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A CRITERION FOR THE UNIFORM DISTRIBUTION 
OF SEQUENCES IN COMPACT M E T R I C  SPACES 

ROBERT E TICHY 

Let X be a compact metric space, le /~ be a non-negative normalized Borel 
measure on g and let f be a measurable bounded real-valued function defined on 
X such that f is /~-almost everywhere continuous and different from zero. It is 
proved that a sequence (ac~). , =  1 , 2 , . . .  of points in X is p~uniformly distributed 
if and only if for every Borel set E C. X with /~(bd(~-0)= 0 we have 

N..~oo 
n=l B 

where 1E denotes the characteristic function of E and bdl?, the boundary of 
E.  Furthermore some quantitative aspects and generalizations of this theorem are 
discussed. 

1. Introduction. 

In his classical paper [9] H. Weyl investigated uniformly distributed 
sequences of points in doe unit interval [0, 1). 

A sequence (x,,), n =  1,2,... of points x,, e [0,1) is said to be uniformly 
distributed (for short: u.d.) if the number of elements of xl . . . .  , ~N contained 
in an arbitrary subinterval /_c  [0, 1) is asymptotically N-times the length of 
I.E. Hlawka [5], [6] generalized this concept to sequences with elements in 

compact metric spaces. 

Let X be a compact metric space and /~ a non-negative normalized 
Borel measure on X. A ~equence (~,,) with elements x,, e X is said to be 
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u.d. with respect to p (for short: p-u.d.) if 

(1.3) 
nffi! X 

for all continuous real-valued functions ,f on X. In the case of the unit 
interval X =  [0, 1) with the ordinary Lebesgue measure, (1.1) is equivalent 
to the above definition (cf. [8], Theorem 1.1, p. 2). 

For the basic facts of the theory of  uniform distribution we refer to the 
monographs of E. Hlawka [4] and of L. Kuipers and H. Niederreiter [8]. 

Remark 1.3. It is an easy consequence of  the proof of [8], Theorem 
1.2, p. 175 that a sequence (x,,) with elements in a compact metric space 
is p-u.d, if and only if (1.1.) holds for all bounded measurable functions 
f that are continuous on a set of  measure 1. For example, a characteristic 
function 1E of a Borel set E ( l~(x)= 1 for x E E and l~(x)= 0 for x ~ E) 
has this property if p(bdE)= 0; such Borel sets are called p-continuity sets. 

By [8], Theorem 1.2, p. 175, (x,,) is p-u.d, if and only if (1.1.) holds 
for all characteristic functions 1E of p-continuity sets E. 

The object of  this article is to give an extension of  the following result 
of J. Horbowicz [7]: Let f : [ 0 ,  1 ) ~  Iq be a Riemann-integrable function 
which is almost everywhere non-zero and let (x,,) be a sequence with 
elements in [0, 1); then (x,,) is u.d. if and only if for every subinterval [a, b) 
of [0, 1) 

lira ~ ~ f(:c,~)lt.,b)(:c,~ ) -- f(~)dx. 

In section 2 we will prove 

THEOREM 1. Let X be a compact metric space and p a non-negative 
normalized Borel measure on X and let f : X --. Iq be a bounded measurable 
function such that f is p-almost everywhere continuous and different from 
zero. Then the sequence (x,) with elements in X is p-u.d, if  and only if 

1 ~  f (1.3) ~v--.oolim ~ E f(x,~)lE(x,~) = f(x)dp. 
n i l  .1~ 

for every #-continuity set B c_ X. 
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Remark 1.4. By Halmos [3], Sec. 50-52, any non-negative normalized 

Borel measure on a compact metric space is regular, i.e. for any Borel set 

E __. X we have 

t~(E) = sup{~(C) : 6" C E, 6" closed} = inf{t~(D) : E c D, D open}. 

We use the notations int E for the interior of  E and/~  for the closure of a 

set E c _ X .  

