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R A N D O M  P O I N T S  A S S O C I A T E D  W I T H  R E C T A N G L E S  

A.M. MATHAI - R MOSCHOPOULOS - G. PEDERZOLI * 

The study of the distribution and moments of the distance between random 
points within a rectangle or in two coplanar rectangles is required in a wide 
variety of fields. Formulae for the distributions and arbitrary moments of the 
distance between two random points associated with one or two rectangles 
in various situations are given here explicitly. These explicit formulae will 
be helpful to those who work in various applied areas for the computations 
required in their problems. 

1. Introduction.  

Borel (1925) seems to have been the first one to consider the distan- 
ce between random points in specific elementary geometric figures such 
as triangles, squares and so on. The theorems on mean values and fixed 
points of Crofton (1877, 1885) are very general in nature and although 
they cover particular geometric figures such as one and two rectangles, 
explicit formulae for these specific situations are not given there. The 
first papers giving explicit formulae for the density and mean values of  
the distance between two random points within a rectangle, in adjacent 
squares and in squares having a common diagonal seem to be those of 
Ghosh (1943a, 1943b, 1951). Since then several papers have been writ- 
ten on this topic. Expected distance is dealt with by many authors, see 
for example Christofides and Eilon (1969), Alagar (1976), Daley (1976), 
Oser (1976), Vaughan (1976) and Hsu (1990). 

Some of the practical situations where the expected distance between 
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random points in the same or different rectangles is required are the fol- 
lowing: For applications in sampling problems and agricultural experi- 
mentation see Ghosh (1949), for urban operations see Larson and Odoni 
(1981), for management and mathematical modelling problems see Eilon 
et. al (1971), for transportation problems, vehicle routing, dispatching of 
emergency vehicles in urban settings and random paths across a rectangle 
see for example Horowitz (1965), Stone (1981) and Vaughan (1981). Ho- 
rowitz (1965) also mentions some of the applications of random distances 
in physics such as in measuring the length of the path of a gamma-ray 
to the wall of a nuclear reactor and the length of a sound ray in a room 
from one reflection to the next. Kuchel and Vaughan (1981) look at the 
length of chords in a square which is applicable to modern electronic 
digitizing pads. Vaughan (1976) examines engineer's "route factor" (that 
is, the ratio of the average distance by a given route to the average di- 
rect distance) for rectangular routing between adjacent squares. Marsaglia 
et.al (1990) state that the study of distance between random points in a 
rectangle arise in physical chemistry, chemical physics, material science, 
operations research and population studies and give a convenient spli- 
ne function notation for the density which is more suitable for computa- 
tional purposes and computer graphics. Gaboune et. al (1993) deal with 
generalized distances such as Manhattan metric and Chebychev metric, 
besides Euclidean metric. General procedures for tackling expected Eu- 
clidean distance in convex bodies with particular reference to polygons 
may be found in Kendall and Moran (1963), Fairthorne (1965), Coleman 
(1969, 1973), Ruben (1978), Solomon (1978), and Sheng (1985), among 
others, from where one can derive the results for special situations but 
with great effort. 

Our aim in the present paper is to give a large number of expli- 
cit formulae for the general moments and densities by using elementary 
methods and without using results from integral geometry, most of whi- 
ch are assumed to be new, (although particular cases are available in the 
literature) of the distance between two random points where the points 
could be inside a rectangle, on opposite sides of a rectangle, on adja- 
cent sides of a rectangle, one on a corner and the other inside a rectan- 
gle, in two different but similarly oriented rectangles. Euclidean distance, 
Manhattan distance and Chebychev distance are considered with referen- 
ce to the densities and general moments. These formulae are expected to 
come in handy for those who want to apply them to practical situations 
in various disciplines. 

2. Two random points within a rectangle. 

When two points are selected at random on a particular side or 
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on the perimeter of  a rectangle the problem is equivalent to selecting 
two random points on a line segment. Here randomness is interpreted as 
probability being proportional to the respective side or the perimeter as 
the case may be. The situations of interest are the following: one point 
is on one side and the second point is on another side (this could be an 
adjacent side or the opposite side), one point is on a side and one point 
inside the rectangle, one point at one of the corners and the other inside 
the rectangle, and both points within the rectangle. When the two points 
are on two sides the derivation of the distribution of the distance is not 
difficult as it can be seen from an example to follow. Hence we will 
start with the case of both the points within the rectangle. Let the sides 
be of lengths a and b respectively, a _< b. Let the points be P(Xll, Xl2) 
and Q ( x 2 1 , x 2 2 ) .  We take the origin at one comer and the axes along 
two sides. 

a 

Figure 1 

Then the square of the Euclidean distance between 
given by 

(1) 

b/ = (X21 -- XlI)  2 q'- (X22 -- X12) 2 

a a ( X 2 1  X11 ) 2  b 2 ( x a 2  Xl 2 ) 2  = + 
a a b b 

= a 2 ( u l  -- u2)  2 -t- b2(u3 - u4)  2 

where U l , U 2 ,  U3, U4 are independently and uniformly 
[0, 1]. From the uniform distribution the density of vl 
denoted by f l (v l ) ,  is given by 

fl  (Vl) = 

1 
- - ( a + v l ) ,  - a < v l _ < 0  
a2 

1 
--~-(a - vl), 0 _< Vl < a 

0, elsewhere. 

