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FIXED POINTS OF ASYMPTOTICALLY
REGULAR SEMIGROUPS
IN BANACH SPACES

JAROSEAW GORNICKI

In this paper we study in Banach spaces the existence of fixed points
of (nonlinear) asymptotically regular semigroups. We establish for these
semigroups some fixed point theorems in spaces with weak uniform nor-
mal structure, in a Hilbert space, in L? spaces, in Hardy spaces HP and
in Sobolev spaces W™?P for 1 < p < oo and r >0, in spaces with Lif-
shitz’s constant greater than one. These results are the generalizations of

[8, 10, 16].
Introduction.
Let (E, || -|) be a Banach space, C a nonempty closed convex

subset of E and G an unbounded subset of [0, +o¢) such that
t+heG for all t,heG,
t—heG forall t,heG with t > h

(e.g. G =[0,+00) or G =Ny, the set of nonnegative integers).
Let # = {T; : t € G} be a family of mappings from C into

itself. .# is called an asymptotically regular semigroup on C if

1) Ti4.x =T;T,x for all s, t€ G and x € C,
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2) for each x € C, the mapping ¢t — T,x from G into C is
continuous when G has the relative topology of [0, +00),

3) for each x € C, h € G,

lim |7 4nx — Tix|f = 0.
=00

The concept of asymptotic regularity is due to Browder and Pe-
tryshyn [4]. It is known that if C is bounded and if T is nonexpan-
sive then T, :=1t -1+ (1 —t) T is asymptotically regular for each
0 <t < 1. (There are no restrictions on the geometry of the Banach
space; see [5, Th. 2.1]).

1. Fixed Points in Banach spaces with weak uniform normal
structure.

To proceed, we establish some preliminaries. Recall that the mo-
dulus of convexity of E is the function §g defined on [0, 2] by

1
55(8)=inf[1 — 5 lx+yl:x,yeBg with |lx —y| 28},

where Bg is the closed unit ball of E. E is said to be uniformly
convex if 8g(e) >0 for all 0 <& <2.

Recall that the normal structure coefficient N(E) of E is the
number defined by

diamC ) C a bounded convex subset of E}

N(E) = inf :
(B)=1 [ rc(C) with more than one point

where rc(C) = lgf (sup [|x —yll) is the Chebyshev radius of C
yeC

relative to itself.

Bynum [6] defined the weakly convergent sequence coefficient
WCS(E) for a Banach space E which is not Schur (i.e. the weak
and strong convergence for sequence in £ do not coincide) as the
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number

D({xn})

inf[ fim fix, — yll 1 y € —conv{x,,}}
n—o0

WCS(E) =inf

where the first infimum is taken over all weakly (not strongly) con-
vergent sequences {x,} in E and

D({xa}) = Jim (sup(lxi — 1 : . j = n))

is the asymptotic diameter of {x,}.
A Banach E has weak uniform normal structure if WCS(E) >

Bynum proved the relation
1 <N(E) <WCS(E) <2
in reflexive spaces and computed
wCS@P) =27, 1< p < oo, WCS(®) = 1.
Thus
WCS@P) =27 5 2P=D/P = N(gP) for 1 < p < 2,

and £7 is an example of reflexive Banach space such that N(E) and
WCS(E) are different. Moreover, if E is a reflexive Banach space
with modulus of convexity g, then

(D N(E) = (1 -8g(1))~".

Suppose E is uniformly convex Banach space. Then it is easily
seen that the equation

2 2,521 l_l) __1____..1
) “'E< @) WCSE) ~

has a unique solution o > 1.



92 JAROSLAW GORNICKI

LEMMA 1. Let E be a uniformly convex Banach space, y > 1
be the solution of the equation

3) y-(1=8(y") =1

and a > 1 be the solution of the equation (2). Then y < a.

Proof. Observe that &g is strictly increasing. From (3) we have
8z'(1 —y~") =y~'. This together with the inequality

1
[oetr D) ~ T=sp(n = ) = WEE)

l<y=

implies

2 -1 1 ] 4
4 WCS(E) WCS(E)
and hence y < «. The proof is complete. |

Recently Doinguez Benavides, Lopez Acedo and Xu [9] proved
that
4 WSC(E)=sup{M >0: M- lim ||x, — ul| < A({x,})}
n—>0oo

where the supremum is taken over all weakly (not strongly) conver-
gent sequences {x,} in E and u is the weak limit of {x,} and

AQaD) = Tim_ (Tim 1, — xnll)
m—>00 \n—>00
Recall that a Banach space E satisfies Opial’s condition [23] for
weach topology if x, — y in E implies that
lim |fx, — yll < lim [lx, — z]|
n—-oo n—o0
for all z#y.

All spaces I7(1 < p < +00) have Opial’s property but L?[0, 2]
with p € (1, +o0)\(2} laks it [23].

THEOREM 1. Let E be a uniformly convex Banach space with
Opial’s property, C a nonempty convex weakly compact separable
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subset of E and & = {TI; . s € G} an asymptotically regular
semigroup with

lim |T5|| =k < «,

5§00
where a > 1 is the unique solution of the equation (2). Then there
exists z in C such that T,z =z for all s € G.