In section 3 a generalization of  Theorem 1 to weighted means 
is established. Furthermore a concept of  discrepancy is introduced for 
sequences with elements in an arbitrary compact metric space; quantitative 
aspects of  Theorem 1 are investigated and extensions of  several results of 
Fleischer [1], [2] are obtained. 

2. Proof of Theorem 1. 

The proof of  Theorem 1 is based on the following well-known lemmas; 
see [8], p. 179, Exercises 1.5. and 1.6. 

LEMMA 1. Let (X, d) be a metric space and t~ a non-negative normalized 

Borel measure on X.  Then for  any x E X and any z > 0 there exists a ball 

B = B(x, r) = {y E X : d(z, y) < r} with 0 < r < ~ and p(bdB) = O. 

Proof Let us consider the family 7 of  all balls B(z, r) with center z 
and 0 < r < ~. Since bdB(z, r) C_ {y E z : d(z, y) = r}, the boundaries of  two 
balls B(Z, rl) and B(x, r2) with rl ://r2 are disjoint. Furthermore jr contains 

more than countably many balls and so, because of p(X)---1, there must 
exist a ball B(z, r) with p(bdB(z,r))= O. 

LEMMA 2. A sequence (z,)  with elements in a compact metric space X 

is t~-u.d, in X if and only i f  
N 

(2.1) lim inf'~_ lv(z,~) > l~(V') 
N ~ o 6  ~ 

11=1 

for all open sets V c_ X.  

Proof Let /~ be a t~-continuity set and put 6 ' - - ~ ,  D =int E. Then we 
have by (2.1) 

1 
lim inf 1E(z~,) >_ lira inf - -  ~ lo(z , )  > p(D) = p(E), 
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1 N N 

lira sup ~ E 1E(x,) < 1 - lim inf 1 E lxxe(x,) < 1 - / ~ ( X  \ C) =/~(C) =/~(E). 
N---,oo n = l  - -  N ~  / Y  n - 1  

By remark 1.2. it follows immediately that (x,) is t~-u.d. Now let (x,) 

be tJ-u.d. Let V be an arbitrary open set, C = X \ V .  Then, by Remark 1.4., 
for any ~ > 0 there exists an open set U __. C with t~(V \ C ) <  e. Applying 

Lemma 1 we can find for all x E U a ball B __. U with z E B and t~(bafl) = 0. 
h 

Since C is compact, there exists a finite covering F = [ ,JBi of  C consisting 
i -1  

of such balls Bi. Since F is a t~-continuity set and (x,) is t~-u.d., we obtain 
by Remark 1.2. and V 2 F ___ C, /~(F) - /~(C) < ~ that 

lim inf 1 ~ Iv(x,,) > 1 - lim sup ~ E lc(x,)  > 1 - lim sup ~ E lF(x,) = 
N- ' -*~  N n - I  - N - - - , ~  n = l  - -  N..-~r n = l  

= 1 - ~ ( F )  > 1 - ~ ( C )  - �9 = ~ W )  - 

for all e > 0. Hence we have (2.1) and the proof of  Lemma 2 is complete. 

LEMMA 3. Let f be a bounded real-valued function on the metric space 

(X, d). We put lira sup f(y) = S if and only if  for every ~ > 0 there is an 
y-"*Z 

open ball B = B(z, 6) = {V : d(x, y) < ~f} such that f(y)  < S + E for  any y E B 

and a sequence (x,)  with lim x, = x and lim f(x , )  = S. Furthermore we put 
B'~OO ~ " * 0 0  

lim inf f(y) = - lim sup(-f(y)) and 
7/---*Z It. . .~z 

co(f, z) = lim sup f (y)  - lim inf f(y). 

Then the set Do = {x ~ X : to(f,  x) ~ Yo) is closed. 

We omit a proof of this Lemma since it is well-known and standard. 