P and Q is 

distributed over 
= a ( u l  - -  u2), 
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Hence the density of Wl = v~, denoted by gl(wl) ,  is given by 

{ 1 ( a _ _  1 ) ,  0 < W l  < a 2  
g l  ( W l )  = a 2  ~ 

0, elsewhere. 

(2) 

The corresponding density for wz = b 2 ( u 3 -  u4) 2 is given by 

g z ( W 2 )  = - ~ 2  ~ / ~  1 , 0 < W2 ~ b 2 

0, elsewhere. 

Since u = wl -t- w2, the density of u, denoted by g(u), is given by 

g(u)  = 

f u  g l (v )g2(u  - v )dv ,  0 < u < a 2 
v=0  

a 2 

f g l ( v )g2 (u  - v )dv ,  a 2 < u < b 2 
v=0  

f v l l  gl (V)gZ(U -- v )dv ,  b 2 < u < a 2 n t- b 2 
= --b 2 

0, elsewhere. 

a2b 2 

(3) 

Jrab - 2(a + b)u-~ + u, 0 < u < a 2 

2 • b 2 -I-2b(u - a ) 2 ,  a 2 < u < 

2ab sin -I - - ~  - sin -I u 

- ( a  2 + b  2 ) + 2 a v ' u - b  2 + 2 b ~ ' u - a  2, b 2_<u_<a 2 + b  2 

0, elsewhere. 
I 

Hence the density of x = u can be written as 

4 x  
f ( x ) - -  a2b2 ~ ( x )  



RANDOM POINTS ASSOCIATED WITH RECTANGLES 167 

where 

4~(x) = 

abrc X 2 

2 (a+b)x+- -2 - ,  O < x < a  

ab sin-i  (xa__) a2 2 &  2 b ( x 2 - a ) 2 ' a < x < b  

{ a ( )  Vi]lb2j(a2-t-b2 ) ab sin-I -x-_ - sin-I -- -x-E- 2 

+a.v/-~ -- b2 + b~FZZ-- a 2, b < x < ~ + b  2 

O, elsewhere. 

X 2 

Note that sin - I  - x2 = cos -1 . Under this substitution, (2) 

agrees with the result obtained by Ghosh (1943a). 
The general h-th moment can be worked out by using (3). That is, 

(4) 

4 [ ab ff~- laxh+l dx - (a + b) fo axh+2dx E ( x 2 ) -  aZb ~ [ 2 d o 

,So i x h + 3 d x  -- - -  xh+ldx - b x h + 2 d x  
q - ' 2  2 a a 

(aZ+bZ) f,/a2+b2 f,/,,2+b2 xh+idx _ 1__ x h + 3 d x  
2 h 2 b 

a ~72+b2 

q-abJ xh+lsin-l(~)dx-ab xh+'  Cos -1 dx 
a b 4{,  

- a2b -----2 2(h q- 2) [ah+3(a Jr- ~ b )  -t- b h+4 - (a 2 -t- b2) h+2] 

1 [ah+ 4 bh+4 b2)~+2 ] 1 [a h+4 --I- b h+4] --1- q- - (a 2 -k- 
(h + 3) 2(h + 4) 

-Jr- b l (h)  l --}- a l ( h ) 2  q- abl(5 h) - abI(6 h) ~, ,~(h)  > ~ 2 ~ 

I 
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where  I~ h) to 1(6 h) are given in the following Lemmas 1 and 2 and N(-) 
denotes the real part of (-). Explicit forms of the moments for h = 
1,2, 3 ,4 are given by Ghosh (1943a) in terms of hyperbolic functions�9 
Some simpler forms are available from (4) and the following lemmas. 

LEMMA 1. 

~'7~b2 

= f xh+'v x2 -- a2& 
a 

b 3 ( h  
- -  3 ( a 2  + b2)h22Fl - , 1 ;  

f ~a2 +b 2 
1(2 h) = ! xh+lv~x2 -- b2dx 

% 

= I~ h) with a and b interchanged;  

v'Tgb2 
f l I (h) xh+l (X 2 -- a2)--idx 3 

a 

5 .  b 2 ) .  

2 '  a 2 + b  2 ' 

3 
�9 . 

,1 ;  2 '  a 2 + b  2 ' 

and 

1(4 h) _~ [ xh+l( x 2 - b 2 ) - l d x  
~b 

- - I  Ch) with a an db interchaned.  
- -  3 

Proof The proofs for I~ hl to I(4 h) are similar and hence we consider  

l(h) Make  the fol lowing substitutions on the left side. one case. Take -3 �9 
(a 2 + b 2) 

x = y~a -g  + b 2, y2 = z, w = 1 - z, b2 w = t. Then we have 

l(a)3 = (a2 q- b 2 ) ' - ~ f '  
a 

/' [ = b ( a 2  q- b2) ~- �9 (1 - t) - f f  1 

0 

2 1 yh+l[(a2 + b2)y 2 - a ] -Tdy  

h 

(a 2 + b 2) ]-2 
b2 to dt. 
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One factor can be expanded in the following convergent series. 

