
RENDICONT1 DEL C|RCOLO MATEMATICO DI PALERMO 
Serie II. Tomo XLI (1992), pp. 5-28 

Dedicato a Benedetto Pettineo 
per il Suo 70 ~ compleanno 
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I1 lavoro consiste in un tentativo di difesa della classica teoria di Fourier della 
propagazione del calore, che ~ stata accusata di produrre il paradosso secondo il quale 
il calore si propaga con velocith infinita. Lo scopo ~ quello di provare che questa 
accusa, quando la teoria di Fourier venga correttamente interpretata, ~ infondata. 

This paper is concerned with an attempt of defence of the classical 
theory of Fourier of heat propagation, which has been accused to 
produce the paradox according to which heat propagates with an 
infinite speed. The aim is to prove that this accusation, when the 
Fourier theory is properly interpreted, is unfounded. 

The author is particularly happy to dedicate this paper to his dear 
friend Benedetto Pettineo on the occasion of his 70th anniversary. His 
esprit de finesse will make him to appreciate what is written (...and 
what is not written) in this paper. 

1. The paradox of the Fourier theory. 

The Fourier theory of heat conduction [4] has been, during this 
last half century, subjected to a very serious accusation and alternative 
theories, starting from 1949 with a celebrated paper by Carlo Cattaneo 
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[1], have been proposed. The criticism brought to Fourier's theory 
consists mainly in the remark that, according to this theory, the speed 
of propagation of heat should be infinite. This is contradicted by the 
most elementary experiences. An excellent survey of the criticisms to 
Fourier and of the proposed alternative theories until 1989 can be 

found in the paper [8] by D.D.Joseph and L. Preziosi. 

In order to examine concretely this subject we restrict ourselves 

to a very simple case. We .consider an indefinitely long rectilinear wire 
which we represent by the real axis such that at the instant t = 0 the 

temperature, in a fixed system of units, is 1 for x = 0 and is 0 for xr 
We use the following notations: 

u(x, t) =temperature of the point x at the instant t _> 0; 

q =thermal flux; 

X =coefficient of thermal conductivity; 

p =density of the wire; 

'7 =specific heat of the wire. 

The Fourier theory hinges on two axioms. The first of them is 
originated from the experimental observations according to which: i) 
the heat flows from a point x of the wire to acolder  one x+dx;  ii) the 
amount of heat which flows from z to x + dx in the unit of time, i.e. 
the thermal flux, is proportional to the difference of the temperature in 
x and in x + dx and inversely proportional to dx, i.e. 

u(z, t) - u(z + dz, t) 

q =X dx 

Hence 

(1.1) q = - X  Ox " 

Eq.(1.1) expresses the first of the mentioned axioms. 

The second axiom concerns the conservation o f  the quantity o f  

heat. Let us consider two points x and x + dx of the wire. The rate of 

heat in the interval of time from t to t + dt relative to the piece of wire 
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0 U  (z, z + dx), is given by the increment of the temperature ---~dt times 

the mass of (z, x + dx), i.e. pdz,  times the specific heat 7 of the wire. If 

the quantity of heat in (x, z + dz) is conserved, the rate of this quantity 

must be equal to the thermal flux which enters in z diminished by 

the thermal flux which comes out from z + dz, this difference being 

multiplied by dr: 

0u 
~p--zT-, dx = q(z , t )  - q(x + dx, t). 

o~ 

Then 

0q 
(1.2) "tP-~- + ~ = 0. 

Eq. (1.2) expresses the axiom of  the conservation o f  the quantity 

o f  heat. 

From (1.1) and (1.2), eliminating q and introducing the coefficient 

D =  X 
~P 

we get the classical Fourier equation 

02u 1 Ou 
(1.3) O:c 2 D Ot = O. 

From the theory of this equation and knowing that u(x ,0)=  0 
(z~a)), u(0, 0) = 1, we obtain 

1 
e - ,~  (t > 0)(~). (1.4) u ( x , t ) =  2 ~  

(l)  It is obvious that for z~'O 

(,) lim u(x ,  t) = 0 
t - , 0 *  

uniformly in any closed interval which does not contain x = 0. 
The condition u(0,  0) = 1 is satisfied in the sense that for any interval (a,  b) such that 
a < 0 ,  b > 0  

b P 

(**) lira ] u(x, t)dx = 1. 
t - . o *  
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From (1.4) we see that for Ixl as large as we wish and for any 
t > 0 we have u(x, t) > 0. Hence heat has propagated from x = 0 to 

x in an interval of  t ime no matter how small. This brings to the 

conclusion that the speed of  propagation of  heat is infinite. 