Proof. The separability of C makes it possible to select a se-
quence {sg} such that

dim || Tl = 11m [Tl =k <
s—»oo
and
{T;,x} converges weakly for every x € C.
Now we can construct the sequence {x,} C C in the following
way:
xo€eC arbitrary,
Xpt1 =@ — lim Tyx,, n=0,1,2,....
B—00
Write r, = lim |x,41 — T5pxnll. By (4), we have
B—> 00
< A(Tyxa))
rpn < ———— - X
"~ WCS(E) e
and

A({Tspxn}) = llm (angollTs,,xn - Ts,xnll>

= ﬂll»ngo (yllm (” - €ﬂ+5y'xn “ + "Ttp+9yxn Tsy-xn”))
< Jim 1T, - Jim ks = 7o, 5l

that is

(5) . d(xn)

o < —————
- WCS(E)
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where

d(x,) = sup{llx, — Tsyxn Il : Sy € G}.

If d(x,) = 0, then Ts,xp = x, for §, € G and for all s € G,
by the asymptotic regularity we have:

W Tsxn — xnll = 1 Ts(Ts, xn) = Ts, xall = I Ts 5, %0 — Ts, xall - O
as y — oo.

We may assume d(x,) > 0 for all n > 0. Let n > 0 be fixed
and let ¢ > 0 be small enough. First choose s, € G such that

”Tlen—kl — Xntill 2 d(xp41) — €
and the choose sp € G so large that for all sg > 5o

"Tv;;xn —Xnt1ll St e

and

I Tspxn — T Xngtll < Nim | Tgpxn — Ty Xnt1 |
B—oo
=< ﬂll»ngo (” Tsﬂxn - T:u+sﬂxn " + ” Tsx+s,9xn - Tv),xn—H ”)

=< ”rn ” : ﬂli»nc;lo”TYﬂxn - -xn-H” < k- (rn +5)-

It then follows that

1
Tsﬂxn - '5 (xn+l - Ts;‘xn-H)

for all sg > so, and hence (by Opial’s property)

1
Tspxn - E (xn+l - Ts;xn-H)

r, < lim
[e o]
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Taking the limit as £ | 0 we obtain

ro<k-r,- [1 — 5 (d](j":‘)ﬂ

1
d(X,,+1) <k- Ip - 8E] <1 - z)

and

which together with (5) implies that

k? —1 1
d(xp+1) < m x (1 - I) ~d(xp).

Hence
(6) d(xp41) < A-d(x,) < A" - d(xp)
h A & s-1{1 1 I by assumption. Notici
where A = —«— - —-— 1< . Noticin
WCS(E) ‘E k y P &

a1 — %all < M (X541 — Typall + 1M [ Typ0 — 24|
B—o0 B—o0

<r +d(xn)5 ( l)d(xn)

WCS(E) +

we see from (6) that {x,} is norm Cauchy and hence strongly con-
vergent. Let z = lim x,. Then we have for each sy € G,
n—->oo

hz = Tspzll <z — xall + lixn — Tipxall + 1 Tspxn — Tipzli
< (ITsgll + 1) - llz = xnll + llxn — Tspxall-

Taking the limit superior as f — oo, we obtain
ﬂlirrgollz — Tzl = (A + k) - llz — xall +d(xn)
S(A+k)-llz—xill+ A" - d(x0) > 0

as n — oo, and, by the asymptotic regularity, we have for s € G
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with || 7| < +o00:
ITsz = 2l < 1Tz — Togspzll + 1 Tsv5pz — Typzll + 1 T52 — 2]
STl - Nz = Tspall + 1 Tsqspz — Tipzll + 1 T552 — 2l
= (I + D - llz = Topzll + I Trsspz — Trpzll > O

as B — o0o. Hence, Ts,,z =z for all sg € G, and for all s € G, by
the asymptotic regularity, we have:

() 1Tsz — zll = IT5(T32) — Tspzll =
= |Ts4s52 — Tzl > 0
This completes the proof. ]

Remark 1. We note that for a Hilbert space 7%, ax = (v/3 —
1)!/2 ~ 1.1687, and for £7 spaces (2 < p < 00),

1
ap = =P + V1 +23-r)lir,

T2
We do not know the estimate of the constant «, for £ spaces

if l <p<?2.

THEOREM 2. Let E be a Banach space with WCS(E) > 1, C
a nonempty convex weakly compact and separable subset of E, and
I ={T; : s € G} be an asymptotically regular semigroup with

lim T, =k < VWCS(E).
S§—=>00

Then there exists z in C such that T,z =z for all s € G.

Proof. The separability of C makes it possible to select a se-
quence {sg} such that

lim ||T;|| = ﬂlim 1Tl =k < Vv WCS(E)
§—00 -0

and
{Tsyx} converges weakly for every x € C.
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Now we can constrct the sequence {x,} C C in the following
way:

x0€C arbitrary,

Xnt = — lim Tgx,, n=0,1,2,....
B—o00

Note that the asymptotic regularity on C ensures that

Xnt] = @O — ﬂlingo Ts‘p+saxnv s« €G.