We begin the proof of Theorem 1 with the observation that (1.3) 
immediately follows from the t~-u.d, o f  the sequence (x,) because of Remark 
1.2. Now let g = g ( f ) =  {x E X :  f ( x ) =  0} denote all zero-points of f and 

D = D(.f) the set of all discontinuity points of  f .  For every integer m > 1 

we set | 

Z., = {x ~ X : If(x)l <_ ~ )  

and 
1 _  

Dm= (~ E X "  w(f, x) > - ~ )  
- -  I , n 2  �9 
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Clearly, Z = I'~-1 g,,, and D = I.l~=~ D,,,, hence D is measurable (Dr,, 
closed). Since t~(g) = t~(D)= 0 and g,,, c_ ,r c_ g,,, I.J D (g,,, measurable),  we 
obtain 

(2.1) lira #(g, ntJD)= lira #(Z, . )=O because of  limsup#(g,,,OD)=O. 
r t l - - ~ o o  ~ l - - - e o 0  t l r l - - - e O0  

Hence we have for any e > 0 

(2.2) a(~,,, u D) < 

for all sufficiently large m > too(e). By L e m m a  3, D,,  is closed and so 

g , ,UD, , ,  is a compact set. Let V _ c X  be an open set and choose an 

arbitrary ~ > 0. Consider a fixed integer m > max(m0, ~). 
, i  

By (2.2) and Remark 1.4 there exists an open set 0" ___ (~,,,, U D,,,) and a 
compact  set 17 c_ V such that 

(2.3) ~,(~.,,, o D , )  < ~,(tr) < 2,, t,t'V \ 69 < ~. 

Furthermore for every point = ~ 17\ U, by Lemma  1, there exists an 
open ball B = B(=,r,,(=)) with #(bdB)= C and 

1 
(2.4) sup f ( v ) -  inf f(II) < ~-~. 

IEB loEB 

Since C \ U is compact  there is a finite covering B1,...,Bt (t minimal) 
of  17\0"  with open balls By(/ '= 1 , . . . t )  having property (2.4). Next we 
define a finite family Aj( / '=  1 . . . .  , t) of  disjoint, non-empty, measurable sets 
recursively by 

(2.5) Al = (17 \ 0") Cl Bl 

i - I  

as = ((17 \ u) n ns) \ (LJ a,). 
i = l  

We set .,4o = (V \ 6') o (17 n 0") and obtain 

t 

(2.6) #(.,4o) < 3~, 0 AS = V. 
J,.O 

For fixed A s put m s = i n f / ' ~ )  and M s = sup $(/,,). We obtain by the 
I~.~s ~eAs 

definition of  0" 

1 1 
(2.7) IMs l ,  Imsl >- - -  and M s  - ms < - -  (.7" = 1 , . . . , 0 .  

Ivi'l l'l'l, 2 
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Hence f is of  constant sign on Aj. First we suppose that f is positive 
1 I 

on Aj. Since M s > --  and m >  - we get 

(2.8) re_L> 1 . . . . .  I > I  I >_I ~ 0"=I , . . , . 0 - .  
M S  m j m  2 - m 

Furthermore by the hypothesis of  the theorem we obtain 

N N 

(2.9) liminf 1 ] ~  la,(x,) > liminf 1 ] ~  f (x , ) l&(x , )  = 
n--,.o N ,-I - Iv--,~ NMj  . -1  

I f  ra s = ~ ICz)d# ~ ~ - ~ # ( A j )  >__ (1 - e )# (As) .  
aj 

This estimate can be shown in the same way if f is negative on A s. 

Summing up f o r / = 0 ,  1 , . . . t  and using (2.6) we derive from (2.9) 

(2.10) 
N t N t 

liNm~f N E iv(a.) >- z.-., N--.oo ~'~ lira inf IN ~ l&(z.) _> E(I - r)#(Aj) >_ p(V)-4r. 
n~l j=0 .=1 j=l 

Since ~ > 0 can be taken arbitrary small, the proof of Theorem I is 

completed by Lemma 2. 

