RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO Serie II, Tomo XXXVI (1987), pp.332-342

A CRITERION FOR THE UNIFORM DISTRIBUTION OF SEQUENCES IN COMPACT METRIC SPACES

ROBERT F. TICHY

Let X be a compact metric space, le μ be a non-negative normalized Borel measure on X and let f be a measurable bounded real-valued function defined on X such that f is μ -almost everywhere continuous and different from zero. It is proved that a sequence (x_n) , $n = 1, 2, \ldots$ of points in X is μ -uniformly distributed if and only if for every Borel set $E \subseteq X$ with $\mu(bd(E)) = 0$ we have

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^N f(x_n)\mathbf{1}_E(x_n) = \int_E f(x)d\mu(x),$$

where l_E denotes the characteristic function of E and bdE the boundary of E. Furthermore some quantitative aspects and generalizations of this theorem are discussed.

1. Introduction.

In his classical paper [9] H. Weyl investigated uniformly distributed sequences of points in the unit interval [0, 1).

A sequence (x_n) , n = 1, 2, ... of points $x_n \in [0, 1)$ is said to be uniformly distributed (for short: u.d.) if the number of elements of $x_1, ..., x_N$ contained in an arbitrary subinterval $I \subseteq [0, 1)$ is asymptotically N-times the length of I.E. Hlawka [5], [6] generalized this concept to sequences with elements in compact metric spaces.

Let X be a compact metric space and μ a non-negative normalized Borel measure on X. A sequence (x_n) with elements $x_n \in X$ is said to be u.d. with respect to μ (for short: μ -u.d.) if

(1.3)
$$\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^N f(x_n) = \int_X d\mu$$

for all continuous real-valued functions f on X. In the case of the unit interval X = [0, 1) with the ordinary Lebesgue measure, (1.1) is equivalent to the above definition (cf. [8], Theorem 1.1, p. 2).

For the basic facts of the theory of uniform distribution we refer to the monographs of E. Hlawka [4] and of L. Kuipers and H. Niederreiter [8].

Remark 1.3. It is an easy consequence of the proof of [8], Theorem 1.2, p. 175 that a sequence (x_n) with elements in a compact metric space is μ -u.d. if and only if (1.1.) holds for all bounded measurable functions f that are continuous on a set of measure 1. For example, a characteristic function 1_E of a Borel set E $(1_E(x) = 1$ for $x \in E$ and $1_E(x) = 0$ for $x \notin E$) has this property if $\mu(bdE) = 0$; such Borel sets are called μ -continuity sets.

By [8], Theorem 1.2, p. 175, (x_n) is μ -u.d. if and only if (1.1.) holds for all characteristic functions l_E of μ -continuity sets E.

The object of this article is to give an extension of the following result of J. Horbowicz [7]: Let $f: [0,1) \to \mathbb{R}$ be a Riemann-integrable function which is almost everywhere non-zero and let (x_n) be a sequence with elements in [0,1); then (x_n) is u.d. if and only if for every subinterval [a,b)of [0,1)

$$\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^N f(x_n)\mathbf{1}_{[a,b]}(x_n)=\int_a^b f(x)dx.$$

In section 2 we will prove

THEOREM 1. Let X be a compact metric space and μ a non-negative normalized Borel measure on X and let $f: X \to \mathbb{R}$ be a bounded measurable function such that f is μ -almost everywhere continuous and different from zero. Then the sequence (x_n) with elements in X is μ -u.d. if and only if

(1.3)
$$\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^n f(x_n)\mathbf{1}_E(x_n) = \int_E f(x)d\mu.$$

for every μ -continuity set $E \subseteq X$.

Remark 1.4. By Halmos [3], Sec. 50-52, any non-negative normalized Borel measure on a compact metric space is regular, i.e. for any Borel set $E \subseteq X$ we have

 $\mu(E) = \sup\{\mu(C) : C \subseteq E, C \text{ closed}\} = \inf\{\mu(D) : E \subseteq D, D \text{ open}\}.$

We use the notations int E for the interior of E and \overline{E} for the closure of a set $E \subseteq X$.

In section 3 a generalization of Theorem 1 to weighted means is established. Furthermore a concept of discrepancy is introduced for sequences with elements in an arbitrary compact metric space; quantitative aspects of Theorem 1 are investigated and extensions of several results of Fleischer [1], [2] are obtained.

2. Proof of Theorem 1.

The proof of Theorem 1 is based on the following well-known lemmas; see [8], p. 179, Exercises 1.5. and 1.6.

LEMMA 1. Let (X, d) be a metric space and μ a non-negative normalized Borel measure on X. Then for any $x \in X$ and any $\varepsilon > 0$ there exists a ball $B = B(x,r) = \{y \in X : d(x,y) < r\}$ with $0 < r < \varepsilon$ and $\mu(bdB) = 0$.

Proof. Let us consider the family \mathcal{F} of all balls B(x,r) with center x and $0 < r < \varepsilon$. Since $bdB(x,r) \subseteq \{y \in x : d(x,y) = r\}$, the boundaries of two balls $B(x,r_1)$ and $B(x,r_2)$ with $r_1 \neq r_2$ are disjoint. Furthermore \mathcal{F} contains more than countably many balls and so, because of $\mu(X) = 1$, there must exist a ball B(x,r) with $\mu(bdB(x,r)) = 0$.