17 [ b2 I T  ~ - ' ~  [-(h/2)]m ( b2 ) m 
1 a 2 -t- b 2 t = m = 0 m !  a 2 + b 2 

t m . 

Integrating out t by using a type-1 beta integral we have 

tm(1 -- t)--} dt = = -- 2 - -  

Substituting back and summing up we have the convergent series in 
terms of a Gauss' hypergeometric function, 

b(a2 + b2)} 2Fl ( h 1 . 3 . b2 ) 
' ' 2 ' a 2 + b 2 " 

LEMMA 2. 

v/~2 + b2 

t l  

a h+2 [ 7r ( 
- -  h + 2  - T  + 1 +  

1 
( h i  ) T 

+ a 2 + b 2 

h+2 

s , n '  a 
,/-a~ + b 2 

2FI 2 ' 2 '  2 ;  a Z + b  2 

and 
x/-a 2 +b 2 

h+2 [( ~ 
- -  1 + cos -Z 

h + 2  - ~  
1 

a2 + b2 2F1 2 

b 

~+b2 
m l . 3 .  a 2 )] 

' 2 '  2 '  a 2 +  b 2 " 
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a xh+ldx  _ah+ 2 COSOt Proo f  Put sinot = - - .  Then = 
x (sin ot) h+3 

S -Y COS ot 
I~ h) = a h+2 ot (sinot)h+3 a sin-I ~ 

dot. 

dot and 

Integrating by parts and observing that 

i cos ot 1 1 

(sin ot)h+3 (h + 2) (sin ot)h+2 

we have 

i(h) = ah+2 

+ 

h+2 

. 
+ 

2(h + 2) (h + 2) 

j a h+2 f s i ;  l 1 (h + 2) . . . .  (sin ot)h+2 dot . 
,,2,/77j+b2 

sin - l  
, / 7 +  b2 

Making  the substi tutions y = sinot, and z = 1 - y2 we have 

f| dot = z-~- (1 - Z)-(h+3)dz 
sin-l ~ +b2 

] ~ (h+3)m 
2 mt 

m = 0  ~ 
1 

m +  m 
2 

1 

- - (  b2 ) T  s (h-J-3)m 
a 2 + b 2 m l m=0 

1 

- -  a2 + b2 2FI h + 3, 

b2 )m+~ 
a 2 + b 2 

(1)m . m 
(3 )m (a2+b2) 

1 .  3 .  b 2 "~ 

2 '  2 '  a 2 + b  2 ] "  
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Where the 2F1 is a hypergeometric function. Hence the result. Ob- 
serve that a simpler form is available for h = 1 by using the formula 

f 1 cos ax 1 ax 
- -  dx = - 4 - -  In tan - -  

(5) sin 3 ax 2a sin 2 ax 2a 2 

Proceeding the same way 16 (h) is evaluated. 
For a rectangle of sides a and b, a < b, it is easy to see from 

(4) that the expected distance between two random points within the 
rectangle, E(x), is given by 

15E(x) = ~ + ~ -4-d 3 b2 a2 

5 ( b  2 ( a + d ) a  2 ( b + d ) )  
+ 2  --~-ln ~ +--~-ln - - a  

where 
d = (a 2 -4- b 2) ~. 

EXAMPLE 1. Two points on opposite sides of a square. 

Consider a square of side 1. A simple problem one can look at 
is the expected length of the chord A B if A and B are on opposite 
sides of the square where A and B are independently and uniformly 
distributed on the respective sides. 

l 

X 

I 

B 

~y 

Figure 2 

Then 

IABI = V/I 2 4- (y - x) 2. 
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(6) 

The expected length, denoted by sl, is given by 

l [' f' sl = - ~ - j  j [/2 + ( y _ x ) 2 ] - ~ d x d y .  
x=0 y=0 

Make the transformation u = x - y and v = x. Then 

,{/'s' , s~  ' } = (l 2 -b u2)Tdudv  + (l 2 = u2)Tdudv  
SI -~  u=0 v = u  u = - - I  y=0 

(l -- u)(l 2 q- u2)'~du 
~- "~- =0 

i t ' l  
-- - " ( 2 v ~ -  -- 12 { ~  - [w/~+ln(1  + ~ / ~ ) ]  3 1} 

1.0766l. 

The h-th moment of the distance d = ]ABI is then 

2/o E(d h) = (l - u)(l 2 + u2) ~ du 

{/1 I _ 2 h . 2l h (1 + U2)@V V(1 + V )TCIv . 
v=0 ~0 

But 

fo 2 a . 1 [21+4 - 1], ~l(h) > - 2  v(1 + v ) ~ a v - -  ( h + 2 )  

and 

~0 1(1 + ) ~-=2 El ( h 1 3 ) ;  ; 1 - -v2"h2dv 2 ' 2 2 

where the 2F! is a Gauss' hypergeome~ic function. Substituting back we 
have 

(7) E(d  h) = 2l h 2FI 2 '  2 '  2 '  
1 / 1+  h "~] 

( h + 2 )  t 2 ~ - - l j j "  
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When h is a positive even integer this 2FI reduces to a binomial 
sum. When h = 1 the integral can also be evaluated explicitly by using 
the formula 

f { (8) (a 2 q- x2) - }dx  = (x 2 -I- a2) } -+- --~-ln(x -a t- ~ x  2 -+- a2). 