Cattaneo does not hesitate to call this <<un aspetto paradossale 
della teoria classica della propagazione del calore>> ([1], p. 83) 

and reaffirms: <r sembra ben certo che l'immediatezza della 
propagazione calorifica a distanza sia, almeno in linea di concetto, 
paradossale>). ([1], p. 86). 

M.E. Gurtin and A.C. Pipkin, who, on their turn, have proposed 

in 1968 an alternative theory to Fourier's, write: <<This equation 
(i.e.(1.3)), which is parabolic, has a very unpleasant feature: a 
thermal disturbance at any point of  the body is felt instantly at every 
other point; or in terms more suggestive than precise, the speed o f  
propagation of  disturbances is infinite>>.. ([7], p. 113). 

D.D. Joseph and L. Preziosi write: <<The diffusion equation 
(i.e. (1.3)) has the unphysical property that if  a sudden change o f  
temperature is made at some point on the body, it will be felt instantly 
everywhere, though with exponentially small amplitudes at distant 
points. In a loose manner o f  speaking, we may say that diffusion gives 
rise to infinite speeds o f  propagation>>. ([8], p. 42). 

2. Alternative propositions to the Fourier constitutive laws. 

Cattaneo, after summarizing Fourier 's  theory, writes: <<Se nella 
teoria che abbiamo riassunto c'~ un elemento incerto, mi pare 
ragionevole ricercarlo nella validit~ generale ed incondizionata 
dell'equazione (1.1). ([1], p. 87). 

Conditions (*), (**) are equivalent to the following 

1Lm t)dx = ~(0) 
t O"~_h 

for any p E C~ and any h > 0. 
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Actually axiom (1.1) is a result of experimental observations 
hence it is inevitably conditioned by the physical nature of the material 
under consideration and by the degree of refinement of the performed 
measurements. 

Eq. (1.1) should be regarded like an approximation of the physical 
reality and for (1.1) a constitutive equation of the following kind 
should be substituted 

au 
(2.]) q = -x-b-~- z +R(z , t ; u )  

where R ( z , t ;  u) is a suitable mixed functional in the sense of Volterra, 
i.e. R is a functional of u in a given function class for any z and 

t(z  C ~ ,  t > 0). 

Cattaneo firstly assumes 

R _ 
c~ aq +~2 a2u 
X & a:c& 

where cr is a certain positive physical constant depending on the 

material under consideration. Afterwards he writes: <,approfitteremo 

della piccolezza del parametro cr per  trascurare il termine che contiene 

il suo quadrato, conservando peraltro il termine in cui cr compare al 

primo grado~ ([1], p. 93) and he assumes as constitutive equation 

au cr 8q 
(2.2) q = - X  az. x ot " 

From (1.2) and (2.2) he gets 

a 2u 2 o2u au 
(2.3) , , ~ p - - ~ -  - x ~ + x~p -~T  = o. 

This is a well known hyperbolic equation, the so called telegraph 

equation, which describes a waves propagation phenomenon where the 
propagation speed v is finite 

'1) ~ . 
cr,~p 

Different from Fourier's theory, the unknown function u(z , t )  is 

now determined, like a solution of (2.2), i f  both the functions u(O, z) 
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and ut(O,x) are known. Cattaneo in his paper [1] tries to give a 
physical explanation to this fact. 

A theory proposed by M.E. Gurtin and A.C. Pipkin [7] avoids 
this inconvenience by considering the past thermal history of the 
material system under consideration. Actually these Authors consider 
the following constitutive equations: 

t P 

(2.4) q(x, t) = - [  a(t - r)u~(x, T)dT 
J o o  

(2.5) 
t 

E(x,  t) = b + cu(x, t) + / ~(t - T)u(x, r)dT 

where b and c are constants and a(s) and ~(s) (0 _< s < + ~ )  sufficiently 
smooth functions connected with the past thermal history of the body; 
c and a(0) are supposed positive. 

The functions E(x,  t) and q(x,t)  are related through the equation 

0 0 
(2.6) ---~ E(x ,  t) = - O----~q(x, t) + f ( x ,  t) 

where f ( x , t )  is a known function which measures the interchange of 
heat between the material system and the external world. 

