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CHARACTER SUMS AND PRIMITIVE ROOTS IN FINITE FIELDS 

by H. Davenport (Cambridge, England) and D. J. Lewis (Ann Arbor, U. S. A.) 

1. Let p be a prime and let X be a non-principal character modulo p. It 

was proved independently by P61ya and Vinogradov that 

N-}-H 1 

(1) ~ X(x)~- O(p21ogp) 
x=N-} - I  

for any N and H, where the implied constant is absolute. This inequality, 
1 

though exceedingly valuable, fails to give any information if H < p~ log p, and 

it was not until recently that a result applicable to a range of smaller values 

of H was found, namely by Burgess (*). He proved that, for any positive 

integer r, we have 
N + H  r 1 

(2) ~ X ( x ) =  O(Hr+~p4rlogp), 
x = N - ] - I  

where the implied constant is again absolute. This gives a non-trivial estimate 

for the character sum if H > p�88 for any fixed ~ > 0. Using an argument due 

to Vinogradov, Burgess deduced from (2) that, subject to the last mentioned 

condition on H, any interval N < x ~ N-f-  H contains asymptotically its due 

proportion of primitive roots to the modulus p. 

(*) ,,On character sums and primitive roots, ,  Proc. London Math. Soc., (3), 12 (1962), 179-192. 
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The object of the present paper is to investigate how far these results can 

be extended to the finite field (,,Galois field ~,) of pn elements. This field, which 

we shall denote by [p~], has a basis of n elements to~, . . . ,  ton relative to the 

rood p field, and the elements of [pn] are representable uniquely as 

(3) = § . . .  + xnton, 

with the xj in [p]. We shall give the xj rational integral values satisfying 

0 ~ xj ~ p, and we shall identify the element ~ of [pn] with the integer point 
(x , ,  . . . ,  x,).  

Let 3B be a box in n dimensional space, defined by 

(4) Nj < xj ~ Nj § H, (j  = 1 . . . .  , n), 

where the Nj and Hj are integers, satisfying 

(5) 0-~< Nj < N~ § Hj < p ( j : l  . . . .  , n). 

The P61ya-Vinogradov inequality (1) extends almost immediately to the field 

[phi, in the following form: 

THEOREM 1. Let ~( be any non-principal character of the multiplicative group 
formed by the non-zero elements of [p~]. Then 

(6) ~]X(~)  < ( p ~ - ( l o g p §  1))". 

In this result we do not have to suppose that p is large. 

We obtain also an extension of Burgess's inequality (2), but in this case 

the result becomes less effective as n gets larger. We suppose for simplicity that 

Hj-----H 2 . . . . .  Hn = H, so that the box :I13 in (4) becomes a cube 1k. We 

prove : 

THEOREM 2. For any ~ > 0 there exists ~, (~) > 0 and p, (~) such that, if 

n 

H > p 2(n+'~+~ and P > Pl (~), (7) 

then 

(8) • < (p-8, H F .  

1 
It will be seen that if n = 1 the exponent of p in (7) is still ~ - §  ~, but 

1 
that as n increases the exponent approaches ~-. The reason for this weakening 

in the result lies in the fact that the parameter q used in Burgess's method (see w 4) 
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has to be a rational integer and cannot (as far as we can see) be given values 

in [p"]. It would be possible to replace (8) by an explicit estimate of the form (2), 

but then the proof would be more complicated. 

By the same argument as that used by Burgess (loc. cir. w 6) it follows 

that, subject to (7), the number of primitive roots of  [pn] falling in the cube 1R is 

~(pn __ 1) H.(1  ~_ O(p_.~,)). 
(9) p" - -  1 

We omit the proof. The conclusion may be compared with a result of Davenport (*) 

which states that for any n there exists po(n) such that if p > po(n) there is a 

primitive root of [,on] of the form & + x, where & is a generating element of [,on] 

and O ~ x < p .  

2. PROOF OF THEOREM 1. Let ep(m) = e ~m/p for any integer m, and let 

e(~) = ep(S(~)) 

for any ~ in [p"], where S denotes the trace of an element of [p"] relative to [p]. Let 

( X ) =  ~ X(~)e(~), 
KIp"] 

where we make the convention that X(O):= O. It is known (Davenport, loc. cit.) 
1 

that ['c(X) I = p ~ n  for any non-principal X. 

