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ON THE HYPERGROUPS 
WITH FOUR PROPER PAIRS 

AND TWO OR THREE NON-SCALAR ELEMENTS(*) 

MARIO DE SALVO - DOMENICO FRENI - GIOVANNI LO FARO 

In this paper one continues the study of hypergroups with for proper 
pairs. In particular one considers the case when the scalars group is not 
empty and the set of non-scalar elements has size two or three. 

1. Introduction. 

We recall that a hypergroup H is a nontempty set equipped with 
a hyperoperation such that the following two conditions are satisfied: 

1.1. V(x, y, z) ~ H 3, (xy)z  = x (yz )  (associativity); 

1.2. Yx ~ H,  H x  = x H  = H (reproducibility). 

In this paper, the authors continue the study of  the hypergroups 
H ,  such that: 

1.3. IP(H)I  = I{(x, y) ~ n z l  Ixyl >_ 2}1 = 4. 

In [5], [6], [7], one had solved the same problem, when 
IP(H)[  < 3, while in [3], the authors had examined the previous hy- 
pergroups when the scalars group S ( H ) =  S I ( H ) N  Sr(H)  is empty, 
where: 

S l (H)  = {x ~ HI Ixyl = 1, Vy ~ H} (the set of  left scalars); 

S r ( H )  = {x E HI lyxl = 1, Vy ~ H} (the set of  right scalars), 

(*) This work is produced by support of the Italian M.U.R.S.T. (quota 40%). No 
version of this paper will be published elsewhere. 
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succeding in determining their structure. 

Here we suppose that the scalars group S(H) is not empty and 
that the set of the non-scalar elements M ( H )  = H - S(H)  has 
size two or three. We denote by C(H,  S(H),  t) the class of  such 
hypergroups, where t = IM(H)I 6 {2, 3}. 

We observe that S(H) is a closed sub-hypergroup of H (see 
[5]), thus, we have S ( H ) M ( H )  = S ( H ) ( H -  S(H)) = H -  S (H)  = 
M ( H ) ,  and the map ~0 : S(H) x M ( H )  --~ M(H)  defined by 
~o(x,a) = xa,  u  ~ S(H)  x M(H)  is an action to the left on 
M(H) .  In fact, we have (xy)a = x(ya)  and ea = a (as Yx ~ S(H) ,  
Ya ~ M(H) ,  we have laxl = 1, in order to simplify the writing, we 
shall put ax = b instead of ax = {b}). In consequence we obtain 
that S(H) operates to the left on M(H) .  

Clearly, S(H) also operates to the right on M(H) ,  and we have 
the following: 

PROPOSITION 1.4. I f  H is a hypergroup such that S (H)r  
M(H)~O,  then S(H)  operates on M(H) .  

In the following we shall suppose that S(H) operates on M ( H )  
by the action just defined in proposition (1.4), and Ya ~ M(H) ,  
StabL(a) (respect. StabR(a)) will indicate the stabilizer of the ele- 
ment  a,  under the action to the left (respect. to the right) of  S(H)  
on M(H) .  

Note that, given a hypergroup (H, o), it is possible to consider 
the hypergroup (H, , )  equipped with the hyperoperation �9 such that 
V(x ,y )  ~ H 2, x , y  = y o x .  ( H , , )  will be called the symmetric 
hypergroup of (H, o). 

2. The  class C(H, S(H) ,  2). 

In this section the set M(H)  will be denoted with {a, b}. We 
begin with some examples of hypergroups belonging to the class 
C(H,  S(H),  2). 

EXAMPLE 2.1. Let G be a group, let g be a subgroup of  G of  
index [G : g] = 2 and let a , b  be two distinct elements such that 
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G n {a, b} =13.  

We set H = G t O { a , b }  and define on 

hyperopera t ions  Ol, o2: 

H the fo l lowing  two 

HI : (H ,  Ol) = 

x Ol y = { x y }  

x Ol a = {a} ,x  ol b = {b} 

x ol a = {b}, x ol b = {a} 

a o I x = {a}, b Ol x = {b} 

a o l  a = a ol b = G tO {b}, b ol a = b o l  b = G tO {a} 

if  (x,  y) ~ G2; 

if  x 6 g; 

if  x 6 G - g; 

if  x 6 G;  

1-12 = ( H ,  oz)  = { Z O 2 W = Z O  1W 

Z O 2 t o =  H 

i f  (z, w) 6 H 2 - {a, b}2; 

if  (z, w) 6 {a, b} 2 

It is easy to show that Hi and H2 are hypergroups .  In parti- 

cular, in order  to prove  the associativity,  it is useful to observe  that 

(G  - g ) ( G  - g )  = g .  

We denote  with H( and H~ respect ively  the symmet r i c  hyper-  

groups o f  Hi and H2. 

EXAMPLE 2.2. In the same hypotheses  of  2.1, by setting K = 

G tO {a, b}, we can define the hyperopera t ions  <>i ( i  E { 1 , 2  . . . . .  9}) 

in the fo l lowing way: 

Ki = (K,  o i )  = 

x 0 i y = {xy}  

x <>i a = a <>i x = {a}, x <>i b = b oi x = {b} 

x oi a = a <>i X = {b}, x O i b = b oi x {a} 

a <>i a = b <>i b = X ,  a <>i b = b <>i a = Y 

i f  (x,  y)  6 G2; 

i f x 6 g ;  

if  x 6 G - g ;  

where:  

X = g and Y = G - g under  the hyperopera t ion  <>1; 
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X = G - g and Y = g under the hyperoperation <>2; 

X = g U {a} and Y = (G - g) U {b} under  the hyperoperation <>3; 

X = g U { a , b }  and Y = ( G - g )  U { a , b }  under the hyperoperat ion 

<>4 ; 

X = (G - g) U {a, b} and Y = g U {a, b} under  the hyperoperat ion 

<>5; 

X = (G - g) U {a} and Y = g U {b} under  the hyperoperation <>6 

X = Y --- G under the hyperoperation 07; 

X = G U {a} and Y = G t_J {b} under the hyperoperation <>8; 

X ---- Y = K under the hyperoperation <>9; 

For Ki and Kz we suppose that G has at least three elements.  

We observe that, X --- g U  {b} and Y = ( G - g ) U  {a}, or 
X = ( G - g ) U { b }  and Y = gU{a},  or X - - G U { b }  and Y = GU{a } ,  

then we obtain hyperstructures which are isomorphic,  respectively to 

K3, K6 and Ks. 