Now we show that {x,} converges strongly. By (4) we have

In = ﬂlin;ollxnﬂ - Tsﬁxn” =< W(E) ' A({T\'gxn})-

From the asymptotic regularity and the w — l.s.c. of the norm
of E, it follows that
AUTyxa)) = Tim (T ;%0 — Toy5all)
lim

< ( lim (" Tvpxn - TSq+Sﬁxn " + " Tsa+5ﬂxn - Traxn ”))
ﬂ o0 \a—= X

< lim ”Tsp ” - lim "xn - Tta,xn”
B—o0 a— oo

=< k- lim ( lim ”Tv.,xn—l - Tsaxn ”)

a—+00 \ y—»o00

< k- Tim (Tm 17,201 = T xal)
a—00 \v—>00

< k- Tim (Tm (1T, 501 = Ty s tntll + 1T s 5a1 = T al))

a—> 00 V=0
<k* Tim T, — x| = k?
=< - lim || sp¥n~—1 x|l = *Tp—1.
v—=00
Hence
k2
Tn-1 = A - rpy,

Fp € i
— WCS(E)
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2

where A = W(E) < 1 by assumption. Now, using the asymptotic
regularity and the w — 1.s.c. of the norm of E again, we deduce that

lxn+1 — 2xnll < ﬂ]j»ngo”x"-’-l - T:ﬂxn" + ﬂler;oIlTvﬂxn = xnll
< ra+ im (T 1 Tipxn = Tiy %1l
B—o00 \a—>00

5 rp + ﬂll»rgo (ozll»rgo(" Tvgxn - T\"a+sﬂxn—l ” + ”Tva+sﬂxn—1 - s,,xn—l ”))

<7 +k-rp

which implies that {x,} is Cauchy. Then lim x, = z € C and
n—00

T;z =z for all s € G (see the proof of Theorem 1). This completes

the proof. [

EXAMPLE 1. Recall that the James quasi-reflexive space J con-
o0
sist of all null sequences x = {x'} = Zei ({e;} is the standard basis

i=1
in ¢g) for which the squared variation

m 172
) sup [Z(w - x"f—lf}

Pl <..<pm j=2

is finite. Denote by ||-||; the norm of x given by (7). The other two
norms |- |2 and | - |3 are defined by
m 1/2
(®) Ixll = sup [ (xP2~! —xf'zf)z} :
pr<<pym Li=2

m 1/2
©®  lxfs= sup [Z(x"f — xPi1)? 4 (xPm —x"‘)z] :
/)|<.T<pm j=2

Recently, Dominguez Benavides, Lépez Acedo and Xu [9] pro-
ved that each of James’ spaces (J, |- |;), j =1, 2,3, has weak uni-
form normal structure and WCS(J, || - |;) = V2 for j=1,2, and
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3\ 12
WCSW, 1 113) = ('2—) : .

If Q is a o-finite measure space, then for p > 2, WCS(L?
() =2YP. If 1 < p <2 and Q satisfies an additional property %
(so that the “Rademacher” sequence of functions can be constructed,
for instance L”[0, 1]), then WCS(LP(R)) =2P=D/P, [7].

A general formula for WCS(E) in arbitrary Banach space is not
known.

LEMMA 2. Let E be a uniformly convex Banach space. If 1 <
WCS(E) < [1 = 8g(1))"2 and « > 1 is the unique solution of the

equation (2), then /WCS(FE) < a.

Proof. Let WCS(E) > 1 and

I I
/ EN2.s21 (1 = .
(VWESE o (1 WCS(E)) wesE ~

1
71 - ——— ) <1
E ( J—WCS(E>)
8g(-) is continuous on [0,2) and strictly increasing. From this it
follows that

1
1- —W_E'—) < (SE(I)

Hence, WCS(E) < [1 —8(1)]172, and the proof is complete. l

2. Fixed points in p-uniformly convex Banach spaces.

It is well known that many problems in a Hilbert space ¢ are
solved by applying the following identity:

(10) A-x+A=A)-yI> = A2 4+A =2)-IyIP=A-(1=2)-lx = y|?

for all x,y € 5# and 0 < A < 1. Therefore, one of the natural
methods to solve problems in Banach space E is to establish equa-
lities and (usually) inequalities in E analogous to (10).



100 JAROSLAW GORNICKI

Let p > 1 and denote by A the number in [0,1] and by W,(A)
the function A - (1 —A)? + AP . (1 = A).

Recall that E is said to be p-uniformly convex if there exists
a constant d > 0 such that

Sp(e)>d-eP for 0<e<2.

We note that a Hilbert space 5# is 2-uniformly convex (indeed
2 1
Sw(e) =1-— 1—(%) > -8—-82) and L? space (I < p < 00) is
max(2, p)-uniformly convex.
Xu [29] proved that real Banach space E is p-uniformly convex
if and only if there exists a positive constant ¢, such that for all

A €[0,1] and x,y € E the following inequality holds:
AL A-x+1=2)-yIIP < A xIP+A=2)- Iy I = Wp(X)-cp-llx—ylI”.

The following Lemma is a crucial tool to prove Theorem 3.