Since the metric d of X is only used to construct #-continuity sets, it 
is clear that Theorem I can be generalized to arbitrary compact Hausdorff 
spaces; the #-continuity sets can be constructed by means of Urysohn 
functions (cf. [8], p. 174). Furthermore the assumption on f can be slightly 

relaxed: 

THEOREM 1 ~ Let X be a compact Hausdorff space and # a 
non-negative normalized regular Borel meausre on X.  Let f : X--* Iq be a 
bounded, measurable and #-almost everywhere continuous function and let 

g( f )  = {:c E X : f ( z )  = 0}.  I f  

(2.11) #(g(f))  = 0 

o r  

(2.12) card Z(J)= 1, 

then any sequence (x,) of  points in X is #-u.d. if  and only if  

(2.13) I~ f lim ~ ~ f(a.)1~(:r.) = f(x)d# 
N---*oo 

n=l E 
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for every #-continuity set E c_ X. 

Proof. If (2.11) holds, the assertion follows in the same way as in 
the proof of Theorem 1 (using however open sets insetad of  balls). Now 
suppose that (2.12) holds and # ( Z ( / ) ) >  0. Let z be the only element of 
Z(/) and let E be an arbitrary #-continuity set. First we assume that z 

int (X \ B). Then ,t'(x) r 0 for every z ~/~. As in the proof of  Theorem 1 
we obtain that 

II 

lim inf 1 E 1E(x,,) > #(intE), 
N--,~ N 

n=l 

and similarly 

If z Eint E,  then 

l~ninf N ~ 1/~(x,,) _< #(~'). 

(2.14) lira 1 E lxxE(x,,) = #(X \ E). 
~=1 

Since # ( E ) + # ( X \ E ) =  1, it follows that also the set E satisfies (2.14), 
and the proof can be completed easily. 

3. A generalization and some quantitative aspects 

Let A = (a~,,) be a positive Toeplitz matrix (cf. [8]); i.e. 

> 0 lim ~ ann = 1, sup a~v,~ < oo. GNn 

n=l 

A sequence (x,,) is said to be (A, #)-u.d. if and only if 

(3.1) - f iim S'~ a~,,g(:r,,) = g(x)d# 
n-1 X 

1 
for all continuous real-valued functions g on X. In the case aN, = ~(1  < 

n < N) and ag,, = 0 (n > N) the classical concept of  #-u.d. is obtained. The 
proof of the following result runs along the same lines as the proof of 

Theorem 1. 
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THEOREM 2. Let X be a compact metric space and p a non-negative 
normalized Borel measure on X and let f be a bounded, measurable, 
real-valued and p-almost everywhere non-zero and continuous function on 
X;  A = (aN,) denotes a positive Toeplitz matrix. Then the sequence (z,), 
n = 1, 2... is (A, p)-u.d, i f  and only i f  

O 0  

(3.2) lim ~ a~r,,f(x,,)l~(x,,) = [ f(x)dl~ 
.N-coo . t  

n=l  E 

for  every p-continuity set E c X.  

Remark 3.3. 
equivalent to 

(3.4) 

It is easy to show (compare to Remark 1.2) that (3.2) is 

- f lim ~-'~alv.f(x,,)g(x,,)= f(z)g(x)dp 
N--*O0 i...,4 

.=I X 

for all bounded, measurable, real-valued functions g the disconties of which 

are contained in a null set. 

Furthermore, similar to TheOrem 1 a stronger version of  Theorem 2 can 

he shown. 

Suggested by [1], [2], we consider an arbitrary normed space B and 
a bounded linear operator T : B - - .  G(X), where G(X) denotes the Banach 
space of all real-valued continuous functions (with uniform convergence). 