Equations (2.3),(2.4) are obtained from more general non linear 
constitutive equations, by a linearization process, where, assuming 

(2.7) 5 = sup {lu(x,t)- , ol + lux(x,t)l} 

(u0 is a suitable constant), it is supposed that any quantity having the 
order of magnitude of 0(5) can be considered like negligible ([7], p. 
124). From (2.5), by differentiating with respect to t and using (2.6), 
one gets 

0 
Ox q(x, t) + f ( x ,  t) = 

(2.8) t 

~'(t--T)U(X,T)dT. 
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By assuming / ~ ( a ) -  0, c = "7/9, f ( x , t ) -  O, from (2.8) one gets 
(1.2). Eq. (2.4) written like (2.1) gives 

R ( x ,  t; u) = X ~ - a ( s )ux ( t  - s )ds .  

Let us assume h > 0 and 

Then 

(2.9) 
= O < s < h  

a(s) 

0 s > h .  

lim Xu(x, t)  - e h-~ u~(x ,  t - 8)cl~ = 
h ~ O  + 

lim X u ( x , t ) -  X e-~-~ 
h-.-~O* 

u=(x,  t - her)dot =0.  

Hence, by assuming a(8) given by (2.9), the Fourier law (1.1) is 
a limiting case of  (2.4). On the other hand, by assuming 

X 2 - X  
a(s)  = exp - -  

(3" O" 87 

one easily obtains Eq. (2.2) of Cattaneo. 

By differentiating (2.4) once respect to t and once respect to x 
and differentiating (2.8) with respect to t one gets, eliminating q, 

- a(o)-5 -z2 + 

(2.10) t t 

L I~'(t -- T)Ut(X, T)dT--L a'(t -- T)Uxx(X, T)dT = ft(x,t). 

This is an integro-differential equation which assuming f ( x ,  t)  - 0 

contains as particular cases Eq. (1.3) [c = 0, a(0) = X, /~(0) = 7p, 
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~ P  a(O) = = D'(s)=O, a'(s)=O] and Eq.(2.3) c -  -~ , X, f~(o) 
"1 

O, a'(s) - 0~. If c > 0 the speed of propagation of heat is finite ~'(8) 
..1 

like in the case of the purely differential equation (2.3). 

It is known from the theory of integro-differential equations that 
in the case when the function 

o 0 

f - o o ~ ' ( t -  T)Ut(X, T)dT--  f o o a ' ( t  -- T)Uxx(X, 7")dT 

is supposed either known or negligible(2), no initial conditions are 
needed for determining a solution of (2.10). If this hypothesis is not 
assumed the problem of the existence and of the uniqueness of a 
solution of (2.10) is still open (see [3]). 

The theory of Gurtin and Pipkin is very attractive, however its 
application to practical problems looks very dubious.(3) 

We restrict ourselves to consider here the theories by Cattaneo and 
by Gurtin and Pipkin. Actually, in our opinion, the theories of Cattaneo 
and of Gurtin and Pipkin, proposed like alternatives to Fourier's, are 
the most outstanding. The one by Cattaneo because was the first and 
because substituted for the Fourier parabolic equation a hyperbolic one. 
The theory of Gurtin and Pipkin is important for its generality and for 
imbedding the problem into the context of hereditary phenomena. For 
other proposed theories we refer the reader to the paper [8] . 

3. Proposition for a correct interpretation of  Fourier's theory. 

When an experimenter measures by his instruments some physical 
quantity in a fixed system of units, the statement ~<the value of this 

(2) This hypothesis was assumed by Volterra in his theory of hereditary elasticity ([121, 
p. 92). 

(3) When the paper [7] by Gurtin and Pipkin appeared I informed about the proposed 
new heat theory a friend of mine who is an cnginccr, spccialised in projecting heating 
systems for new buildings, but who has a real interest in new theoretical advances. He 
looked startled and told me: ~How can f project the heating system for a building taking 
into account its past thermal history if the building has not yet been constructed? 
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quantity is ~,~ means that to the quantity under consideration can be 
attributed any value of the interval ( a -  e, a + e), where e is some 
positive constant, which depends on the degree of refinement of the 
instruments, which have been used for performing the measurement. 
More small is e more refined are the instruments. On the other hand, 

is expressed by some decimal number where the digits which follow 
the point are n. The positive integer n can be very large but is 

bounded and depends either on the computational facilities which the 
experimenter has at his disposal or on the accuracy he has chosen for 
his measurements. This implies that e is not less than 10 -n. Hence in 

Physics the statement ~a is equal to zeros, has a different meaning 
than in Mathematics, since it expresses only the fact that I, 1 < e. 
The positive number e must be regarded as a physical constant which 
should be determined before formulating any mathematical ny6clel of 
the physical phenomenon under consideration. This is practically done 
when in establishing the mathematical foundations of some physical 

theory it is stated that some quantity is negligible. This means that 
this quantity either cannot be detected by the instruments or a degree 
of accuracy has been chosen which is larger than the value of the 
quantity under consideration. The positive number e will be denoted 
as an upper bound for  negligibles. 