This when evaluated gives the explicit form given for sl in (6). 

Let s2 denote the expected length of the chord A B  when A and 
B are on adjacent sides, s3 that when the points are on the same side, 
and s the general expected distance when A and B move freely on 
the perimeter of  the square with the points independently and uniformly 
distributed over the respective sides where the points are found. Then it 
is easy to see that 

s2 = 3 I v Y + I n ( 1  + ,/5) 1, 

l 
S 3 ~ - -  

3 

and 
1 1 1 

S = 7 S 1  -']- "~'-S 2 -']- 7 S 3  ~ 0.7351/. 

Particular cases of the situation when two points are taken in a 
rectangle, such as one point on the perimeter and one point inside, two 
cases to be considered here, and both the points on the perimeter, are 
of interest in practical problems. Hence these cases will be dealt with as 
examples to follow. 

EXAMPLE 2. Special case l: one point on the y-axis, or the side 
parallel to it, and one point inside the rectangle. 

In this case (ul - u 2 )  2 of (1) is either u 2 or (1 - u 2 )  2. Note that 
u2 and 1 -  u2 are both uniformly distributed over [0, 1]. Then { l 

1 -~- w2 
g l ( W l )  = - ~ a W l  , 0 < Wl < 

0, elsewhere. 

Therefore 

1 1 1 1 
g l (v )g2(u  -- v) -- 2ab2 {bv--5 (u - v ) - - i v - T } .  
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1 
Now proceeding as in (2) and (3) the density of x = u 7  is 

2x 
f (x) = - - ~ T r ( x )  

where 

4 ~ ( x )  = 

by'( 
- - - x ,  0 < x < a  

2 

b s i n - l ( - ~ ) - a , a < x < b  

b[s in- '  ( a )  - a ,  a < x < b 

b[s in  -1 ( ~ ) - c o s - '  (~-)] 

+ ~ x  2 - b  z - a ,  b < x < ~/a 2 + b P2 

O, elsewhere. 

By direct integration the general moment  is given by the following: 

E ( x  h) _ _ _  ab 2 (h -t- 2) - - a  h~-2 -t- - a(a 2 + b 2) 

ah+3 l(h) (h) h) ] 
( h + 3 )  + ' 2  + b I 5  - b l ( 6  , 9~(h) > - 2  

1~h) ICm and 16 (h) are given in Lemmas  1 and 2. Simpler where the " 2  ' " 5  

forms for I~ h) to I(4 h) for h = 1,2 and I ~h) and 1~h) for h = 1 are 
5 " 6  

available. By using these the first and the second moments  can be written 
down without the help of the hypergeometric functions. These will be 
illustrated when considering special cases 3 and 4 later on. 

EXAMPLE 3. Special case 2: one point on the x-axis or the side 
parallel to it and one point inside a rectangle. 

In this case g2(to2) changes to 
1 I 

to ;  T,  0 < w2 _< b 2 and then 
2b 

I I 

gl(v)g2(u  -- v) -- 2aZ----~[av-T -- 1][(u -- v)-~-] 
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I 
Now proceeding as in (2) and (3) the density of x = u~- is 

2x 
f (x) = -~dp(x)  

where 
ay/ 
- - - - x ,  O < x  < a  

2 

a s i n - ] ( a ) - x + ~ / - ~ - a 2 ,  a < x < b  

q~(x) = a [s in- '  (xa__) _ cos-,  ( b ) ]  

-k-~/X---2- a 2 - b ,  b < x  < ~ - k - b  2 

0, elsewhere. 

The general moment is given by 

~ h + 2  "1 E(xh)_ 2 1 [ 7 r a h + 3 + b h + 3 - - b ( a  2 + b g T j  
aZb (h + 2) L 2 

bh+ 3-------) } + I~ h) +al~ h) -a l~  h, , R(h) > - 2  
(h 

l(h) where the IIh), I~ h) and -6 are given in Lemmas 1 and 2. 

EXAMPLE 4. Special case 3: one point on the y-axis and one on 
the side parallel to it. 