In this case one can also prove that the hyperoperations <>i defi- 
ne on K a structure of  hypergroup. We denote by K[ the symmetr ic  

hypergroups of  the hypergroups Ki. 

EXAMPLE 2.3. Let  G be a group, let gl ,  g2 be two distinct 
subgroups of  index [G : gl]  = [G : gz] = 2 and let a , b  be two 
distinct elements such that G O {a, b} = 13. We put T = G U {a, b} 

and denote with *l,  ,2 the fol lowing hyperoperations:  

TI = ( T , * I ) =  

x *1 Y = {xy} 

x * l  a = {a}, X*l b = {b} 

x . 1  a = {b} ,x* l  b = {a} 

a . 1  x = {a} ,b* l  x = {b} 

a * l  x = {b} ,b .1  x = {a} 

a * l  a = a * l  b = b * l  a = b * l  b = G 

if (x, y) 6 G2; 

if  x ~ gl ;  

if  x 6 G - g l ;  

if  x 6 g2; 

if  x 6 G - g2; 
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/ Z *2 W = Z ~rl tO i f  (z,  w )  ~ T 2 - {a ,  b } 2 ;  
T2 (T, "k2) / z * 2 w = T  if  (z, w) ~ {a, b} 2 

TI and T2 are hypergroups.  To ver i fy  the associativity,  it is use- 

ful to observe  that (G - g l ) ( G  - g l )  = gl ,  (G - g2)(G - g2) = g2, 

G - (gl tO g 2 ) r  and [G - (gl tO g2)] [G - (gl U g2)] C gl A g2. 

As usual T I' and Td denote  the symmetr ic  hypergroups  o f  Ti and 

T2. 

EXAMPLE 2.4. Let  G be a group and let a,  b be two distinct 

e lements  such that G N { a , b }  = 0. We put M = GtO {a,b} and 

define on M,  24 hyperoperat ions  | as follows: 

x | Y = { x y } , u  y)  ~ G 2 , u  ~ {1,2  . . . . .  24}; 

x | a = a | x = {a} ,x  | b = b | x = {b},'Cx 6 G, 

Yk  6 {1,2  . . . . .  24}; 

a |  

a | 

a | 

a | 

a | 

a | 

a | 

a | 

a | 

a |  a = G U {b}, a |  = b | a = {a,b},  b | b = G U {a}; 

a | a = G tO {b}, a |  b = b |  a = {a, b}, b |  b = M;  

a | a = G tO {b}, a | b = b | a = G tO {a},b  | b = {a ,b};  

a | a = G tO {b}, a | b = b |  a = G tO {a},  b | b = G tO {a}; 

a | a = G to {b}, a | b = b | a = G to {a}, b | b = M ;  

a | a = G tO {b},a  | b = b | a = M, b | b = G tO {a}; 

a = { a , b } , a |  b = b |  a = G U  { b } , b |  b = M;  

a = {a, b } , a  | b = G U {b}, b | a = b |  b = M;  

a = {a, b } , a  | b = b | b = M , b  @3 a = G U {b}; 

a = b G a b  = { a , b } , a |  = b |  -'- M;  

a = { a , b } , a |  = b |  = M , b |  = G U  {b}; 

a = { a , b } , a  |  = b |  = b |  = M; 

a = G U {a}, a | b = b |  = M,  b |  = {a, b}; 

a = G U {a} ,a  | b = b | a = M, b | b = G to {b}; 

a = G U { a } , a |  b |  = b |  M;  
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a |  a = 

a |  a = 

a |  a = 

a |  a = 

a |  a = 

a |  = 

a |  a = 

a |  a = 

a | a = 

G U {b}, a @16 b = b @16 a = b @16 b = M;  

a | b = G U {b},b | a = b | b = M;  

b | a = G U {b},a | b = b | b = M;  

b | b = M, a @19 b = b | a = {a, b}; 

b |  = b |  = M , a |  = {a, b}; 

b| b = M , a |  b = b@21 a = G U {a}; 

b | b = b | a = M , a  | b = G tO {a}; 

b | b = b | a = M , a  | b = G U {b}; 

a (~)24 b = b | a = b | b = M.  

Remark that for  every  k 6 {1 ,2  . . . . .  24}, 

hypergroup.  

Mk. 

M = ( M , |  is a 

We denote  by M~, the symmetr ic  hypergroups  o f  the hypergroups  

We establish the following: 

LEMMA 2.5. i f  H E C ( H ,  S ( H ) ,  2) and M ( H )  = {a ,b} ,  then 

Yx  ~ S ( H ) ,  

1) ax  = 

2) x a  = 

3) ax  = 

4) x a  = 

we have: 

{b} r bx  = {a}; 

{b} r x b  = {a}; 

{a} r bx  = {b}; 

{a} r x b  = {b}; 

exists x E S ( H )  such that: 

{b} and x a  = {a}, then aa = ba and bb = ab;  

{b} = x a  (respect. x a  = { b } - - - a x ) ,  then aa = bb and  

I f  there 

5 )  a x  = 

6 )  a x  = 

ab  = ba; 

7) ax  = {b} and  ax  = {a}, then aa = ab and ba = bb. 

Proof. (1) Suppose  ax = {b}. I f  bx  = {b}, then we obtain 

H = H x  = ( S ( H ) U M ( H ) ) x  = S ( H ) x U a x U b x  = S ( H ) U { b } ,  which  

is impossible.  The re fo re  bx  = {a}. It is easy  to prove  the converse .  
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Analogously, one can prove the (2), (3), (4). 

(5) Suppose now ax = {b} and xa = {a}. We have aa 
a(xa) = (ax)a = ba and, using (4), bb = (ax)b = a(xb) = ab. 

In an analogous way, one can prove the (6), (7). 

PROPOSITION 2.6. If H is a hypergroup such that S(H)~-0, 
M(H)r  then: 

1) If  H ~ C(H,  S(H), 2), then S(H) operates transitively to the 
left on M(H)  (respect. to the right on M(H))  if and only if 
3a ~ M ( H )  such that StabL(a)~ S(H) (respect. StabR(a)~ S(H)); 

2) If H ~ C(H,  S(H), 2) and a ~ M(H)  we have: 

S tabL(a )cS (H)  if and only if [S(H) �9 StabL(a)] ~ 2 
# 

(respect. S tabR(a)~S(H)  if and only if IS(H) �9 StabR(a)] = 2). 