With this in mind we believe that the axioms that lay on the basis 
of Fourier's theory must be understood as follows: 

i) An upper bound E for  negligibles has been determined and fixed; 

ii) q + Xu~ is negligible, i.e. 

(3.1) ]q + Xu~[ < e; 

iii) Eq. (1 .2)holds .  

Of course even Eq. (1.2) could be interpreted in the sense of 
negligibles, i.e. 

(3.2) [ffput + q=] < e. 

But Eq. (1.2) is considered by Cattaneo, by Gurtin and Pipkin 
(who imbed it into a more general principle) and by others more like 
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a mathematical principle than like an experimental constitutive law, 

hence we leave it as an equation. In any case the next developments 

can be easily adapted to the case when (1.2) is replaced by (3.2). 

It is also to be observed that, for any fixed system of  units, e 

depends on the various physical constants which must be measured. 

However we are permitted to suppose that the units have been chosen 

in such a way that a unique e be considered. 

The proposed interpretation of Fourier's theory impli,es that it can  

be a p p l i e d  on ly  to ma te r ia l s  such  tha t  i), ii), iii) are satisfied. Of 

course one should expect that in a theory, where in its constitutive 

laws the concept of  negligible has been taken into account, its results 

be interpreted by considering the unknown variables, which the theory 

permits to calculate, determined up to the addition of  a negligible 

quantity. 

Unfortunately very often this is not the case. The criticisms to 

Fourier according to which his theory makes the heat to propagate 

with infinite speed are a shining example of  this attitude.d) 

We shall see in the next Section that, when the results of  Fourier's 

theory are properly interpreted, heat does not propagate with infinite 

speed, but,if e is not excessively small, rather slowly. This was known 

to Maxwell, who, as we shall see later, understood Fourier's theory in 

its correct meaning. 

4. The propagation of heat in a wire. 

Let us consider again the example of  a wire with a unitary heat 

(4) The Fourier theory of heat propagation is not the only one in Mathematical Phy- 
sics accused to provide unphysicai results. These accusations are a consequence of the 
fact that approximation assumptions made in establishing the constitutive laws are not 
maintened in interpreting the final mathematical results furnished by the theory. Another 
conspicuous example is provided by the mathematical theory of elasticity. Let us recall 
what A. Clebsch wrote about discrepancies between theoretical results of this theory and 
physical reality: ~On prend l'habitude d'attribuer ces diffrrences plutOt d une imperfec- 
tion de la thdorie qu',~ une irregularit6 dans son emploi. Serait-ce, par hasard., parce que 
cette confusion se produit malheureusement trop souvent, que la thdorie est si ddprecide 
dans certain milieux?~ ([2], p. 294). 



IS THE FOURIER THEORY OF HEAT PROPAGATION PARADOXICAL? 15 

source at x = 0. We wish to calculate how long a point z;,~0 of the wire 
remains not heated. We assume that the temperature u(z , t )  is given 

by (1.4). Of  course this assumption should be justified since being 
now (1.1) replaced by (3.1), we don ' t  know whether  under this new 

hypothesis u (z , t )  could still be represented by (1.4). We shall return 

on this point in Sect.8. 

The problem consists in determining for every zr  some t(z) > 0 

such that for 0 < t < t(z) we have 

(4.1) u (z , t )  < E. 

Since we may (we must!) suppose t _> s, (4.1) is satisfied if 

I e -4-~t < 6, 

hence 
Z 2 

4Dt 
_ _  < log(2E ~ V/-~) .  

We can suppose e 3 < (4riD) - l  because of the smallness of e. It 

follows that at least until the instant 

{ 1 } 
(4.2) t = - - ~ - -  log(2E~V/-~)  z 2 

the point z is not heated. 

Let us consider in the z, t plane the parabola P, of Equation (4.2) 
and draw the parallel to the z-axis at a distance t. From the points 
where this parallel meets P,  we draw the perpendiculars to the z-axis. 

They meet  this axis in the points - z  and z and the part of  the wire 

exterior to ( - z ,  z) remains not heated at least until the instant t. If  we 

assume 0 < e' < E the parabola Pe,, corresponding to E' is less concave 

than P~ and the corresponding segment  ( - z ' ,  z') contains ( - z ,  z), hence 

the part of  the wire not heated until t decreases with E. If E ~ 0 the 

parabola PE flattens itself on the z-axis and the propagation of the heat 

becomes instantaneous. But the limiting case s = 0 is unrealistic and 

cannot correspond to an actual physical situation. 
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5. On the compatibility of the criticisms to the Fourier theory 
with the assumptions made for deriving alternative theories. 