LEMMA 3. ([29, Lemma 2]). Let p > 1 and let E be a p-
uniformly convex, C a nonempty closed convex subset of E and
{xn} C E be a bounded sequence. Then there exists a unique point
z in C such that

lim ||lx, — zlIl” < Iim |lx, — x||” — ¢, - llx — 2I”
n—oo n—o00
for every x in C, where c, > 0 is the constant given in (11). [}

THEOREM 3. Let p > | and let E be a p-uniformly convex
Banach space, C a nonempty closed convex subset of E and % =
{T; : s € G} be an asymptotically regular semigroup with

lim | T;]| = k < [1+4¢cp]"/?.

§—=>00

Suppose there is an xo in C such that {T;xg :s € G} is bounded.
Then there exists z in C such that T,z =z for all s € G.

Proof. Let {sg} be a sequence such that
lim ||7;] = lim |75, =& < [1 +cp)P.

5§00
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By Lemma 3, we can inductively construct a sequence {x,}2,
in C such that x, is the unique point such that

allm T, xn—1 — xa 17 < llm |75, Xp - 1= x” —cp - llx — xall”

for every x in C, where ¢, > 0 is the constant given in (11).

Then for each fixed n > 1 and all s,, sg € G, by the asymptotic
regularity, we have:

cp - Nxn — Tspxnll?
< Jim || Ty = Toy a7 = T Jlxy — Ty %117
< Tim (I Topxn — ToytspXnt | + 1 ToprspXnt = T Xnoa )"
= Iim [y = To, xn-1 1P < (1T, 17 = 1) - Tim Yl — T, 117
< (IToph? = 1) - Tim Jlxp—y — Ty Xn 7
Taking the limit superior as B — oo on each side, we get
;if;;nx" = Toyxall” < A+ Tim Jlxpy ~ T2 |7
where

k-1
=

<1

by assumption of the Theorem. Since

lxpe1 — Xpll < llxps1 — ngxn Il + "Tcpxn — Xl
1/p
i _ p
S 2. (ﬂ]LrI;ollxn Tspxn ” )
1/p
<2. (A" - lim |lxp — Tsﬂxoﬂ”) -0
B—o0

as n — 090, it follows that {x,} is norm Cauchy. Thus {x,} converges
to a point z in C, which is a fixed point of T; for all s € G (see
the proof of Theorem 1). This completes the proof. |
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By the identity (10) we immediately obtain from Theorem 3 the
following result:

COROLLARY 1. Let C a nonempty closed convex subset of a
Hilbert space ¥ and ¥ = {1, :s € G} be an asymptotically regular
semigroup with

lim | T < v/2.

5S> 00
Suppose there is an xy in C such that {T;xg : s € G} is bounded.
Then there exists z in C such that T,z =z for all s € G. ]

For L? spaces (1 < p < 00) we have the following inequalities
analogous to (11):

LEMMA 4.
(a) If 1 < p <2, then we have for all x,y € L? and X € [0, 1],
IA-x+ =2 yIP<A-lxP+ =2 Iyl?

—A-(1=2-(p-D-lx-yl*

(b) Assume 2 < p < 00 and t, is the unique zero of the function
gx)=—xP"'4(p—1)-x+p—2 in the interval (1,00). Let

_ 1+ (2,)"!
_ _1). 2-p_ " NP/
cp=(p=1)-(1+1¢) =7 t,,)f’—l

and we hav ethe following inequality

Ihex+ 0= 17 < A lxl? + (=2 Iy 17 = Wy -cp- lx = yI1”

for all x,y e L? and X € [0, 1].
|

Remark 2. The inequality (a) is contained in [20, 27], and the
inequality (b) in [19, 20]. All constants appearing in the inequalities
(e.g. the (p—1) and c;,) are the best possible.

By Lemma 4 we immediately obtain from Theorem 3 the fol-
lowing results:
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COROLLARY 2. Let C a nonempty closed convex subset of LP
(1 <p<2)and # = {T; : s € G} be an asymptotically regular
semigroup with

lim || 75| < /p.

$=>00
Suppose there is an xy in C such that {T;xg:s € G} is bounded.
Then there exists z in C such that Tyz =s for all s € G. |

COROLLARY 3. Let C a nonempty closed convex subset of L?
2<p<o) and F = {T; : s € G} be an asymptotically regular
semigroup with

lim |7;] < xp =1+ (p = 1) - (1 +1,)*771"/7

§—=00
where t, is the unique zero of the function
g)=—x""+(p-1D-x+p-2

in the interval (1, 00). Suppose there is an xo in C such that {T;xg :
s € G} is bounded. Then there exists 7 in C such that Tsz = z for
all s € G. [ |

Using the result of Prus and Smarzewski [24, 26] we can obtain
from Theorem 3 the fixed point theorem for asymptotically regular
semigroups, for example, for Hardy and Sobolev spaces.