Proof. (1) Let M(H)  = {a, b}. If S(H) operates transitively to 
the left on M ( H )  and �9 denotes the action, then S(H).a = M(H) ,  
whence 3x ~ S(H)  such that x.a = b. Therefore x q~ StabL(a) and 
StabL(a)cS(H) .  On the converse, Yx ~ S ( H ) -  Stabm(a), x.a = b 

- t -  

and x -1.b = a. Finally S(H).a = S(H).b = M(H)  and the action is 
transitive. 

(2) It results, from (1), because the index of the stabilizer of  an 
element in S(H) is equal to the size of the orbit of  the element. 

Remark 2.7. Before stating the next theorems, we observe that if 
H ~ C(H, S(H),  2) and M(H)  = {a, b}, then, by lemma (2.5) (4), 
we have xa = {a} r xb = {b} and so, Stabm(a) = StabL(b). 

THEOREM 2.8. Let H E C(H, S ( H ) , 2 )  and M(H)  = {a,b}. 
If StabR(a) = S(H) and S tabL(a)~S(H)  (respect. Stabm(a) = 

S(H) and StabR(a)CS(H)),  then H is isomorphic to one of the 
7 -  

hypergroups of  example (2.1). 

Proof. By proposition (2.6), we have IS(H) �9 Stabm(a)] = 2 
and Yx ~ S ( H ) -  Stabm(a), xar  whence xa = {b}. Besides 
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S t a b R ( a )  = S ( H )  implies that ax  = {a}, Vx 6 S(H) ,  and so, by 
lemma (2.5) (7), we have aa = ab and ba = bb. 

Moreover S ( H )  tO {b} C H = a H  = a S ( H )  tO a M ( H )  = 

a S t a b R ( a ) t O a M ( H )  = {a}tOaatOab and thus S(H) tO{b}  C aa  = ab.  

Analogously one can prove the inclusion S ( H ) U  {a} C ba = bb. 

Besides, if a ~ aa ,  then {b} = x a  C x ( a a )  = ( xa )a  = ba and 
conversely, if b ~ ha,  then {a} = x - i b  C x - I ( b a )  = ( x - l b ) a  = aa.  

Then a ~ aa  = ab  c~ b ~ ba = bb. 

Consequently, only the following two cases are possible: 

(i) aa = ab  = S ( H )  to {b} and ba = bb = S ( H )  to {a}; 

(ii) a a  = a b  = b a  = b b  = H .  

Therefore H is one of the hypergroups presented in example 
(2.1). 

COROLLARY 2.9. I f  H ~ C ( H ,  S(H) ,  2), M ( H )  = {a, b} and  

{e} = S t a b L ( a ) c S ( H )  = S tabR(a) ,  then IHI = 4 and H ,  unless 
7 - -  

isomorphisms,  is one o f  the fo l lowing  hypergroups: 

o o 

E E x  a b ~ e x a b  

x x e  b a x x e b a  

a a a ~ b  ~ b  a a a H H 

b b b ~ a  e,~a b b b H H 

Proo f  Since S t a b L ( a )  = {e} and IS(H)  �9 S tabL(a)]  = 2, we 
have S ( H )  -~ Z2, and setting S ( H )  = {e,x}, the theorem (2.8) 
completes the proof. 

We prove now the: 

THEOREM 2.10. Let H ~ C ( H ,  S(H) ,  2) and M ( H )  = {a, b}. I f  

S t a b L ( a )  = S t a b R ( a ) c S ( H ) ,  then H is isomorphic to one o f  the 

hypergroups, which are constructed in example  (2.2). 

Proo f  For proposition (2.6), we have IS(H) ' S ta b L (a ) ]  = 

IS(H)  �9 S t a b e ( a ) ]  = 2, and u ~ S ( H ) -  S ta b L (a )  = S ( H ) -  
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S t a b R ( a )  we have ax  = {b} = xa .  By using lemma (2.5) (6), we 
obtain aa = bb and ab = ha.  Then, if we denote S t a b c ( a )  = 

S t a b R ( a )  = N and S ( H ) =  S, we establish the following properties: 

l) N n a a r  

2) S - N n a a T A 0 c ~ S - N C a a ;  

3) N n ab:/:O r N C a b ;  

4) S - N N a b r  

5) N C aa C~ S -  N C ab; 

6) S -  N C aa  C~ N C ab; 

7) a ~ aa CC, b 6 ab and b 6 aa C~ a 6 ab; 

8) aa = N C~ a b =  S -  N .  

(1) If x 6 N n a a ,  then N = x N C a a N = a a .  

(2) If z 6 S - N n a a ,  then 'v'w 6 S - N ,  we have {z- l ,w} C 
S - N .  Besides [S : N] = 2, hence ( S - N ) ( S -  N) = N and so 
wz  -I ~ N .  Denote wz -I = {x}, we obtain {w} = x z  C x ( a a )  = 

( x a ) a  = aa,  whence S -  N C aa.  

(3) and (4) can be proved, respectively, as (1) and (2). 

(5) If N C aa,  then S - N  = N ( S - N )  C a a ( S - N )  = ab. 

Conversely if S - N  C ab, as ( S - N ) ( S - N )  = N ,  we deduce 
N C a b ( S -  N )  = aa.  

(6) If S - N  c aa,  then N = ( S - N ) ( S - N )  C a a ( S - N ) = a b ,  

while if N C ab,  then S -  N = N ( S -  N )  C a b ( S  - N )  = aa.  

(7) Taking x 6 S - N ,  from a ~ aa,  we obtain {b} = ax  C 

( a a ) x  = a ( a x ) =  ab. In the same manner, one can prove the other 
implications. 

(8) Suppose aa = N .  For (7), we have that ab n {a ,b}  = 0. 

If ab n N r  then taking x ~ ab n N ,  we obtain, for (5), {a,b} = 
a ( S  - N )  U ax  -: a ( ( S  - N) U {x}) C a(ab)  = (aa)b  -- N b  = {b}, 
which is absurd and so ab = S - N .  
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On the converse, let ab = S - N .  For (7), we have a a n { a ,  b} = 

0. If a a n S - N r  then using (2), we obtain S - N  C aa. In 
consequence we have {a} = ( S -  N)b C (aa)b = a(ab) = a ( S -  N)  = 

{b}, which is a contradiction. Therefore aa = N.  