We examine now the logical connections between the criticisms 
to Fourier and the hypotheses assumed by the Authors of alternative 
theories for deriving their axioms. We restrict ourselves ofily to the 
theories proposed by Cattaneo and by Gurtin and Pipkin. However 
similar argtiments can be used in connection with the work of the 
Authors of other approaches,especially when they derive linearized 
theories(S). 

We have seen that Cattaneo in deriving his constitutive equation 
(2.2) supposes that cr 2 is negligible and retains only a term containing 

or. Gurtin & Pipkin in deriving a linear theory from a non linear one 
assume that any quantity which has an order of magnitude like o(/5), 

with 6 given by (2.7), is negligible. 

Hence, according to Cattaneo, cr 2 is negligible ([1] p. 93) and, 

(5) See for instance [11] from p. 265. 
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assuming in (1.4) z = 1, t = (4D)-10., 

= " ~ "  e 

is not negligible ([1] p. 83, p. 86). For Gurtin and Pipkin ~i§ (a > 0) 
is negligible ([7], p. 124) and assuming in (1.4) z = 1, t = (4D)-lt5 

( , )  1 

is not negligible ([7], p. 113). 

As a numerical example consider cr = t5 = 0.01, c~ = 1. 

according to Cattaneo, Gurtin and Pipkin, 

0 .2 = t~ 2 = 10 -4  ~ negligible; 

Then, 

1 _ •  1 
- - e  a 

not negligible(6). 

I 
- - - e - r  = 2.09882811567 • 10 -43 

6. M a x w e l r s  interpretation of  Fourier's  theory. 

In his book [10] James Clerk Maxwell studies thoroughly Fourier's 
theory of heat propagation and he exactly perceives in what sense this 

theory must be understood. It seems that, unfortunately, the analysis of 
Maxwell of Fourier 's theory has been either forgotten or overlooked 
by the Authors who criticize Fourier. A proof of this is, for instance, 
what Joseph and Preziosi write in their paper concerning Maxwell: 

r book ~Theory of  Heat~ is based on diffusion and Fourier's 
law. He did not  note that diffusion is associated with infinite speed of  
propagations([8], p. 52).(7) 

(6) ~And why beholdest thou the mote that is in thy brother's eye, but considerest not 

the beame that is in thine owne eye?~, 
(The New Testament: The Gospel according to S. Matthew, Chap.VII: 3). 

(7) Bold-face in this and in the next Maxwell statements is ours. 
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This is not true. Maxwell was very well aware of the fact that 
propagation of heat, according to Fourier, has theoretically an infinite 
speed, but he was able to understand and to exactly describe the real 

meaning to be attached to this theory. Let us follow what Maxwell 

writes in his book ([10], p. 238-240). 

,The discussion of this problem is the subject of the great work 
of Joseph Fourier... The temperature of every point of the body at a 
given time is supposed to be known, and it is required to determine 
the temperature of any given point P after a time t has elapsed... In 
calculating the temperature of the point P, we must take into account 
the temperature of every other point Q, however distant, and however 
short the time may be during which the propagation of heat has been 
going on. Hence, in a strict sense, the influence of a heated part 
of the body extends to the most distant part of the body in an 
incalculably short time, so that it is impossible to assign to the 
propagation of heat a definite velocity. The velocity of propagation of 
thermal effects depends entirely on the magnitude of the effect which 
we are able to recognize; and if there were no limit to the sensibility 
of our instruments, there would be no limit to the rapidity with which 
we could detect the influence of heat applied to distant parts of the 
body. But while this influence can be expressed mathematically 
from the first instant, its numerical value is excessively small... The 
sensible propagation of heat, so far from being instantaneous, is 
excessively slow process and the time required to produce.., change 
of temperature.., is proportional to the ~quare~ of the dinear 
dimension~,. 

These ideas of Maxwell are exactly the ones we have followed in 
Sections 3 and 4 of this paper. 

7. A problem of Analysis: A generalized Cauchy problem for the 
heat equation. 

The mathematical Analysis carried out in this Section will be used 

in the next one to prove that the classical Fourier solution is admissible 
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for describing heat propagation. 

Let Sr  be the strip of the x, t plane defined by 

- e c < x < + ~ ,  0 < t < T  ( T > 0 ) .  