Let H?, 1 < p < oo, denote the Hardy space [13] of all
functions x analytic in the unit disc |z] < 1 of the complex plane
and such that

1 2n 1/p
x|l = lim (——/ IX(rei(“))I"d@) < +00.
r>1_\ 2w

0

Now, let 2 be an open subset of #". Denote by W"7(Q),
r>0,1 < p < oo, the Sobolev space [3] of distributions x such
that D*x € LP(S2) for all |a| =)+ a2 +...+a, <r equipped with
the norm

I/p
el = (Z f |D“x(w)|f'dw) :

lej<r Q
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Let (R4, Z,, 4o), @ € A, be a sequence of positive measure
spaces, where the index set A is finite or countable. Given a sequen-
ce of linear subspaces X, in LP(82,, Xy, y), We denote by L, p,
1 < p < oo and ¢ = max(2, p), the linear space of all sequences

x={xy € Xo:a €A} eli(A)

equipped with the norm

1/q
Ixll = (Z uxau;',,a) :

aelA

where |- |, denotes the norm in LP(2,, Xy, ie), [22].

Finally, let LP = L”(S],El,ul) and L9 = Lq(Sz,Ez,;Lz),
where 1 < p < 00, ¢ = max(2, p) and (S;, X;, u;) are positive
measure spaces. Denote by L,(L,) the Banach space [12, 1I1.2.10]
of all measurable L7”-valued functions x on S, such that

1/q
Il = ( / IIX(S)II}',Lbz(dS)) :
8

These spaces are g-uniformly convex with ¢ = max(2, p) and
teh norm in these spaces satisfies

x4+ A=) yl? <A llxl?+ A =2) - lIyll? = WeA)-d - llx — y|I?

with the constant

1 1
d=d,=—=-(p—1) for 1 <p=<2 and d, = PR, for 2 < p<oo.

8
Hence the next result follows from Theorem 3.

COROLLARY 4. Let C be a nonempty closed convex subset of
the space E, where E = H? or E = W'P(Q) or E = Ly,
or E = Ly(Lp) and 1 < p < 00, ¢ = max(2,p), r > 0 and
S =|{T; : s € G} be an asymptrotically regular semigroup with

lim (T < [1 +d]'4.

Rmdo el
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Suppose there is an xy in C such that {T;xo :s € G} is bounded.
Then there exists z in C such that T;z =z for all s € G. [

3. Fixed points in Banach spaces with Lifshitz’s constant
k(E) > 1.

For a metric space (M,d) we write B(x,r) = {y € M
d(x,y) <r} for the closed ball of center x and radius r. We shall
use the notion of the Lifshitz characteristic k(M) of a metric space
M [18], which is defined by

there exists a > 1 such that for all
x,y€M and all r >0, d(x,y) >r
implies there exists z € M such
that B(x, br) N B(y,ar) € B(z,r)

k(M)=sup{b>0:

Obviously x(M) > 1, and if M is a nonreflexive Banach space,
k(M) =1 [17, Section 37.5]. Define «o(E) to be the infimum of
k(C) where C ranges over all nonempty closed bounded convex
subsets of the Banach space E with more than one point. Downing
and Turett in [11] proved that for a Banach space E, ko(E) > 1
if and only if go(E) < 1, where gy(E) = sup{e : g(e) = 0}. In
particular, when E is uniformly convex, «o(E) > 1 and for a Hilbert
space ¢, ko(IH) = V2.

The relationships among above geometric coefficients of Banach
spaces are the following [1, 28]:

1 <ko(E) < N(E) < WCS(E) <2.

THEOREM 4. Let (E,|| - |I) be a Banach space with k(E) > 1
and Z = {I; : s € G} be an asymptotically regular semigroup defined
on E such that

lim |T,| = k < «(E).

5§00
Suppose there is an xo in E such that {T;xy :s € G} is bounded.
Then there exists z in E such that T,z =z for all s € G.
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Proof. Let {sg} be a sequence such that

lim [T| = lim [Tl = k < «(E).
Jim o

S—=>00

For any y € E, let

r(y) = inf{R > 0 3ep lim |y — Tpx|l < R} .
oo
Observe that r(y) = 0 implies T,y = y for all s € G. Indeed, for
s € G with |Ts|| < 400, we have:
ITsy — yll < 1Ty — Tsgspxll + 1 Toaspx — Tspxll + | Tspx — |
< (IT 1) Wy = Yl + [Ty x — Topxll = 0

as B — oo by the asymptotic regularity. Hence T,y = y for all
sg € G and by (x) Ty =1y for alla s € G.

If k(E) =1, then k < 1. Without loss of generality we can
assume that ||T,]] < 1 for all sg € G. The Banach Contraction
Principle implies that for some sg, € G, Ty, has a fixed point in
E. Let z € E and T, z = z. Assume that for some s € G — {Sg,}
with | T;|| < 400, ||T;z2 — z}} > 0. Then

0 < |ITsz - zll = I Tsz — Ty 2l
S Tz — Togy 2l + 1 Tgy 2 — Togy 2l
STl - Nz = Tsgzll + 1 T W - 1752 — 2l
S Mgy Il - 1Tz — 2|
< ITsz -zl

contradiction. Hence, Ts,z = z for all s € G and by the asymptotic
regularity and by (*), T,z =z for all s € G.