Lastly, we observe that (5), (6), (7), (8) allow us to prove easily 
the following implications: 

9) aa = S -  N e~ ab = N ; 

10) aa = N U {a} C~ ab = (S - N) U {b}; 

11) a a = N U { b }  C ~ a b = ( S - N )  U{a}; 

12) a a = N U { a , b }  e ~ a b = ( S - N )  U{a,b};  

13) aa = (S - N)  U {a} C~ ab = N U {b}; 

14) aa = (S - N)  U {b} C~ ab = N U {a}; 

15) a a = ( S - N )  U{a ,b}  C > a b =  N U { a , b } ;  

16) aa = S c~ a b =  S; 

17) a a = S U { a }  e ~ a b = S U { b } ;  

18) a a = S U { b }  C ~ a b = S U { a } ;  

19) a a =  H C~ a b =  H.  

COROLLARY 2.11. I f  H ~ C(H,  S (H) ,  2), M ( H )  = {a, b} and 

{e} = StabL(a) = S t a b R ( a ) c S ( H ) ,  then IHI = 4 and H, up to 

isomorphisms, is one of  the following hypergroups: 

0 

~ x  a b E E x  a b 

x x e  b a x x e  b a 

a a b ~ a  ~ b  a a b ~ a , b  & ~ b  

b b a & b  ~ a  b b a &a ,b  ~ a , b  
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0 0 

r  a b ~ c x  a b 

x x e b  a x x e  b a 

a a b &a ~ b  a a b x ,a,b ~ a , b  

b b a ~ b  ~ a  b b a ~ a , b  x ,a ,b  

E r  a b e e x  a b 

x x e  b a x x e  b a 

a a b ~ x  ~ x  a a b ~ x , a  e,x,b 

b b a ~ x  K x  b b a ~ x , b  & ~ a  

o 

e E x a b  

x x E b a  

a a b H H  

b b a H H  

Remark 2.12. If H ~ C(H, S ( H ) , 2 ) ,  M(H)  = {a,b} and 
Stabt.(a) tO S tabR(a)cS(H) ,  then, from proposition (2.6), we ob- 

/ 

tain IS(H) : StabL(a)] = IS(H) : StabR(a)] = 2. In consequence, 
StabL(a) and StabR(a) are maximal subgroups of S(H) and it is 
impossible that StabL(a)~StabR(a) or StabR(a)~Stabt.(a).  

Therefore, in order to determine the structure of the hypergroups 
in the class C(H, S(H),  2) we have to examine only the following 
two cases: 

I) StabR(a) U StabL(a)C S(H),  with StabL(a) - Stabn(a)#O and 
r 

Stabe (a) - StabL (a)50; 

II) Stabt.(a) = StabR(a) = S(H).  

Now, we prove the 

THEOREM 2.13. If  H is a hypergroup in C ( H , S ( H ) , 2 )  and 
H satisfies the conditions (I), then H is isomorphic to one of the 



40 MARIO DE SALVO - DOMENICO I"RENI - GIOVANNI LO FARO 

hypergroups described in example (2.3). 

Proof  We have that S t a b ~ ( a ) U  S t a b R ( a ) r  Then, taking 
x ~ S ( H )  - (S tabR(a)  U S tabL(a) )  and x'  ~ S tabL(a)  - S tabR(a ) ,  

we obtain ax = {b} = xa ,  bx = {a} = xb ,  x 'a  = {a} and ax '  = {b}. 

For lemma (2.5) (5), (7) we "also have aa = ab = ba = 

bb. Moreover  S ( H )  C aa and aa t') { a , b } r  r {a,b} C aa.  

Consequent ly ,  aa = ab = ba = bb = S ( H )  or aa = ab = ba = 

bb = H and so H is, unless isomorphisms,  one of  the hypergroups  
of  example  (2.3). 

The next lemmas allow us to determine the hypergroups  H 
C ( H ,  S ( H ) ,  2) such that [ P ( H ) I  = 4 and StabL(a)  = S tabR(a)  = 

S ( H ) .  Besides we observe  that the cases I P ( H ) [  = 2 and I P ( H ) [  = 
3 have been studied and solved in the papers [7], [5]. 

LEMMA 2.14. I e t  H be a hypergroup and h be a subhypergroup 

o f  H such that H - h = {a, b}, ah = ha = {a}, bh = hb = {b} and 

I P ( H ) I  = 4. Then we have: 

1) u w)  ~ (H  - h) 2, z w  f) h~O r h C z w ;  

2) u  w)  ~ (H - h) 2, z w  ~ {{a, b}, h U {a}, h U {b}, H}; 

3) I f  aa = {a,b}  (respect. bb = {a,b}) ,  then ab ~ {H, hU{b}}  ~ ba 

(respect. ab ~ {H, h U {a}} 9 ba); 

4) I f  aa = hU{a}  or bb = hU{b},  then ab = ba = H and b b r  

5) I f  aa = h U {b} (respect. bb = h U {a}) then: 

I) b ~ ab r b ~ ba (respect. a ~ ab r a ~ ba ); 

II) h c ab cc, h C ba; 

II1) ab = {a, b} 4r ba = {a, b}; 

IV) ab = h U {a} r ba --- h U {a} (respect. ab = h D  {b} r162 ba = 

h U {b}); 

V) ab ~ {aa, H} r162 ba ~ {aa, H} (respect. ab ~ {bb, H} r162 

ba ~ {bb, H}).  

Proof  (1) If  we  take x ~ z w f q h ,  then we obtain h = x h  C 

z w h  = zw.  



ON TIlE HYPERGROUPS WITH FOUR PROPER PAIRS AND TWO OR THREE ... 41 

(2) Since IP(H)I = 4, V(z, w) E ( H  - h) 2, one has Izwl > 1. I f  
zw n h = 13, then one obtains zw = {a, b}. Otherwise, if  zw  n hr  

then, from (1) one has h C zw. If  zw = h, then {z} = zh = z ( zw)  = 

(zz)w and so Vu 6 zz, uw = {z}. Since w 6 {a,b} and I P ( H) I  = 4, 
one has u 6 h,  whence zz C h and {z} = (zz)w C hw  : {w}, 
i.e. z = w. I f  z = w = a ,  then aa = h with a r ab, because 
if a ~ ab, then h = aa C a(ab) = (aa)b = hb = {b}. Besides 
H = a l l  = a h U a ( H - h )  = { a } U a a U a b  = { a } U h U a b  and so 

b ~ ab, with a r  Moreover labl > 1, and thus ab n h~13 and, 
f rom (1), ab = h U {b}. Finally, we obtain ( a a ) b r  which is 

impossible. 