Assume p >_ 0 and let 91p be the function class of real valued 
function f (x ,  t) defined in Sr enjoying the following property: for each 
f E 91p two constants c,/3 exist, such that 

c > 0  0 < / 3 <  l, 
(7.1) 

If(x,t)l ~ ct-~ forlxl ~ p. 

Let Up be the class of real valued functions U(x, t) defined in ST 
enjoying the following properties: 

i) U(x,t) E C~(Sr); 

ii) U,(z, t) belongs to 91p; 

iii) U(z,t) and U**(x,t) - D-lUt(z , t )  belong to 910. 

Let a > 0 be a positive real number arbitrarily given. Let /~ (B) 
be a real valued measure function defined in the e-ring of the Borel 
sets of the real axis, such that ~ (B) = 0 for any B C IIq\(-a, a). 

We consider the following Generalized Cauchy Problem for the 
heat equation: 

Given a function f (x ,  t) E 91o, belonging to C~ and the above 
considered measure I~(B), to find a function U(z, t) E Up (for any 
p > a) such that 

(7.2) U**(x, t) - D-~Ut(x, t) = f(x,  t) in Sr 

(7.3) lin~ f h f h t J-h~(x)U(x't)dx = h~~ 

for each ~o(x) E C~(R) and each h > a. 

THEOREM. The above problem has one and only one solution and 



20 GAETANO FICHERA 

it is given, for  (x, t) E S t ,  by 

(7.4) 

1 f+~  -(x - -  ~ ) 2  
U(x, t) - 2 ~  J_ exp 4Dr d#( 

o o  

2v/-4 (t - -r)k _ f ( ( ,  T )exp  d~. 4D(t - T) 

By using classical results of the theory of heat equation we see 
that U(x, t) is a solution of (7.2) which belongs to C~(Sr)  (see [6] 
chap. XXIX; [5]). 

Set 

1 f+= -r - -  ~ ) 2  (7.5) u(x, t) - 2 ~  _ exp 4Dt d#(, 
oo 

(7.6) v(x, t) = - - -  
D~ r t dr f+o~ - ( x  - ~)2 

- .  f(( ,  T) exp 
2V~ (t - r)r' J-  ~c 4D(t - T) 

dg. 

We have 

(7.7) lu(x,t)l  <_ 2 ~  _ dl#l, 

(7.8) 

Iv(x, t)l < - -  
c D � 8 9  t dr +f~ - ( x -  ~) 2 
2x/~ -- ~ exp d~ = 

T3(t -- r)~ 4D(t - T) 

cD ~ t d r  "f_? 2X/~ - ~  exp - ( (  - -  x ) 2  ( - -  X 
4D(t - T) d 2x/D(t _ T) 

cD 1 tl_~. 
2 1 -  3 
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(7.9) 

Iv=(x,t)l= 4v/-~- ~ 

cD�89 i t  dr :+co 

< 2v/- ~ - j -co - -  T ~ ( t  - -  T)-f  

< CD�89 ~ ,o [ dT__ , /(+co 
- r O ( t  - r ) r  Jo 

cD'} f t  dr 

x/~ Z r ~ ( t -  r)+ " 

(t - r)~ d_ f(~, r)(x -- ~)exp 4D(t - T) 
c o  

[ ( - x l  exp - ( ~ -  x)Ed~ 
2D(t - T) 4D(t - T) 

8 - - 8  2 
exp ds = 

2D(t - 7-) 4D(t - T) 

(7.10) 

1 
Moreover for p > a and Ixl _> p, assuming ~ < ), < 1, 

I I - 

lu=(z, t)l < 4 ~x/-~-3t'} -x J_co Ix - ~12x-I t ~ 

- - (Z  --  ~)2 

�9 exp 4t dl#~l 

(4D)0 x exp - ) ,  1 +fco 

_< 4 ~V/-~-~-~t~__x (p_ a)2~_i J_co_ diN. 

From inequalities (7.7), (7.8), (7.9), (7.10) 
U(x, t) C llp for any p > a. From (7.8) we deduce 

(7.11) lim v(x,t) = 0 
t-*O* 

it follows that 

uniformly with respect to x. On the other hand 

+h +co 

- h  

where 

Since 

1 J_f+h~ --(X -- ~)2 

r  2 ~  h 4Dr 
dx. 

lim r t) = p(~) ( - h  < ~ < h); Ir t)l < max lta(x) I 
t-,o* -- [-h,h] 
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([6], p. 296-299; [5] p. 24), we have 