In this case (1) becomes a2+b2(u3--U4) 2 and hence u = t v 2 + a  2 
1 

and the density of x = u T  is given by 

2x  2 
---~-[b(x - a 2 )  -~ -  - 1], 

f(x) 

0, elsewhere. 

alx < ~/-d-2 + b 2 

The general h-th moment is given by 

2 1 [a h+2 - (a 2 -Jr- b2) " ~  ] + bl~ h) } 
E(xh) = "~'{ (h -1- 2) , R ( h )  > - 2  
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where  i(h) is given in L e m m a  1. For h = l, 2 some simpler forms are 3 
available by using the fol lowing formulae.  

f X 2 a2 (9) X2(X 2 -- aZ)-�89 = -~-x/~x 2 - a 2 + --~--ln(x + x/~x 2 - a 2) 

and 

(lo) f x (x2 -- aZ)-+dx  -- (x2 -3 a2)3  + a 2 , . . ,  r//-~ - _ a  2 

Then we have 

E(x) = -=-:-~-~ [a- - (a 2 + b2)~ -1 + ~ + b 2 + -r--ln + 1 + 

and 
a 4 (a 2 + b2) 2 2 

E(x 2) _ 2b 2 2b 2 -~ ~ b 2  + 2a 2. 

EXAMPLE 5 Special case 4: one point on the x-axis  and one on the 
side parallel to it. 

In this case (1) becomes  a 2 ( u l -  u2) 2 + b  2 and hence u = wl-~-b 2. 
1 

Then the density of  x = u~- is given by 

2x 
- ~ - [ a ( x  2 -- b2) - +  - 1], b _< x _< v/-a ~ + b 2 

f ( x )  = 

0, e lsewhere .  

The general momen t  is 

----c2 1 [b h+2 - (a 2 + b2) s ] q- aI(4h)}, .q~(h) > --2 E(x h) 
a t {  (h + 2) 

where  the 1(4 h) is given in L e m m a  1. Then by using (9) and (10) some 
explicit  forms are the following: 

E ( x h ) _  2 [b3 (a2 +bZ)~]_q_v/-~a2_q_b2 
3a 2 

+ In + 1 + a ~ ~ -  
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and 

, . _} E(x 2 )= -~ -a2 [b  - ( a  2 + b 2 )  2 ] +  a 2 + 2 b  2. 

EXAMPLE 6 Special case 5: one point on the y-axis and one point 
on the x-axis. 

In this case (1) is of one of the following forms: 

a 2 ( 0 - - u 2 )  2 - q - b 2 ( 0 - u 4 )  2 or a 2 ( 0 - - u 2 )  2 q-b2(1 - u 4 )  2 

or 

a2(l - -  u 2 )  2 --}- b2(0 - -  U4) 2 or a2(1 - -  U 2 )  2 -l- b2(l - - / g 4 )  2.  

Since uj and 1 -  uj have the same distribution we need to consider 
only the form a 2 u  2 -a t- bZu24 . Here 

1 1 
gl(wl)  = 2a wT-* 0 < wl < a 2 

1 1 
-Y O <  tO2 < b  2 g2(w2) ---72bW2 , 

and then 
1 1 t 

gl (v)g2(u -- V) -- - - V  2 (U -- V) 2 .  
4ab 

1 
Proceeding as before the density of x = u~- is given by 

x 
f (x ) = -~ck  (x ) 

where 

4 (x) = 

T( 
-~--,0 < x < a 

s i n - l ( a ) , a < x < b  

s in- '  ( a )  - cos- '  ( b )  

0, elsewhere. 

, b < x < ~ + b  2 
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The general moment  is given by 

l 7ra h+2 
E(x2) : --~-- { 2(h + 2) + I~Sh)- l~h)} 

where the I~5 h) and I~6 h) are given in Lemma 2. 

Remark 1. If one point is fixed at one of the corners of the rectangle 
and the other is a random point within the rectangle then by comparing 
with (1) observe that the square of the distance between the two points 
can be expressed a s  a2u 2 - [ -b2u  2 where Ul and u3 are independently 
and uniformly distributed over [0, 1]. Hence surprisingly this situation is 
equivalent to the special case 5 discussed in Example 6. Furthermore, in 
order to obtain simpler representations for the mean value of the distance 
the following formula will be helpful. 

f 1 sin ax 1 
- -  d x  - -  71- 

(11 ) cos 3 ax 2a cos 2 ax 2a (4 lntan + . 

From Example 6 in the light of  Remark 1 it is easy to see that the 
mean distance, E(x),  from one of the vertices to a random point inside 
a rectangle of sides a and b, a < b, is given by 

3E(x)  = d + -~-a In b + --~--ln a , d = ~ a  2 + 

3. Distance between random points in two different rectangles. 

Consider two rectangles, one with sides a and b and the other with 
sides c and d. Let P and Q be random points in these two rectangles 
respectively, randomness in the sense of probability being proportional to 
the areas of the respective rectangles. Several possible cases are there. 
Select an (x, y)-coordinate system with the origin at one of the corners 
of one of  the rectangles, say the one with sides a and b. Let the side 
of length a be on the x-axis. The second rectangle could be similarly 
oriented, that is, one side parallel to the x-axis. Even in this case the 
rectangles could fully or partially overlap or could be nonoverlapping. 
The second rectangle could be at an angle in the sense one of the sides 

Jr 
making an acute angle u with the x-axis, ot ~ 0, -~--. There are several 
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possibilities of the relative lengths of  the sides. Both rectangles could be 
degenerate leaving pieces of  line segments, parallel, perpendicular or at 