I f  z = w = b, reasoning in a similar way, we obtain again an 

absurdity. Therefore one has h C zw.  

(3) Suppose aa = {a,b}, we have H = a H  = {a} U aa U ab = 

{a, b} U ab and analogously H = {a, b} U ba. Then h C ab n ba. 

If  ab = hU{a},  then we obtain h C hUbb  C abUbb  = {a, b}b = 

(aa)b = a(ab)  = {a, b}, which is a contradiction. Thus,  f rom (2), 
ab ~ {hU{b}, H}.  In the same way, one proves that ba ~ {hU{b}, H}. 

(4) Let  a a = h U { a } .  We have H = a H = h U { a } U a b  and so 

b ~ ab, whence,  f rom (2), we obtain ab ~ {{a, b}, h U {b}, H}. 

But if  ab ~ {{a ,b} ,h  U {b}}, one has (aa)b:~a(ab) and thus 
ab = H.  In an analogous way, one sees that ba = H.  

Finally, i f  bb = aa = h U {a}, then we obtain ( a b ) b r  

Thus a a r  We arrive at the same conclusions, if  we suppose bb = 

h u {b}. 

(5) If  aa = h U {b}, then we have: 

{a} U ab = a(h U {b}) = a(aa)  = (aa)a = (h U {b})a = {a} U ba, 

whence (I) and (II) follow. 

From (2), we also obtain (III) and (IV). Finally, (V) is a conse- 

quence of  (I) and (II). 

LEMMA 2.15. Let H be a hypergroup and h be a subhypergroup 

of  H such that H - h  = {a,b}, ah : ha = {a}, bh = hb = {b}, 

IP (H) I  = 4. Then we have: 

1) [aa : {a,b},  ab = ba = H] ~ b b r  U {a}; 

2) [aa : {a,b},  (ab = h U {b} or ba = h U {b})] ::~ bb = H;  
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3) [aa = h U {b}, ab = ba = {a,b}] =,, bb 6 {h U {a}, HI; 

4) [aa = h U {b}, ab = ba = h U {a}] =r bb ~ {{a, b}, h U {a}, H}; 

5) [aa = h U {b}, ab = ba = HI :=~ bb 6 {h U {a}, HI; 

6) [aa = h U {b}, ab 6 {h U {b}, H} 9 ba, ab#ba] =~ bb = H. 

Proof (1) If bb = h to {a}, then (ab)b#a(bb). 

(2) Suppose ab = h tO {b}. If bb = h tO {b}, then (aa)b#a(ab),  
while if bb ~ {{a, b}, h tO {a}}, then (ab)b#a(bb). So, for the lemma 
(2.14) (2), obtain that bb = H. An analogous reasoning can be done 
when ba = h tO {b}. 

(3) Certainly h C bb and supposing that bb = h tO {b}, one has 
that (aa)b#a(ab), whence, for lemma (2.14) (2), one obtains that 
bb e {h U {a}, HI .  

(4) If bb = h U{b}, then (aa)b#a(ab) and so, taking in account 
the usual lemma (2.14) (2), we obtain that bb ~ {{a, b}, h U {a}, HI .  

(5) If ab = ba = H and bb ~ {{a,b},h U {b}}, one has 
(aa)b:/= a(ab) and using again lemma (2.14), we deduce that bb 
{h tO {a}, HI .  

(6) Let ab = h tO {b} and ba = H (analogously, one can treat 
the case ab = H and ba = h tO {b}). We obtain H = Hb = 
hbtO(H-h)b = {b}tOabUbb = hU{b}tObb, whence a ~ bb, and, for the 
lemma (2.14) (2), bb ~ {{a, b}, h tO {a}, HI .  Finally, if bb = {{a, b}, 
then (aa)b#a(ab) and if bb = h U {a}, then (cc)c#c(cc). 

Remark 2.16. The lemma (2.15) can be stated and proved again, 
exchanging a with b. 

In the end of this section we establish: 

THEOREM 2.17. I f  H ~ C(H, S(H), 2), M(H)  = {a, b}, StabL(a) 
= S tabR(a)= S(H) and IP(H)[  = 4, then H is isomorphic to one 
of the hypergroups described in the example (2.4). 

Proof In virtue of the lemma (2.14) (2), aa ~ {{a,b}, S ( H ) U  
{a}, S(H) U {b}, HI .  

If aa = {a, b}, as a consequence of lemmas (2.14) (3) and (2.15) 
(1) (2), we can affirm that, up to isomorphims, H ~ {Mi . . . . .  M6} 
(see example (4)). 
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If aa  = S ( H ) U  {a}, from lemma (2.14) (4), H is unless iso- 
morphisms one of the following hypergroups MT, M8, M9. 

If aa  = S ( H ) U  {b}, by using lemmas (2.14) (5) and (2.15) 
(3), (4), (5), (6), we obtain that H is isomorphic to one of the 
hypergroups Mi of the example (2.4), for i 6 {10 . . . . .  18}. 

If aa = H and bb ~ {{a, b}, S(H) U { a } , S ( H ) U  {b}}, taking 
in account the remark (2.16), the possible hyperproducts z w ,  with 
(z, w )  ~ M ( H )  2, can be represented by one of the following ten 
tables: 

| a b 

a H S(H)u{a} 

b S(H)u[a} [a,b} 

| 

a H H 

b H {a,b] 

| a b 

a H S(H)u{b} 

b S(H)u[b} S(H)~{a} 

a 

a H H 

b S(H)u{a} [a,b} 

| b 

a H H 

b H s(n)u{b]  

b 

a H S(H)u[a} 

b H {a, bl 

b 

a H H 

b H s(n)u{a}  

| b 
i 

a H S(H)u{a} 

b H S(H)w{a} 

| b 

a H [a,b} 

b [a,b} S(H)w[a} 

a b 

a H 

b S(H)u[a} 

H 

S(H)~[a} 

The ten corresponding hypergroups are respectively isomorphic 
to the hypergroups Ml, M2, M3, M6, M9, MII, MI4, MI6, MI7 and 
Ml8. 

