1 k a 

- -  < Z  < . We have 
W IlTsy li - 1 

lim - L .  T~,x  - (1 - ~.). xll w o o  II Z~a~ y 

< ~.. lim IlTsa~y - Ts• + (1 - ~.). lim I I T % y  - xfl 
I,"--~" O@ I1-~" O0 

_< Xll T,, II �9 r ( x ) .  (1 + e) + (1 - X) .  r ( x ) .  (1 + e) 

b .  r ( x ) .  (1 -4- e) 
< 

a 

Furthermore 

IIx - ~ . .  T s •  - (1 - ~ . ) .  x l l  = ~. " l l Z . ~ , x  - xfl  

W "  r ( x ) .  (1 + e) r ( x ) .  (1 + e) > ~ . .  > 
k . a  a 

By the condition which b satisfies there exists z e C such that 

r(x). (1 + e)  
lim [[Ts~y - z[[ <_ <_ or. r ( x ) .  

v- -~cx)  a 

Thus r ( z )  < or.  r ( x )  and it is e/lsy to check that I I z -  x[I 
r ( x )  �9 (1 -4- e + or). 

Define f ( x )  = z ,  z chosen as in the case (a) and (b). By  

induction,  take z0 ~ C arbitrary and Zn = f ( z , , - l ) .  It is easy to p rove  

that {z,,} is norm Cauchy  sequence  and thus convcergent  strongly. Let  

lim z,, = Zoo. It is readily seen that r ( z ~ )  = O, which implies that 
n""~ OO 

Zoo is a fixed point o f  Ts for all s e G (see the p roof  of  T he o re m 
5). �9 

EXAMPLE 2. Dominguez  Benavides  [8] proved that for the space  
E = s renormed by 

Jl{Xn}llp = [Xl[ p, Ix,[ 2 , 2 < p < -t-OO, 
n = 2  
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K~,(E) = 2 l/p < W C S ( E )  = V/-2. Thus  in this case, for 2 < p < 

[ 1 o g 2 ( 2 - 2 - 1 / 4 ) ]  - I  ~ 4 .6946,  the constant which appears in Theorem 

6 is striclty bigger  than the constant  which appears in Theorem 2.11 
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