For any ), ~ 0 in [p"] we have 

X(~)e().~) : ~ '~Z(F"~)e( '~)  : X()')z(X)- 
n 

Hence 

1 
X ().) = z (X) ~ )~ (~) e (). ~), 

and this continues to hold when ), = O. Thus 

Now 
Nx+Hl Nn +Hn 

~--~e(~)~-  ~ . . .  2 
~E "~ Xx:N1+I xn=Nn+l 

ep(S(~(x, to I + . . .  + xnto~))) 

t Yj 1 = ep ( S  (~ (oj) x j )  . 

(*) �9 On primitive roots in finite fields ,, Quarterly J. of Math., 8 (1937), 308-312. 
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We have 

N+H P ) '  
x_~N+lep(mX) ~ m i n ( H ,  2[iml] p 

for any integer m, where [[mllp denotes the absolutely least residue of m modulo p. 
Hence 

~-'~ X(~) ~ p-}n~ IlL[ rain (Hi, lp ,IS (~to./,,~-l)l. 
~ t;~o j=1 

For any t~ . . . . .  tn in [p], not all 0, there is just one ~ for which 

%) = . . . ,  t o n )  = 

Hence, if H : max Hi, 
p--I ))n 

~--~ ((~) ~ p-}n  (t__~= ~ min (H, l p [[t][~_l 

~<P-~n(H-b ~t.<�89 P ~ ~ )" 2( t) 
1 < ~  _ _  l p < t < p  

1 

< p-~"  (p + p log p)". 

This proves Theorem 1. 

3. LEMMA 1. Let X be a non-principal character of [pn] of order k, where 
kip ~ -- 1. Let B(~) be a polynomial of the form 

B (~) : (~ - -  i ~ t )  a l  - , .  (~ - -  ~t) at , 

where ~,, . . . ,  ~t are distinct elements o f  [ p " ]  and 0 < ay < k and 

a t - q - ' ' '  + a t e 0  (modk).  

Then 

X (B (~)) ~< (t - -  2) p�89 q_ 1. 
~E[p n] 

PROOF. This is a consequence of Weil's proof of the analogue of the Riemann 
hypothesis for congruence E-functions, the deduction being the same as for 
Burgess's Lemma 1. 

LEMMA 2. Let r be any positive integer and suppose 0 < h < p. Let 

(10) Sh (~V) = ~ • (~), 
~Eir 
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where N----- (Nt, . . . ,  iV,) and lk is the cube (4) with Hj = h. Then 

p--I p--I 

� 9  IS (x)l < (4r) +lp"h "" + 2rp~-"h 2"~. 
x~=O xn=O 

PROOF. This is a straightforward extension of Burgess's Lemma 2, based 

on Lemma 1. 

4. PROOF OF THEOREM 2. We have to prove that SH(N),  defined in (10), 

satisfies (8). We assume the contrary, namely that 

(11) ! SH(3r) ! >~ (p-*, H)", 

and reach a contradiction if ~ is suitably chosen in terms of ~. Comparison 

of (11) with Theorem I gives 

(12) H .< p{+~'( log p + 1), 

and as an inequality for H in the opposite sense we have, of course, the 

hypothesis (7). 

Let q be a prime less than H, and divide the points ~ = xt % + ...  + x,,to,, 

in the cube 1R = IRn(N)  into sets according to the residue classes to which 

x~, . . . ,  x,, belong modulo q. If x j -~  - - t i p  (rood q), we put 

and have 

Hence 

(13) 

x~ = - -  t~ p + q zj, 

X ( ~ ) = z ( q ) x ( ~ ) ,  where ~ = z , % + . . . + z , ~ % .  

s . ( x )  = x • (;) ,  
t ~E~(q,t) 

where in the outer sum t runs through n complete sets of residues modulo q, 

and in the inner sum ~ runs through the integer points (zt . . . . .  zn) in the box 

0.(q, t ) :  N j + t j p  < z j ~ <  N j + t j p + H  ( / = 1  . . . .  ,n).  
q q 