Finally, supposing that aa ---- bb = H ,  it is easy to verify that 
one obtains hypergroups which are isomorphic to the hypergroups Mi 

for i 6 {19 . . . . .  24}. 

COROLLARY 2.18. The hypergroups  o f  the class C ( H ,  S(H) ,2)  
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such that IP(H)I  = 4 are those constructed in the examples  (2.1), 

(2.2), (2.3), (2.4). 

Proof. The  hypergroups given in examples (2.1), (2.2), (2.3), 
(2.4) are hypergroups which belong to the class C ( H ,  S ( H ) ,  2), with 

IP(H)I  = 4 .  

On the converse, if H �9 C ( H , S ( H ) , 2 )  and S t a b L ( a ) c S ( H )  

or S t a b R ( a ) C 4 S ( H ) ,  then, from the theorems (2.8), (2.10), (2.13), 
7-- 

H is isomorphic to one of the hypergroups described in examples 
(2.1), (2.2), (2.3). On the other hand, if H is such that S t a b L ( a ) =  

S t a b R ( a )  = S ( H )  and IP(H)I  = 4, then H is isomorphic to one of  
the hypergroups of the example (2.4). 

3. The case C ( H ,  S(H) ,  3). 

In this section we shall indicate with C ( H ,  S(H),  3) the class of 
the hypergroups H,  such that S ( H ) ~ O  and IM(H)t  = 3. 

We begin by giving some examples: 

EXAMPLE 3.1. Let G be a group, let g be a subgroup of G of 
index [G : g] = 2 and let a, b, c be three distinct elements such that 
G fq {a, b, c} = 0. If we put H = G U {a, b, c}, we can define on H 
the following hyperoperation o: 

(H, o) = 

x o y = {xy} 

x o a  = a o x  = { a } , x  o b  = b o x  = {b} 

x o a  = a o x  = {b} , x  o b  = b o x  = {a} 

x o c = c o x  = {c} 

a o a  = b o b  = {a}, a o b  = b o a  = {b} and 

c o c =  { c } , a o c = c o a  = c o b = b o c - - - -  H.  

if (x, y) �9 G2; 

if x � 9  

i f  x �9 G - g ;  

i f x � 9  

It is easy to verify that (H, o) is a hypergroup. Moroever if 
u w) �9 H 2 - {(a ,a) ,  ( a ,b ) ,  (b ,a) ,  (b,b)}, we put z *  w = z o w 
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and a ,  a = b *  b = {b}, a *  b = b *  a = {a}, then the hypergroup 
( H , * )  is isomorphic to (H, o). 

We denote with H '  the symetric hypergroup of H.  

EXAMPLE 3.2. In the same hypothesis of example (3.1), we can 
define on K = G U {a, b, c} the hyperoperation | in the following 
way: 

(K, | = 

x | y = {xy} 

a |  = {a}, b |  = {b} 

x |  = {a},x |  = {b} 

x |  = {b}, x |  = {a} 

x | 1 7 4  ={c}  

a |  = a |  { a } , b |  = b |  = {b} and 

c |  { c } , a | 1 7 4  = c | 1 7 4  K. 

if (x, y) �9 G2; 

i f x � 9  

i f x e g ;  

if x � 9  

if x �9 G; 

One can easily prove that (K, | is a hypergroup. 

We denote with K ~ the symmetric hypergroup of K.  

We give some preliminary results, which will be very useful for 
determining the hypergroups H in the class C(H,  S ( H ) ,  3), such that 

I e ( n ) l  = 4 .  

PROPOSITION 3.3. I f  H is a hypergroup such that S ( H ) r 1 6 2  

and (x, a, b) �9 S ( H ) •  M ( H ) x  M ( H )  is a tern of  elements such that 
xa  = {b} (respect. ax ---- {b}), then, Vz E M ( H ) ,  one has lazl = Ibzl 

(respect. Izal = Izbl). 

Proof. If a = b, then the thesis is obvious. Hence we suppose 
that a ~ b  and let fx  " aZ ~ bz and fx- i  " bz ~ az be the functions 
such that: 

fx(U) = xu,  f x - l (V)  = x - l v ,  Yu �9 az, u  �9 bz. 

The two functions are well defined, because xu  C x (az )  = 
(xa)z  = bz and x - I v  C x - l ( b z )  = ( x - l b ) z  = az. 
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Besides we have ( fx- '  o fx)(U) = fx - l ( fx (U))  = f x - i ( x u )  = 
X - I ( X u )  = ( X - I x ) u  = eU ~" U and analogously (f~ o fx- i ) (v)  = v .  

Therefore fx and fx-I are bijective and laz] = ]bzl. 

We prove now the following: 

PROPOSITION 3.4. I f  H ~ C(H,  S (H) ,  3) and IP(H)I  = 4, then 
'Ca ~ M(H) ,  I S ( n ) a [ ~ 3  and l a S ( n ) l ~ 3 .  

Proof If there exists a ~ M ( H )  such that IS(H)al = 3, then 
S(H)a  = M ( H )  and so there exists {x,y} C S(H)  such that xa  = 
{b}, ya = {c}. 

Owing to the proposition (3.3), we have [hal = laal = Ical 
and if laal = 1, then a ~ SR(H) = S (H)  (see [5]) and this fact 
is impossible. While, if laal > 1, since IP(H)I  = 4, we obtain 
b ~ SR(H) = S (H)  or c ~ SR(H) = S (H)  and this is again 
impossible. Consequently [aS(H)I-r 

In the same manner, we can prove that laS(H)Ir  

PROPOSrI'ION 3.5. Let H ~ C(H,  S ( t l ) ,  3), M ( H )  = {al, a2, a3} 
and IP(H)[  = 4. I f  3i ~ 13 = {1,2, 3} such that S(H)ai~{ai}  then 
u E $3, qr E 13 such that [ara,,~r)l = 1. 

Proof  Let x ~ S ( H )  such that x a i  = {ak} with i r  Assuming 
that {aj} = M ( H ) -  {ai,ak}, by proposition (3.3), we have laiail = 
lakail, laiakl = lakakl, laiajl = [akajl. If there exists cr ~ $3 such 
that lara,~(r)l > 1, Vr ~ 13, then, supposing that ,7 is the identity of 

$3, we obtain laiail = lakail > 1, lajajl > 1, [akak[ = laiak[ > 1. 
Hence IP(H)I  > 5, which is a contradiction. 