Assume that k > 1. For b € (k,«x(E)) there exists a > 1 such
that

vu,veEvr>0[”u - U” >r = 3wEEB(uy br) N B(v, ar) C B(w, r)]
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A-b

Take A € (0, 1) such that y = min{ A - a, > 1. We claim

that there exists sequence {y,} C E having the property:

(12)  Vaenlr(yn+1) < A-r(yn) and |lynyr — yall < (A +¥) - e(yn)].

Indeed, take y; to be an arbitrary point in E and assume y,
Y2, ..., Yo arc given. We now construct y,.+;. If r(y,) = O then
Yn+1 = Yn. If r(y,) > O then there exists sg, € G such that

WTsp, ¥n — yull > A-r(yn) and Ty, || <k-y.
From the definition of r(y,) there exists x € E for which

lim ||y, — Tcpx" <r(yn) <y -r(¥n).
B—o0

Hence

" Tv,gx - TSﬁa " = "Ts,gx - ng+sgax" + “ Tcp+s¢3ax - Tvga Yn ”
S WTpx = Topasp X1l + 1 Tsp | - 1 T5p % — yall.

Taking the limit superior as 8 — oo, by the asymptotic regula-
rity, we get

Jim | Topx = Ty, x| < k- - ).
Since
B(yn, ¥ - r(ya)) N B(Tsy, yn, k- v - r(yn))
C B(yn,a-A-r)NB(Tsy yn,b-A-r(ys)) =D

the set D is contained in a closed ball centered at w with radius
A - r(yn). Thus

lim [|lw — Tspa,x" < A-r(ya)).
oo
Take y,.; = w. It follows from the above that the sequence {y,}

satisfies condition (12). Since A < 1, {y,} converges to z € E. But
since r(z) =0, z is a fixed point of T, for all s € G. [ |
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Remark 3. Let Eg be the James spaces, i.e. Eg = (£2,] - |p),

where |-|g = max{l[ {2, B- Il ll}, 1 < B < 00. Recently, Dominguez
Benavides in the paper [8] proved that for the James spaces Eg
5
xo(Eﬂ)z\/l+ﬂ‘2—2-ﬁ‘2-\/ﬁ2—1 for 1 <B< 12_—

5
If > —‘2(— it is known [30, Ex. 2.1.10] that ko(Eg) = 1.

Let E be uniformly convex Banach space and
%(5) =£p+¢p($)y 0<&<2, p>1.

where

Ixll?+ A+ 8- Myl” =5 -x+10 -8 -ylI”
Wp(§) '

¢p(€) = infl 5

x,y € B(0, 1),
lx —yll > e,
0<£&<l
Then ¥, is continuous and strictly increasing. Observing that
¥,(0) = 0 and ¥,(1) > 1, we have a unique &, € (0,1) such
that ¥,(€,) = 1. Ayerbe and Xu [2] proved that in uniformly convex
Banach space E,

KO(E)zsup{%:1§p<oo}.
4

In particular, if E is p-uniformly convex for some p > 1 and
cp > 0 is the constant appearing in (11), then

ko(E) > (1 +c,)'P.
For L7 spaces (1 < p < 0o0) from Lemma 4 we have

[+ ()P~

I/p
(l+t)l’—'] if p>2and k(L") > /p if p <2.
p

ko(L?) = [1 +



FIXED POINTS OF ASYMPTOTICALLY REGULAR SEMIGROUPS .. 109

Webb and Zhao [28] obtained the same lower bound for «(L7?)
[which is not less than ko(L”)] for p > 2; while their lower bound
for k(L?) for p < 2 is implicit; it involves the computation of the
maximum of a complicated function.

Recently, Dominguez Benavides and Xu [10] introduced a new
geometrical coefficient for Banach spaces.

Let E be a Banach space and C be a nonempty bounded convex
subset of E. Suppose 7 is a topology on E.

DEFINITION ([10]).

(i) A number b > 0 is said to have property (P;) with respect to C
if there exists some a > 1 such that for all x,y € C and r > 0
with ||x — y|| > r and each t-convergent sequence {x,} C C for
which ﬁllx,, —x|| <a-r and Ellx,, —yll <b-r, there exists

some z € C such that lim ||x, —z|| <r.
n— o0

(ii) k:(C) = sup{b > 0:b has property (P;) wrt. C}.
(iii) k. (E) = inf{k,(C) : C as above}.

It is easily seen that «,(C) > x(C) for all nonempty bounded
convex subsets C C E. If t is the weak topology o(E, E*) of
E, then we write «,(C) and «,(E), respectively. If E is a dual
space and t is the weak * topology of E, then we write k. (C)
and x,+(F) for these two coefficients.

THEOREM 5. Let E be a Banach space and t a topology on
E. Suppose C is a nonempty convex t-sequentially compact subset
of E and # = {T; : s € G} be an asymptotically regular semigroup
such that
dim |75l = k < #:(C).

§—>00

Suppose there is an xg in C such that {T;xg:s € G} is bounded.
Then there exists z in C such that T,z =12z for all s € G

Proof. Let {sg} be a sequence such that
lim |75l = lim ||Ts,ll = k < &:(C).
B0

§—>00
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For any y € E, let
r(y) =inf{R > 0: 3yeg lim [y — Tyyx|| < R}

B0

If r(y) =0, then exists a subsequénce {sg,} such that

lim [y — Ty, x|l = lim iy — Ty, x|l =0.
$—00 a—>00

Analysis similar to that in the proof of Theorem 4, shows that
T,y =y for all s €G.