Jr 
an acute angle not equal to 0 or - - .  In all these cases the points could 

2 
be entirely within or on one of the sides of the respective rectangles. 
Thus to exhaust all possible cases will not be an easy task. Here we will 
consider one case and a general procedure for tackling the distributional 
aspect of the distance between P and Q. Let the two rectangles be 
similarly oriented as shown in Figure 3. 

c 

61 

Figure 3 

Let 61 >__ a and 62 arbitrary. The case of 62 2> 0 is shown in Figure 
3. Denoting ~ to indicate uniformly distributed over the interval we have 

X l l  ~ [0 ,  a], X21 "~ [61,  61 -'}- C] 

X12 "~ [0 ,  b], X22 ' ~  [62,  62 q-  d] 

which will then imply that 

x21 - 61 
ul -- "" [0, 1], U 3 - -  

C 
X l l  XI2 

U 2 - -  ~ [0, 1],  u 4 - -  
a b 

X22 - -  62 

d 

- -  - -  ~ ,  [ 0 ,  1 ]  

[o, 1] 

where u l, u2, u3, u 4 are independently distributed. Let x be the distance 
between P and Q and let u = x 2. 

Then 

U = (X21 - -  X l l )  2 -{" (X22 - -  X12) 2 

= [CUl + 61 -- au2] 2 + [du3 4- 8 2  - -  bu4] 2. 
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Let  us examine the densities of  

Vl = CUl + 61 --  au2  and 1) 2 = d u  3 --}- (~2  - -  bu4.  

Let  zl = ul and z2 = u3. The joint  density o f  1) 1 
by f ( v l ,  z l ) ,  is given by 

1 
f ( v l , z l ) = - -  for a > 0 .  

a 

and z l, denoted 

Integrating out zl the marginal  density of  i) 1 is given by 

vl - 3t + a ,  ~l - a < v~ < Sz,  for c > a ,  3 > a 

1 a ' 3 1 < v l < c + 3 1 - - a  
f l ( 1 ) l )  ~- - -  

a c  
c - vl + ~1, c + 6 1 - -  a < vi < c + 61 

0, elsewhere.  

I f  c < a then the intervals will be [ 3 1 - a ,  c + a l  - a ] ,  [ c + 3 1 - a ,  6z], 
[31,c + 61]. The density o f  wl = v~, denoted by g l ( w l ) ,  is then, for 
a > 0 ,  c > 0 ,  
(12) 

1 

(a -- 61)w I 2 + 1, (31 - -  a )  2 _<< I/) 1 5 32, C > a, 31 > a 

I 

- -  t2 1 a w  I , 3  < w l  < ( c + 3 1 - - a )  2 
gl (wl)  -- 

2 a c  1 
(c-k- 31)w? 7 -- 1, ( c + 3 1  - - a )  2 < Wl < ( c  nt- 31)  2 

0, elsewhere. 

(13) 
A similar procedure gives the density of  w2 = v~ as 

1 
g2(w2) --~ 

2bd  

1 

(b - -  ~2)~/) 2 2 _1.. 1, (32 - -  b) 2 < 1132 ~ 82, d > b, 32 ~ b 

l 

b w 2  ~ ,  32 < w2 < (d + 32 - -  6 )  2 

1 

(d + 3 2 ) w 2  T - -  1, (d + 82 - 6 )  2 5 //)2 ~ ( d  + 32) 2 

0, elsewhere. 
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1 

Hence the density of x = uT,  u = wl +//32, is 

f (x)  = 2 x g ( x  2) 

where 

(14) g(u )  = f g,(v)g2(u - v ) d v  
I) 

with gl( ' )  and g2(') given in (12) and (13) respectively. But for evalua- 
ting the integral in (14) we need to consider several regions. Therefore 
we will not evaluate (14) explicitly for all these regions. Instead, we will 
look into some special cases which will be listed as examples. 

EXAMPLE 7. Two random points on parallel line segments. 

Let the random points P and Q be as shown in Figure 4. 

Figure 4 

Let the two line segments be of lengths b and d respectively, 31 
units apart and the piece with length d be displaced by 82. We evaluate 
the density of the distance x = ]PQ].  Either we could derive the density 
from first principles or obtain it from g2(w2) of (13). Put a = 0 and 
c = 0 in (13). Then the square of the distance is u = w2 + 6~ and the 
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density of  u for d > b, is given by 

2 _I.L (b - a2 ) (u  - a l )  2 + 1, (82 - b)  2 + a~ _< u _< a2 + a2 

1 
g ( u )  - -  

2 b d  

b ( I g  - 81)2)  - 1  , a 2 -'t'- 82 ~< g _~< ( d  + 82 - b )  2 --1- 82 

2 1 
( d W 8 2 ) ( U - S l ) - 7  - 1, 

( d  + 82 - -  b )  2 -Jr- 8~ < u < ( d  + 82) 2 -Jr- 82 

0, elsewhere. 

I 
from which the density of the distance x = u ~- is available. Furthermore, 
arbitrary moments of  x 2 - 6 2  are easily available from (13). Moments of  
x can be evaluated by using techniques similar to the ones used in the 
derivation of  the results in Lemma 1. 