By (TB, 1) we denote the linear subspace of  G'(X) spanned by the 

T-image of  B and the identity: (TB, 1) denotes the closure of (TB, 1) (in 
C(X)). Let T be as above and ,f a given bounded real-valued and g-almost 

everywhere continuous and non-zero function. Then we introduce for any 

sequence (zn), x,, e X the linear functionals L N : B - - *  Iq 

- I (3.5) Ln(9) = E aNnf(xn)(Tg)(zn) -- f(x)(Tg)(z)dp. 

.=I X 

In the followng IlL,vii denotes the norm of  LN. 

1 
Example 3.6. Let A = (a~r,,) be the arthmetic mean: aN,, = ~  for 

1 < n < N,  ann = 0 for n > N; let X = [0, 1), B = L 1 [0, 1] and T is defined by 

1 

(Tg)(z) = f l[o,p)(x)g(y)dy for g �9 LI[O, 1]. 

0 
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Let (x.) bean arbitrary sequence with z,, �9 [0,1). Obviously T is a 
bounded linear operator. For the linear functional /.~r �9 (L~) * we have 

L~(g)  = ~ / ' ( x . ) ( T g ) ( ~ . ) -  / ' (~)(Tg)(x)ax = 
na-I 0 

N 1 1 1 

tt=l 0 0 0 

o/ ) 1 N f(zn)l[o,v)(Zn) - f ( z )d z  g(v)dy. 

o 

From this it follows that 

JV It 

1 ~ f(mn)l[o,lt)(m.) _ f f ( z ) d x [ .  IILjvll-- sup IF 
0--<It----- 1 tt=l 0 

Hence IIL~rll is a generalization of the classical concept of  discrepancy 
(cf. [4] and [8]). The following theorem is a generalization of  the 
well-known fact that a sequence is u.d. if and only if its discrepancy tends 
to 0. 

THEOREM 3. Let T be a compact operator given as above and 

(TB, 1)= G(X). Then the sequence (z,) with elements in a compact metric 

space X is (A, t~)-u.d, if and only if limN..-.oo IILNII = 0. (A = (aN,) denotes a 
positive Toepliz matrix, t~ a non-negative Borel measure and L~r is defined 
as in (3.5)). 

Proof. If lim IILNII = 0 then (3.4) holds  for  all g �9 TB.  Since 
N--coo 

lim~r--.oo ~ 1  aN, --- 1, (3.4) holds also for g = 1. Furthermore super IILNII < oo 
and so (3.4) is valid for all g �9 C(X). By Remark 3.3, (z,) is (A,~)-u.d. 

Now we assume that (3.4) holds for all g �9 C(X). Since T is compact it 
follows that the image T S  of  the unit sphere S of  B is relatively compact. 

Hence for any ~ > 0  there exists a finite e-net m, . - . , g ,  in TS.  Let g e 8  
and ~ > 0; then there exist positive integers N(~) and j with 1 < j < r such 
that for all n > N(e) 

oo 

n = |  
X 



CRIIV_RION FOR THE UNIFORM DISTRIBUTION OF SEQUENCES, ETC. 341 

o o  oo  

I 
n = l  t t = l  

+I f: o..,<-.>,,<=.> - f ,(=>,;<->,.I + If ,<->,,(->,.- f 
r,=l X X X 

< M F 6  + e + Fs, 

where M = s u p ~ a N ~ ,  F = sup lf(x) I. Hence lim~r__..o IlL,vii = 0 and the proof 
N n=l zcr.X 

of Theorem 3 is complete. 

Remark 3.7. In [1] it is shown that for any normed space B and any 

compact metric space X there exists a compact operator T with the property 
(TB, 1)= C(X). Furthermore we want to remark that the following converse 

of Theorem 3 can be proved: 

Assume that (x,,) is (A,l~)-u.d. if  and only i f  ~ooll/,~ll--0. Then T is 

compact and <TB, 1) = C(X). 

We do not work out the proof in detail since it is rather technical; for 

a special case see [2], Satz 2. 
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