+h +h 

l imf_  ~ o ( x ) u ( x , t ) d x = f _  ~o(x)d#. 
t-,O* h h 

From (7.11), (7.12) we deduce (7.3). The proof of the existence 
is now complete. Let us prove uniqueness. Since the function class 
where our problem is considered is linear we need to prove that if 
U is a solution in this class such that /~(B) = 0, f ( x ,  t) = O, then U 
vanishes identically. It is convenient to set 

D�89 1 exp 
r(z,t;( ,  r) - 2 v / ~  (t - r ) �89  

0 

- ( z  - ()2 

4D( t  - T) 
for t > r  

for t < r  

L U  = U~z - D - l U t  . 

oOO 
Let r t) be a function of C (St) i.e. of class C ~ in ST and 

with a bounded support contained in ST. Set for (x, t) E Sr 

(7.13) v(x,t)=-ft drf_oo r  r )F(( ,  7-; z,t)d(. 

The function v(x, t) enjoys the following properties ([5], p. 28): 

1) v ( z , t )  E C ~ 1 7 6  

2) L*v = v~x + D - l v t  = r 

3) tim v ( x , t )  = 0  
t---,T- 

uniformly with respect to x E Uq. 

Let us consider for h > a and 0 < cr < T the domain 
Rha : - h  < x < h, cr < t < T .  The Green identity in Rh~ is the 
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following: 

(7.14) 

ffRhoUL*vdzdt-ffR~o vLUdzdt= 

f~ F = U(h, t)v~(h, t)dt - j~, U(-h, t)v~(-h, t)dt 

- U~(h, t)v(h, t)dt + jo UA-h, t)v(-h, t)dt 

U (z, T)v(x, T)dx. 
- --D h U(z ,  e ) v ( z ,  e ) d z  + --~ h 

We have 

I f_iu(x, r c~)dxl < - 

If_ h O)]dx + f h O)dx U(z, cr)[v(z,  or) - v(:r,  U(:r ,  cr)v(z,  
h h 

I/ < 2chef -~ max [vtlcr+ U(x, cr)v(x,O)dx 
- -  ~ t E I - h , h ]  

t~to,r] - h  

Hence 
h / i  

lim [ U(x, a)v(z, a)dx = O. 
a---.O* J_h 

From (7.14) we deduce for r ~ 0 § and for the assumptions on U 

and v 

(7.15) 

f f U~bdzdt = 
"J R~o 

T T 
= ~ U(h,t)vz(h,t)dt- ~ U(-h,t)vx(-h,t)dt 

T T 

- ~ v~r162 + Jo V~r 

with an obvious meaning for RhO. 
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Let k be such that supp r C Rk0. From (7.13) we deduce 

D'r , - ( x  - k) 2 
<_ - - ~ - T r  maxR,0 Ir exp 4DT for x > k 

Iv(x,t)l D�89 , - ( x + k )  2 

_< - - ~ - T r  maxn~0 Ir exp 4DT for x < - k  

D i  
< -----~-~ T�89 max levi exp - ( x  - k) 2 for x > k 

M(z, t)l - ~ n~o 4DT 
D�89 , - ( x  + k) 2 

_< - ~ - - T r  maxn,0 1r exp 4 D T  for x < - k .  

From (7.15) for h ~ +o~ we deduce 

fsrU(x, t)r  t)dxdt = 0 

which implies, for the arbitrariness of  r  U = 0 in ST. 

Let us observe that the generalized boundary condition (7.3) 

reduces to the classical one if #(B) is absolutely continuous and its 

derivative #'(x) is a continuous function. In this case U is continuous 

in ,~r. 

8. Admissibility of the Fourier solution for describing the heat 
propagation. 

Let us now consider the propagation of heat in a wire, in the 

hypothesis of  a general distribution of  temperature, whose sources are 
represented by the measure function #(/3) considered in the previous 

Section. The particular case of a unique unitary source in the point 

x = 0 corresponds to the case when # is a Dirac measure with a unit 

mass concentrated in the point x = 0. 

Let us denote by U(x,t)  the temperature corresponding to this 

general distribution of  temperature for t = 0. The existence of  U(x, t) is 

assumed as an axiom of  physical evidence. From the analytical point 

of  view we shall assume the very liberal axiom according to which U 
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belongs to any class Up for any p > a. Moreover we suppose that (7.3) 
is satisfied. 

Let us now suppose that an upper bound e for negligibles has 
been fixed. We say that a function u(x, t) defined in ST is admissible 
for describing the heat propagation generated by the given measure # 
if we have in ST 

[U(z, t) - u(z, t)[ < e. 