EXAMPLE 8. Two identical rectangles side by side. 

Consider two rectangles of  sides a and b, side by side, as shown 
in Figure 5, and one random point within each of  the rectangles. 

a a 

Figure  5 

In the notations of (12) and (13) we have a = c, 81 = a, 82 = 0, 
b = d and 

1 , 0 <  to I < a  2 

1 
g l ( w l )  = 

2a 2 

1 

2 a w - [  ~ - 1, a 2 < w I < (2a) 2 

0, elsewhere. 
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Then p roceed ing  as in Example  7 one can see that the density of  
u = x 2, where x is the distance be tween the points P and Q,  is o f  the 

fol lowing form, for  a < b < 2a" 

g(u) = 

- u  + 2bu-~, 0 < u <_ a 2 

2(a  2 + abrc) + u + 2(b - 2a)u~ 

- 4 b v ~ - a 2 - 4 a b s i n - l ( - ~ ) , a 2 < u < b  2 

b 2 + 2 ( a  2 + a b r c ) + 2 u - 4 a u  4- - 4 b ~ - a  2 

- 4 a b  sin-' (--~u ) , b 2  < u < 4a2 

b 2 - 2a 2 + u - 4bv~-  - a 2 -k- 2b~/-u - 4a  2 

(_~_)  ( a ) +4absin - l  2~ - 4 a b s i n  --1 ~ , 4 a  2 < u  < a  2 + b  e 

- 4 a  2 - b 2 - u + 2bv/-u - 4a  2 + 4a~/u - b 2 

2a a 2 + 4 a b s i n - J  , ( ~ -  - 4 a b s i n  - j  _ 
u 

q-b 2 _< u < 4 a  2 q - b  2 

0, e lsewhere.  

The next s imple case will be that o f  two identical rectangles,  simi- 
larly oriented, but  with one corner  of  one rectangle touching one corner  
o f  the other. In this case the densi ty will be slightly more  compl ica ted  
than the one given in Example  8. Since the expression takes up too mu- 
ch space it will not be listed here.  

4. Other types of distances. 

Our discussion so far was conf ined to Eucl idean distance between 
two random points.  Other  general ized distance measures  may  be o f  in- 
terest in some theoretical  and practical  investigations.  I f  P(xll,x12) and 
Q(x21,x22) are two points on a plane then 
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I 

I r (15) Lr = {Ix2i - - x i l  q - l x 2 2 - x 1 2 1 r }  -;, r > I 

is a generalized distance between P and Q. We shall investigate the 
density and moments of Lr for some of the situations discussed so far. 

Let the points be within a rectangle of sides a and b, a < b. Then 
referring back to (1) we have 

vl = a ( u l  - u2) and v2 = b(u3  - / / 4 ) .  

In the present case our interest is in the variables z~ = Iv, I r and 
z2 = Iv21r. Then the absolute value of vl has the density 

/ - - ~ - ( a  - v l ) , O  < vt < a 
flv,(v,  

0, elsewhere. 

and zl = [vii' has the density 

2 + - i .  
(16) ]~,,l(zi ) = --~-a2 Zl (a - z~)  

0, elsewhere. 

, 0 < Z l  < a  r 

A corresponding expression for the density of Z 2  is available from 
f z t ( z i )  by replacing zl by z2 and a by b. Then the density of u = 
zl + z 2  is available from (2) where gl and g2 are replaced by f z ~ ( z l )  

and f:2(z2), a z and b 2 by a r and b r respectively. Then 

4 t I I 1 1 I u ) 2 r -  I 
f z , ( v ) f z 2 ( u  - v) - -  r2a2b2 [ a b v r -  (u - v ) 7 -  - a r T -  (u - 

- -  b v - ~ - I ( u  _ v) lr-I ql-.oZr-I(u _ v ) ~ ' - I ] .  

The density of u = z l - t -Z2  = L r for a < b, is available by 
straight integration with the help of the integrals corresponding to (2). 
Put v----uy and integrate. The resulting density, denoted by f ( u ) ,  is the 
following: 

fl(U), 0 < U < _ a  r 

4 f2(u), a r < u <_ b r 

(17) f ( u )  - -  r 2 a 2 b 2  f3(u), b r < u <_ a r --F b r 

0, elsewhere. 
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w h e r e  

(18) 

2 
f l ( u )  = abu 7-1  

3 -1 4 -1  
- (a  + b)uT-  + u r 

1 u 3 
= abu - --;-(a + b)u 2 + fo r  r = 1; -g- 

2 

(19)  

21(, 
f 2 ( u )  = a b u T -  I 

F 

1 ; a r ) _ au3r_li ( l, , 2 ; --a r ) 
F U F F U 

3 
- -  b u  7 - 1 1  , ; 

?" F U 
, q-U7-1I , ; 

F F U 
aZb 

= + 
2 

a 3 a 2 
u fo r  r = 1; 

6 2 

(20) 

2 1 [ ( 1 l a r  ) ( F  1~- l br )] 
f 3 ( u ) = a b u r -  I , - - ;  - - I  , - - ;  1 - -  - -  