Two of these boxes with the same q cannot overlap, since zi,  . . . ,  zn 

determine tl, . . . ,  t, uniquely. If two boxes ~'(ql, t'l') and &(q2, t'2') overlap, 

where q, <~ q2, we find that 

Ip(t;" q~ "' 
- -  t) q,) + N~(q, - -  ql)l < Hq2 (j  = 1 , . . . ,  n). 
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1 
Assuming that Hq2 < ~-p, the above inequality implies that for given q, and q2 

there is at most one possibility for t"' and t '2' 

Let q run through all primes in the interval 

(14) p - ~  H < q < 2 p - ~  H, 

where ~ > 0 will be chosen later. The number Q of primes q satisfies 

(15) C~Hp-~(logp)-l < Q < C2Hp-b'(logp) -1, 
1 

where Ct, C~ are positive absolute constants. The condition Hq2 < 5 p  occurring 

above is satisfied, by (14) and (12), provided 

(16) ~ ~ 3~i 

and provided p > p~(8t). 

For each q there are at most Q -  1 points t for which the box &(q, t) 

can overlap any other box ~(q', t'). Denote the set of remaining points t, after 

these are excluded, by T(q). Then (13) and (11) imply that 

lET(q) ~EO(q,1) 

since the number o[ integer values for each z/ in ~(q, t) is at most pb,--k 1. 

We now suppose that n ~ 2, since the result of Theorem 2 is already known 

when n = 1. Since Q < H and since H satisfies (7), the last term on the right 

above is small compared with the term on the left, provided 8~ and 8~ are small. 

Hence 

g E 
lET(q) r,E~'(q,t) 

Summing over q, we obtain 

1 
E E E X(~) > ~-(P-alH) nQ. 

q lET(q) ;Ee(q,t) 

The boxes 6(q, t) in this sum are disjoint, and their number is 

(17) M~< ~-~q" < Q(2p-~.H) ~. 
q 

We can rewrite the previous inequality as 
M 

where the boxes I,~ are disjoint and each of them has sides ~ p b '  __[_ 1. 
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Let h = [p~] and let J denote the cube 0 ~ x / ~  h. Then, 

of sides -~pa-" @1 and any "q in J, we have 

Hence 

~-'~X(~) --  Y'~)'.(~ @ ~) ~ 2nh(p b~ @ 1) "-~- 
t, E l  ~EI  

for any box I 

~-'~X(~) --  h-"~-~ ~-~X(~ + ~) ~ 2nh(p ~' + 1)"-'. 
~EI nFJ ~EI 

Applying this to all the I,,, in (18), we obtain 

M 

m = l  l;Elm 

In view of (17) we find that 

2 n h (pa, + 1)"-1M < 1 (Hp_b~), Q 

provided 52 = 2 n ~  + ~3. This condition supersedes (16). Hence 

M 

1 (h H p - ~ )  ~ Q. (19) IS,( )l > 
m = l  ~Elra 

The total number of values of ~ (all distinct) in the sum on the left of (19) is 

by (17). If r is 

inequality that 

U ~ M (p~, -}- 1)" -~< Q (4 H)", 

any positive integer, it follows from Lemma 2 and H61der's 

M I I ~ [Sh(~)[ ~ U ' - ~  (4r)r+~p"h "r + 2rp~"h ~"r -~. 
m = l  ~Elm 

Comparison with (19) gives 

H"Q < 4'r+"r-I'"p'"rb~l(4r)r+' p"h-"" + 2rp~-" I. 

Take r = [~-i @ 1], which ensures that h r > p~. Then, using (15) we obtain 

C~ H "§ < 4'~+a~-""p '"~b1+~ (log p) (4 r)~+'p ~ ". 

By (7) this implies 

C, p,,,+l,~ < 42r+a,--I,,, (4 r)'+'p '"~+b~ (log p). 
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First choose  ~a = ~; this determines r. Since ~ = 2n~l  + Ca, the last 

inequality implies 

p"~ < (C3(r))"p ~"'b~+2"bl. 

1 
This is false if we choose ~i ~ ~- ~z, provided p > P8 (~). Thus  we have obtained 

a contradiction for a suitable choice of ~, depending only on ~, and this es tabl ishes  

Theorem 2. 

Cambridge and Ann Arbor, May 1963. 