This means that U and u are indistinguishable the one from the 
other. We shall call Fourier's solution the function u(z,t) given by 
(7.5). The next theorem proves that if to the material of the wire the 
Fourier postulates, as expounded in Sect.3, are applicable then the 
Fourier solution u(x, t) is admissible, i.e. u(x, t) is a solution with an 

actual physical meaning. 

THEOREM. Let us suppose that 

(8.1) [xUz+ql<pe (0_<p< 1) 

(8.2) qpUt + q~ = O. 

/f 
Ir X "l p T < - -  

the Fourier solution (7.4) is admissible in ST. 

Before proving this theorem we observe, having fixed e, that 
under the assumptions (8.1), (8.2) the Fourier theory, as proposed in 
Sect. 3, is supposed valid. We only remark that (8.1) is, from a strict 
analytical point of view, more stringent than (3.1). From the physical 
point of view (3.1) and (8.1) should be considered equivalent since 

e and pe (0 _< p < 1) are indistinguishable. The reason why we use 
(8.1) is purely technical and, on the other hand, it has the advantage 

to include the classical Fourier theory assuming p = 0. 

Set 

(8.3) F(z, t) = xUx(z, t) + q(z, t), 
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we have in ST 

(8.4) IF(x, t)[ _< pe. 

From (8.2) and (8.3) we get that U satisfies (7.2) when 

(8.5) f(x, t) = 1F~(x,  t). 
X 

From the assumptions on U it follows that f(x, t) is Coo in ST 
and belongs to ~0. Hence we have 

U(x, t) = u(x, t) + v(z, t), 

where u and v are given by (7.5), (7.6) and f(x, t) by (8.5). Since it is 

natural to assume that the thermal flux q(x, t) is a function of  Coo(St),  

we may state that F(x, t) E C~176 
We have 

v(x,t) lim -l  f -(z-O: = - -  F~(~, r) exp 4D(t - T) 
h-- .~  2 ~ x / - ~  (t - r)~  -h 

- 1 f t  1 
a-.+~lim 2 ~  .~ (t - T)�89 

[ - ( x - h ) 2  F(-h ,r )exp -(x+h)2 ] 
�9 F(h, T) exp 4D(t - T) ~--~(--_ ~ dT 

l ~' dr f h  ~---( - ( z  - af t((2 + lim _ - -  F(~, T) exp d~  
h--,+~ 2 ~X/-~-- ~ (t - T)~ -h 

dg = 

From (8.4) it easily follows that the first limit is zero, hence 

1 ~ f t  dT f+oo --(x-- ~)2 
v(x ' t )=-4 V-~X3 Jo (t----r)~ J_~ F ( ( , r ) ( x - ~ ) e x p  4 D ( t - r )  dg. 

Using (8.4) we deduce for (x, t) E S r  

i t i +oo --8 2 pe dT 8 exp 
Iv(z,t)l <_ ~ (t ---r)'} 2D(t - T) 4D(t - r) 

pe i dT T 
- ~ ( t -  ~)~ < 2pE ~ p  < ~. 

ds = 



IS THE FOURIER THEORY OF HEAT PROPAGATION PARADOXICAL? 

This proves the theorem. 
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9. Concluding remarks. 

We believe that, as a result of our analysis, the accusation to the 
Fourier theory of heat propagation of producing the paradox of an 
infinite speed for this propagation should be considered unfounded. 
It has been also made clear that the Fourier theory has a limited 
range which will become more and more restricted with the technical 
progress of the experimental instruments for measurements and of 
the computing facilities which, respectively, will permit more refined 
measures and sharper numerical approximations. On the other hand, for 
technical problems where neither excessively accurate measurements 
nor extremely approximated numerical evaluations are needed, the 
Fourier theory will continue to furnish, as it has furnished in the past, 
satisfactory services. 

The analysis carried out in this paper, concerned with the simplest 
example of a wire, could be extended, by affording more complicated 
technical difficulties, to general propagation problems related to two- 
or three-dimensional material systems. However the conceptual line for 
rehabilitating Fourier's theory will remain unaltered. 

We believe that the best final comment to the ~philosophy>> of this 
paper is what Tullio Levi-Civita wrote in a celebrated paper where he 
succeeded in presenting the Einstein relativity theory like an evolution 

of classical mechanics rather than a revolution: ...~Nessun ricercatore 

put) essere misoneista, ma molti cultori di scienza possono, direi quasi 

debbono, essere conservatori per la stessa loro missione di custodire 

con gelosa cura un certo patrimonio intellettuale ben consolidato, e di 

vagliare con severo spirito critico tutto cib che importa variazione od 

alienazione del patrimonio stesso>>... ([9], p. 10). 
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