We obtain the same conclusions, if we change in all the possible 
ways the permutation cy in $3. 

As an immediate consequence of the previous proposition, we 
have the following: 

COROLLARY 3.6. Let H ~ C(H,  S(H) ,  3), M ( H )  = {al, a2, a3} 
and [P(H)I  = 4. I f  there exists cr ~ $3 such that u ~ 13, [aiaa(i)l > 
1, then S(H)ai = {ai}, Vi E 13. 

PROPOSITION 3.7. Let H ~ C ( H , S ( H ) , 3 )  and IP(H)I  = 4. 
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I f  a ~ M ( H )  is such that I s ( n ) a l  = 2 (respect. l a S ( n ) l  = 2), 
then a S ( H )  = {a} or a S ( H )  = S ( H ) a  (respect. S ( H ) a  = {a} or 
a S ( H )  = S ( H ) a ) .  

Proof  By proposit ion (3.4), we  have aaS(H) l r  

If laS(H)I  = 1, then, obviously,  a S ( H )  = {a}. Then, suppose  
laS(h)l = 2 and a S ( H ) r  

By hypothesis ,  we  can suppose  that M ( H )  = {a, b, c}, S ( H ) a  = 
{a, b} and a S ( H )  = {a,c}. We have S ( H ) c  = {c} and b S ( H )  = b, 
so there exists {x,y} C S ( H )  such that xa  = {b}, ay = {c} and 
therefore {c} = xc  = x (ay )  = (xa )y  = by = {b}, that is a 
contradiction. Consequent ly  a S ( H )  = S( H)a .  

Remark 3.8. If  H ~ C(H,  S ( H ) ,  3), I P ( H ) I  = 4 and M ( H )  = 

{a, b, c} then proposit ion (3.7) al lows us to distinguish the fol lowing 
four cases: 

1) S ( H ) a  = a S ( H )  = {a,b} and S ( H ) c  = c S ( H )  = {c}; 

2) S ( H ) a  = {a, b}, S ( H ) c  = {c} and z S ( H )  = {z}, Yz ~ M ( H ) ;  

3) a S ( H )  = {a, b}, c S ( H )  = {c} and S ( H ) z  = {z}, Yz 6 M ( H ) ;  

4) S ( H ) z  = z S ( H )  = {z}, Yz ~ M ( H ) .  

(3) 
(4) 

In the fol lowing,  we shall deal with the cases (1), (2). The case 
can be treated as the case (2). The authors will s tudy the case 
in a paper  in preparation (see [4]). 

We begin this study with two lemmas:  

LEMMA 3.9. Let H ~ C(H,  S ( H ) ,  3) such that M ( H )  = {a, b, c}, 
I P ( H ) I  = 4, S ( H ) a  = {a, b} (respect. a S ( H )  = {a, b}) and S ( H ) c  = 
c S ( H )  = {c}. Therefore we have: 

1) ca = cb (respect. ac = bc) and laa[ = Iba[ = lab[ = Ibb[ = 
Iccl = l, lacl = lbc[ > I, [cal = [cb[ > 1; 

2) cc = {c}; 

3) S ( H )  U { a , b }  C c a = c b  (respect. S ( H )  U { a , b }  C a c = b c ) ;  

4) S ( H )  n aa = S ( H )  n a b  = S ( H )  N b a  = S ( H )  n bb = r 
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5) {c} r {aa, ab ,  ba ,  bb}; 

6) c a  = cb  = H (respect .  a c  = bc  = H ). 

P r o o f  1) There exists x ~ S ( H )  such that x a  : {b} and so 
ca  = ( c x ) a  = c ( x a ) =  cb.  Moroever,  by proposit ion (3.3), we  have 

laal = Ibal,  labl = Ibbl,  lacl = Ibcl. 

If laal = Ibal > 1, since I P ( H ) I  = 4, we  obtain labl = Ibbl = 

lacl = Ibcl = 1, Icbl = Ice[ > 1 and Ical = 1, but this is an 
absurdity, because ca  = cb .  

Analogously,  we  obtain a contradiction, if we suppose  that 

labl = Ibbl > 1. Therefore,  we have lacl = Ibc[ > l ,  laal = Ibal = 

labl = Ibbl = Iccl = 1, Ical = Icbl > 1. 

If  we assume that a S ( H ) =  {a, b}, one can show that a c  = bc  

and that the same equali t ies on the sizes of  the hyperproducts  are 

valid. 

2) Clearly I S ( H )  : S t a b t . ( a ) ]  = I S ( H ) a l  = 2 and so IS(H)I  > 2. 
Now, if x ~ c c n S ( H ) ,  then we have S ( H )  = S ( H ) x  C S ( H ) c c  = cc  

and this is impossible  because,  by (1), Icct = 1. 

Besides,  if cc  = {a}, taking x ~ S ( H )  such that x a  = b we 
obtain ( x c ) c : ~ x ( c c ) ;  while if cc  = {b}, we  have ( x - l c ) c s ~ x - l ( c c ) .  In 
both cases, we  arrive at a contradiction and consequently,  cc  = {c}. 

An analogous p roof  can be done, if a S ( H )  = {a, b}.  

3) From (1), ca  = cb ,  and thus we have 

S ( H )  U { a , b }  C H ---- c H  = c ( S ( H )  U M ( H ) )  = 

= c S ( H )  U ca  U cb  U c c  = {c} U ca  U cb  U {c} = {c} U ca ,  

and finally S ( H )  U {a, b} C ca  = cb.  

In a similar way, it is possible to prove  that if a S ( H )  = {a, b} 
then S ( H )  U {a, b} C a c  = bc.  

4) As a consequence  of  (3), we have {a,b} C ca  = cb  and if 
we  suppose  that S ( H ) N  a a r  taking in account  that laal = 1, we  
obtain a a  C S ( H ) ,  whence  aa  C ( c a ) a  = c ( a a )  C c S ( H )  = {c}. 
Therefore  {c} = aa  C S ( H ) ,  which is impossible.  

Thus S ( H ) n  a a  = 0. Analogously,  one can prove that S ( H ) n  

a b  = S ( H )  N b a  = S ( H )  N b b  = 0. 
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5) From (3), S ( H )  LJ{a,b}  C ca = cb and if we  suppose  that 
aa = {c}, then obtain { a , b , c }  = S ( H ) a U a a  C ( S ( H )  U { a } ) a  C 
(ca)a  = c (aa)  = cc. 