If k,(C) =1, there exists z € C such that T,z =z for all s € G
(see the proof of Theorem 4).

Assume that 1 < k < k. (C). For b € (k,«;(C)) there exists
a > 1 satisfy the above definition (i). Take v € (0, 1) such that

v-b
L =min|v-a, - k > 1. It is readily seen that there for every

x,y € C with |lx —y|| > v.r and any t-convergent sequence {£,}
in C for which lim ||§, —x|| <u-r and lim ||§, —y[| <k-p-r,
y—>00 y—00
there exists some z in C such that lim [|&, —z]| < v-r Without loss
y—>00

of generality, we may assume that ||Ty,|| < -k for all sp € G. We
claim that there exists a sequence {y,} C C having the property:

(13) Vaenlr(n+1) <v-r(yn) and |lyat1 — yull < W+ p) - r(yn)l.

Indeed, take y; to be an arbitrary point in C and assume yj,
y2,..., Y, are given. We now construct y,ii. If r(y,) = O then
Ynt+1 = Yn. If r(y,) > O then there exists sg, € G such that

WTsp, yn — Yull > v -r(yn).
From the definition of r(y,) there exists x € E for which

lim |y, — TSﬂx” <r(n) < p-r(yn).

B—o0

Take a subsequence {Tsﬂlx} of {Ty,x} such that

ﬂlgrgo lyn = Tspxll = im lyn — Tsp, x].
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Since C is r-sequentially compact, we may assume that {Tsﬂlx}
T-converges. Hence

” Tmlx - Ts‘pa Yn ” = " T:plx - Ts;ax—{-spaxn + "Tcgk-%sgux - Tspa yn”
= “Tfﬂkx - Tvﬂl-i-s,qax” + " Ts’g)‘ ” : ” T\‘ﬂ)‘x - yn”

Taking the limit superior as A — oo, by the asymptotic regula-
rity, we get
Jim [ Tg, 0 = Tog, yull < k- i1 (yn).

By definition of r it follows that there exists z € C such that

lim ||z — Topx|l < v - ryn).
B—oo

Take y,4+1 = z. If follows from the above that the sequence {y,}
satisfies condition (13). Since v < 1, {y,} is a norm Cauchy sequence
and thus strongly convergent to a point z € C. But since r(z) =0,
z is a fixed point of T for all s € G. |

Recall that a Banach space E is said to satisfy the wuniform
Opial condition [25] if for each ¢ > 0, there exists an r > 0 such

that
14+r < lim ||x 4+ x|
n—-oo
for each x € E with |x|| > ¢ and all weakly null sequences {x,}

>
in E such that lim |lx,]] > 1. Clearly this condition implies the
n—oo

classical Opial condition.

Opial’s modulus rg of E (or r; of E relative to the topology
t) is defined by ([21]):

re(c) =inf{ lim ||x + x,|| — 1}, ¢ > 0,
n—o0

where the infimum is taken over all x € E with ||x||] > ¢ and
sequences {x,} in E such that  — lim x, = 0 (or r-converging
n—oo
to 0) and lim [/x,[| > 1. It is easy to see that the function rg is
n—»oo
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nondecreasing and that E satisfies the uniform Opial condition (t-
uniform Opial condition) if and only if rg(c) > 0 (r;(c) > 0) for all
¢ > 0. For example, if E=¢£¢7 (1 < p < o00) then ([21])

ree(c) =1 +cP)P -1, ¢ > 0.

For the space £' equipped with the weak * topology

ror(c)=c, ¢c>0.

In the paper [10] Dominguez Benavides and Xu proved that for
a Banach space E with the uniform Opial condition

Ko(E) =1+ rg(1).

In particular,

(14) ko(8P) =217 if 1 < p<oo and k- (€') =2.
Applying Theorem 5 and (14) we have the following Corollaries:

COROLLARY 5. Let C be a nonempty closed convex subset of
¢P for 1 < p < o0 and F = {1, : s € G} be an asymprotically
regular semigroup such that

lim |7, < 2'/7.

§—>00
Suppose there is an xo in C such that {T;xo : s € G} is bounded.
Then there exists z in C such that T,z = z for all s € G. |

COROLLARY 6. Let C be a nonempty weak * compact convex
subset of €' and # = (T, : s € G} be an asymprotically regular
semigroup such that

lim |7 < 2.
§—>0

Then there exists z ‘n C such that T,z =z for all s € G. ]

Remark 4. Note that for €7 spaces (2 < p < o00) the unique
solution of (2) (see Remark 1), , < 2!/7.
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Recently, in the paper [8] Dominguez Benavides proved that for
reflexive Banach space E,

ko(E) < WCS(E).
The following theorem is a generalization of Theorem 2 in [8].
THEOREM 6. Let E be a reflexive Banach space, C a nonempty

bounded closed convex subset of E and ¥ = {T; : s € G} be an
asymptotically regular semigroup such that

lim [Tl =k < % (1 +14+4.-WCS(E) - (ko (E) — 1)).