F U F U 

att3r_l [I (1 2 ar)  (1 2 br)]  
- - , - ;  - - I  - , - - ; I - - - -  

F F U F F U 

b u 3 r _ l [ i ( 2  1 a r )  ( 2  1 b r ) ]  
- - ,  - ;  - - I  , - - ; 1 - - - -  

F F U F /~/ 

_]_bu4r_, [i (2  2 ar)  (2  2 br ) l  
- ,  - ;  - - I  - - , - - ; 1 - - - -  
F F U F F U 

_ a b  l ( a 3  b3) 21 b)2u (a + b) + + - ~_ (a + 
2 

1 u 3 
+ -~(a  + b)u 2 6 f o r  r = 1, 
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with I ( . , - ; - )  being the incomplete beta function, which can 
written as a hypergeometric function 2FI( ') ,  given by 

(21) 
3;  z) = f0 Zy~-l(1 > O, fl > > 0, z 0 

Z ~ 
2 F I  ( 1  - f l ,  ~ ;  ot - 1 ;  Z). 

Og 

also be 

For r = 1 we have the density of Ll which is listed in (17) to 
(20). For r = 2 the density of the Euclidean distance is already given 
in Section 3. For r >_ 1 the density of Lr is available from (17). By 
examining the individual functions f l ,  f2, f3 in (17) it is evident that 
the general h-th moment  of  Lr or that of u is available from (17) with 
the help of the following integral which will be stated as a lemma. 

LEMMA 3. For, fl > a  > 0 ,  3 > 0 ,  e > 0 ,  y >0, y < a ,  y < f l ,  
0 < , q / ( h + l )  < 3 ,  

![~ Uh fo 'y~-'(l  - 

- ( h + l )  

The result follows by changing the order of integration and then 
using (21). 

Remark 2. For obtaining the density and moments  of the generali- 
zed distance of (15), when the random points are in different rectangles, 
one can use the above procedures and the densities given in Section 3. 
For example when c > a, &l > a, d > b, 32 > b the densities of 
[VII r and [V21 r are available from fl(vl) and the corresponding fz(V2) 
associated with (12) and (13). Under the above conditions on the para- 
meters v = }vii and v2 = Ivz] in this case. Since the explicit forms of 
the densities and moments  for the various cases discussed in Section 3, 
though not difficult to evaluate, will take up too much space these will 
not be discussed here for the generalized distance of (15). If only po- 
sitive integer moments  are required then use the fact that Ivx[ and lvzl 
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are independently distributed and hence 

E[lVllr --]- Iu2lr]m = ~--~ (m)[glullr(m--n)][Ell)2lrn], 
(22) ,=0 

r > l , m = 0 , 1 , . . .  

Now the individual moments are available from the densities fzl(Zl) 
of (16) and the corresponding fz2(z2). For example 

~ 

E ( z [ )  = E[Ivjl  ry] = - -~  v~Y (a - Vl)dvl  

(23) 
2a rY 1 

( r F + l ) ( r F + 2 )  !)~(h) > - - - . r  

Substituting back in (22) we have the m-th moment of L r, of (15) 
as follows: 

(24) 

E ( L ~ r m ) = ~ - ~ ( m )  ( r m -  
n=O 

ar(m-n)brn 
rn + 1)(rm -- rn + 2)(rn + I ) ( rn  + 2) ' 

m = 0 , 1  . . . .  

There are other distance measures based on the largest of  Ivll and 
Iv21. The distribution problems will be easier to handle in these cases. 
The simplest procedure would be to look for the distribution function or 
the cumulative probability function by using the fact that if the largest 
of  Ivll and Iv2l is less than a fixed number t then both Ivll and Ivzl 
must be less than t. Let 

(25) w = max{Ivll, Iv21}. 

The distribution function of w, denoted by F,,,(w), is available from 
the distribution functions of Ivll and Ivel. Due to statistical independence 

Fw(w)  = P r { w  < t} = Pr{lv l]  < t}Pr{lv2l  < t}. 

But 

Pr{Ivl l  < t} = ~ a t -  
2(/2) 

and Pr{Iv21 < t} = - -~  bt 2 " 
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Observe that if t > a, a < b, then 
have 

0, t < 0  

(26) F,,, (t) = 

Pr{lvll  < t} = 1. Hence we 

4 (at t •  a--V; 2)(bt--'Z 
- ~  b t -  , a < t < b  

l , t > b  

, 0 < t < a  

The density of w is available by differentiating F,,,(w) with respect 
to t and evaluating at w. That is, 

d 
fw(w)  = -~-~-F,,,(t) 

2--~w. [4ab - 3(a + b)w + 2w2], 0 < w < a 
(27) 2 

- ~ ( b -  w), a < w < b 

0, elsewhere. 

From here the h-th moment  of w is given by 

(28) 
2ah+l I b (4b + a) 

E(wh)  -- -~  k (h + 1) + ( h + 2 )  

b h 

+ 2 (h + 1)(h + 2) ' 8l(h) > - 1 .  

(a + b) 
3 + 2  

(h  + 3) 
a] 

(h + 4) 
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