If ab = {c}, then { a , b , c }  = S ( H ) b U a b  = ( S ( H )  U {a})b C 
(ca)b  = c(ab)  = cc. 

If ba = {c}, then { a , b , c }  = S ( H ) a t . J b a  = ( S ( H )  U { b } ) a  C 
(cb)a  = c (ba)  = cc. 

If bb = {c}, then { a , b , c }  = S ( H ) b L J b b  = ( S ( H )  U { b } ) b  C 
(cb)b  = c(bb)  = cc. 

In every case, we  obtain a contradiction,  since Iccl = 1. 

6) From (5), {c} N ( S ( H ) a  t_Jaa U b a )  = 0 and, since c 
H = H a  = ( S ( H )  U M ( H ) ) a  = S ( H ) a  U aa t2 ba t.J ca,  w e  obtain 
c ~ ca and, by (3), we deduce ca = cb = H .  Under the hypothesis  
a S ( H )  = {a, b}, one proves that ac  = bc = H .  

We need another lemma: 

LEMMA 3.10. I f  H ~ C ( H ,  S ( H ) ,  3), M ( H )  = {a, b, c}, S ( H ) a  = 

{a, b} and S (H)c - - - - {c}  (respect. a S ( H ) =  {a, b} and cS (H) - - - - {c} ) ,  

then S tabL (b )  = S t a b L ( a )  (respect. S t a b R ( b )  = S tabR(a ) ) .  P r o o f  

If x E S tab t . (b ) ,  then x b  = b, x c  = c, and, since a ~ x H  ---- 

x ( S ( H )  t_J M ( H ) )  = x S ( H )  LJ xa  t_J x b  LJ x c  ---- S ( H )  LJ x a  t_J {b, c}, 

we have x a  = {a} and so x ~ S tab l . (a ) .  Therefore  S tab t . (b )  C 

S tabL (a ) .  In the same way, one can prove the other inclusion and 
thus S t a b L ( a )  = S tabL(b ) .  

If a S ( H )  = {a ,b}  and c S ( H )  = {c}, then we obtain, with 
similar reasonings,  S tabR(b )  = S t a b R ( a ) .  

Using the previous lemmas we get: 

THEOREM 3.11. I f  H ~ C ( H ,  S ( H ) , 3 ) ,  M ( H )  = {a ,b , c} ,  
I P ( H ) ]  = 4, S ( H ) a  = a S ( H )  = {a ,b}  and S ( H ) c  = c S ( H )  ---- {c}, 
then H is isomorphic  to one o f  the hypergroups o f  example  (3.1). 

Proo f  By L e m m a  (3.9), aa ~ {{a}, {b}}, cc = {c} and ca --  

cb = H = ac = bc. 

Let  aa  = {a}. There exists ( x , y )  6 S ( H )  2 such that x a  = 

{b} = ay,  and so ab = a (ay )  = ( a a ) y  = ay  --: {b}, ba = ( x a ) a  = 

x ( a a )  = x a  = {b}. From lemma (3.10), y ~ S ta b R(b )  --- S t a b R ( a )  
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and thus bb = ( x a ) ( a y )  = ( x ( a a ) ) y  = ( x a ) y  = by = {a}. Bes ides  if 
S t a b L ( a ) -  S t a b R ( a ) ~ O ,  taking x ~ S t a b L ( a ) -  S t a b n ( a ) ,  we obtain 
x a  = {a} and a x  ---- {b} and so {a} = aa = a ( x a )  = (ax )a  = ba = 

{b}, which is impossible.  In consequence  S t a b L ( a ) -  S t a b R ( a ) =  13. 

Analogously  one can show that S t a b R ( a ) -  S t a b t . ( a ) =  13, and 

so, S t a b L ( a )  = S t a b R ( a ) .  If we put g = S t a b L ( b )  = S t a b L ( a )  = 

S t a b R ( a )  = S t a b R ( b ) ,  as I S ( H )  : g] = IS (H)a[  = 2, we  can 
affirm that H is i somorphic  to one of  the hypergroups constructed 
in example  (3.1). 

We arrive at the same conclusion if we start from aa = {b}. 

At last we  prove  

THEOREM 3.12. I f  H ~ C ( H ,  S ( H ) ,  3), M ( H )  = {a, b, c}, 

I P ( H ) I  = 4, S ( H ) a - - - { a , b } ,  S ( H ) c  = c S ( H ) =  {c} and a S ( H ) =  

{a}, b S ( H ) - - { b } ,  then H is i somorphic  to one the hypergroups  o f  

example  (3.2). 

Proof. We prove  in successione the fol lowing points: 

1) aa = ab  = {a}, ba = bb -- {b}, cc = {c}; 

2) ca = cb = ac  = bc  = H .  

(1) From lemma (3.9) (1), (2), (4), (5), we  have laal = 1, cc  = 

{c}, S ( H ) f 3  aa = 13 and aavs If aa  =.{b},  taken x ~ S ( H )  such 
that x a  = {b}, one has ab = a ( x a ) =  ( a x ) a  = aa  = {b}, and, using 
the lemma (3.10), it fol lows that ba = ( x a ) a  = x ( a a )  = x b  = {a}, 
whence  ( a a ) a ~ a ( a a ) ,  which is absurd. Therefore  aa = {a}, and 
consequent ly  ab ---- a ( x a )  -- ( ax )a  = aa  = {a}, ba = ( x a ) a  = 

x ( a a )  = x a  = {b} and bb = b ( x a )  = ( b x ) a  = ba = {b}. 

(2) By lemma (3.9) (6), we have ca = cb = H .  Moreover ,  for 
(1), H = a H  = a ( S ( H )  U M ( H ) )  = a S ( H )  U aa  LJ ab LJ ac  = {a} U ac  

and so S ( H ) U  {b,c} C ac.  In the same way, one can prove  that 
S ( H )  U {a,c} C bc. Besides,  if ac  = {b ,c}  t.J S ( H )  and bc  = 

{a, c } U S ( H ) ,  we obtain respectively ( a a ) c ~ a ( a c ) ,  and (bb)cvs  

Therefore  ac  = bc = H .  

Finally, assuming that g = S t a b t . ( a )  = S t a b L ( b ) ,  we have 
[ S ( H )  �9 g] = I S ( H ) a l  = 2 and H is isomorphic to one of  the 
hypergroups  of  the example  (3.2). 
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