S>>

Then there exists z in C such that T,z = z for all s € G.

Proof. Let {sg} be a sequence such that

lim || 75| = ﬂango 1755

S$—=>00

—k < %(1+\/1+4~WCS(E)-(/<Q,(E)—- 1)).

For any x € E, let

r(x) =inf{R > 0: 3yep lim [|x — T,y < R}.

B—o0

Observe that r(x) = 0 implies T;x = x for all s € G (see the
proof of Theorem 5). Denote WCS(E) = W and «,(E) = «. By
Theorem S and the following inequality

xs—;—(1+\/1+4-w-(x—l))5W,

1
we can assume 1<K5k<-2—(1+J1+4~W-(K—1)).

k -1 k b-1
Since w < Z—l choose b < k such that W < =1
Let a > 1 be the corresponding number to b in the definition of
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b
— -1
k
ko(E) = « such that W < Z T Next, choose € > 0 such that
1 4+ 2¢
=ua < 1.
a

Let x an arbitrary point C and without loss of generality we
assume that the sequence {T;x} is weakly convergent. If r(x)#0

choose y € C such that lim IITSﬁyII < r(x)-(1+¢). There are two
B0
cases:

Wor(x) (1+e)
k-a '

(a) ﬂleocllx = Tox|l =

Choose arbitrary n > 0 and y such that

W.r(x)-(14+¢ .
lx = Tyyxll < (k).a( Ly i By

Let sy > s, > sy. If s, — s, <5, then | T, x — T x|| < n for
s, large enough. If 5, — s, > s, we have

1T, x — Ty xll < I Ts,x — Typs, XM + 1 Ty es, x — T, x|

S W Ts,x = Ty, x I F 1T, I - 1T, x — x|l

W.r(x)-(1+e) +71)-
k-a

S WTs,x = Ty, x 1 + 1 T, 1 - (

Thus the asymptotic diameter of the sequence {T,x}
D({Tyyx}) < ,}L"o'o (1T, x = Tous, x|l + T, |1

w . )
' ( r(x)-(14+¢) +77>>
k-a

W'r(x)a-(l+e) e

Since n is arbitrary we obtain

D((T;yx)) < 21+ )
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which, by the definition of the WCS(FE) coefficient, implies

_— (1
inf{ lim [T, x —yll:y € conv{TSﬂx}] < M
B> a

Then there exists z in C such that

r(x)-(1+2¢)
— < o -r(x).

lim || T5x —zl| < lim [T5x — z|| <
B 00

W
Hence r(z) <« -r(x) and |z —x|| < <1 + —k—) ca - r(x).

W.-r(x)-(14+¢)
k-a '

®) Jim |x — Toyxll >

In this case there exists y such that

b
2
Wer)-( k
- Tox|> 4 r®-A+e) gk _a
y k-a w T, Il — 1

Choose y € C that lim ||T5,y — x| < r(x) - (1 + &) and a

B0
sequence {T%y} such that lim IIT;ﬂy—xll = lim ||T;, y—x||. Using
B—00 v—00

the asymptotic regularity of T we obtain

Tim 175, % = Ty, ¥l < M (175, = Tyt Y1+ 1T b5, 5 = Top, Y1)
< T, I - Jim 1x = Ty, ¥
= IT;, Il -_im | T;, — x|

B—o0

< |ITs, I - r(x) - (1 + ).
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b
— -1

k
Choose A such that — < A < —2 —— We have
w WTs, 0l — 1

lim | Zsp,y = & - Ty, x — (1= 2) - x]|
V=00
<A hm Ty, y — Ty x|l + (1= A) - lim Ty, y — x|
Vv—00 v=>00

SMT N -rx)- (T +e)+ (A =2)-r(x)-(1+¢)
b-rix)-(1+¢
< .
a

Furthermore
lx =& - T, x — (1 =A) -x[[ =2 |IT;,x — x|l

-1 W.r(x)-(1+¢) - r(x)-(1+8).
- k-a a

By the condition which b satisfies there exists z € C such that

SWSQ""(X)

lim || T, y — zll

Vv—>00

Thus r(z) < a-r(x) and it is ez'lsy to check that ||z — x|| <
r(x)-(1+e+a).

Define f(x) = z, z chosen as in the case (a) and (b). By
induction, take zo € C arbitrary and z, = f(z,—1). It is easy to prove
that {z,} is norm Cauchy sequence and thus convcergent strongly. Let

lim z, = z,. It is readily seen that r(z,) = 0, which implies that
n—-oo

I 18 a fixed point of T; for all s € G (see the proof of Theorem
5). |

EXAMPLE 2. Dominguez Benavides [8] proved that for the space
E = ¢£2 renormed by

1/p

0 p/2
Hxakll = { x117, (Z |x,,|2) L 2<p < +oo,

n=2
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k,(E) = 2/ < WCS(E) = +/2. Thus in this case, for 2 < p <
[log,(2 —271/%)]~! ~ 4.6946, the constant which appears in Theorem
6 is striclty bigger than the constant which appears in Theorem 2.0
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