LEMMA 2. A sequence (x_n) with elements in a compact metric space X is μ -u.d. in X if and only if

(2.1)
$$\lim_{N\to\infty}\inf\sum_{n=1}^N \mathbf{1}_V(x_n) \ge \mu(V)$$

for all open sets $V \subseteq X$.

Proof. Let E be a μ -continuity set and put $C = \overline{E}, D = \text{int } E$. Then we have by (2.1)

$$\liminf_{N\to\infty}\frac{1}{N}\mathbf{1}_{E}(x_{N})\geq \liminf_{N\to\infty}\frac{1}{N}\sum_{n=1}^{N}\mathbf{1}_{D}(x_{n})\geq \mu(D)=\mu(E),$$

$$\limsup_{N\to\infty}\frac{1}{N}\sum_{n=1}^N \mathbf{1}_E(x_n) \leq 1 - \liminf_{N\to\infty}\frac{1}{N}\sum_{n=1}^N \mathbf{1}_{X\setminus C}(x_n) \leq 1 - \mu(X\setminus C) = \mu(C) = \mu(E).$$

By remark 1.2. it follows immediately that (x_n) is μ -u.d. Now let (x_n) be μ -u.d. Let V be an arbitrary open set, $C = X \setminus V$. Then, by Remark 1.4., for any $\varepsilon > 0$ there exists an open set $U \supseteq C$ with $\mu(V \setminus C) \le \varepsilon$. Applying Lemma 1 we can find for all $x \in U$ a ball $B \subseteq U$ with $x \in B$ and $\mu(b\alpha\beta) = 0$. Since C is compact, there exists a finite covering $F = \bigcup_{i=1}^{h} B_i$ of C consisting of such balls B_i . Since F is a μ -continuity set and (x_n) is μ -u.d., we obtain by Remark 1.2. and $V \supseteq F \supseteq C$, $\mu(F) - \mu(C) \le \varepsilon$ that

$$\liminf_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} \mathbb{1}_{V}(x_{n}) \ge 1 - \limsup_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} \mathbb{1}_{C}(x_{n}) \ge 1 - \limsup_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} \mathbb{1}_{F}(x_{n}) =$$
$$= 1 - \mu(F) \ge 1 - \mu(C) - \varepsilon = \mu(V) - \varepsilon$$

for all $\varepsilon > 0$. Hence we have (2.1) and the proof of Lemma 2 is complete.

LEMMA 3. Let f be a bounded real-valued function on the metric space (X, d). We put $\limsup_{y \to x} f(y) = S$ if and only if for every $\varepsilon > 0$ there is an open ball $B = B(x, \delta) = \{y : d(x, y) < \delta\}$ such that $f(y) \le S + \varepsilon$ for any $y \in B$ and a sequence (x_n) with $\lim_{n \to \infty} x_n = x$ and $\lim_{n \to \infty} f(x_n) = S$. Furthermore we put $\liminf_{y \to x} f(y) = -\limsup_{n \to \infty} (-f(y))$ and

$$\omega(f, x) = \limsup_{y \to x} f(y) - \liminf_{y \to x} f(y).$$

Then the set $D_0 = \{x \in X : \omega(f, x) \ge y_0\}$ is closed.

We omit a proof of this Lemma since it is well-known and standard.

We begin the proof of Theorem 1 with the observation that (1.3) immediately follows from the μ -u.d. of the sequence (x_n) because of Remark 1.2. Now let $Z = Z(f) = \{x \in X : f(x) = 0\}$ denote all zero-points of f and D = D(f) the set of all discontinuity points of f. For every integer $m \ge 1$ we set

$$Z_m = \{x \in X : |f(x)| \le \frac{1}{m}\}$$

and

$$D_m = \{x \in X : \omega(f, x) \ge \frac{1}{m^2}\}.$$

Clearly, $Z = \bigcap_{m=1}^{\infty} Z_m$ and $D = \bigcup_{m=1}^{\infty} D_m$, hence D is measurable $(D_m \text{ closed})$. Since $\mu(Z) = \mu(D) = 0$ and $Z_m \subseteq \overline{Z}_m \subseteq Z_m \cup D$ (Z_m measurable), we obtain

(2.1)
$$\lim_{m \to \infty} \mu(Z_m \cup D) = \lim_{m \to \infty} \mu(Z_m) = 0 \text{ because of } \limsup_{m \to \infty} \mu(Z_m \cup D) = 0.$$

Hence we have for any $\varepsilon > 0$

$$(2.2) \qquad \qquad \mu(\bar{Z}_m \cup D) < \varepsilon$$

for all sufficiently large $m \ge m_0(\varepsilon)$. By Lemma 3, D_m is closed and so $\overline{Z}_m \cup D_m$ is a compact set. Let $V \subseteq X$ be an open set and choose an arbitrary $\varepsilon > 0$. Consider a fixed integer $m \ge \max(m_0, \frac{1}{\varepsilon})$.

By (2.2) and Remark 1.4 there exists an open set $U \supseteq (\overline{Z}_m \cup D_m)$ and a compact set $C \subseteq V$ such that

(2.3)
$$\mu(\bar{Z}_m \cup D_m) < \mu(U) < 2\varepsilon, \ \mu(V \setminus C) < \varepsilon.$$

Furthermore for every point $x \in C \setminus U$, by Lemma 1, there exists an open ball $B = B(x, r_m(x))$ with $\mu(bdB) = C$ and

(2.4)
$$\sup_{\mathbf{y}\in B}f(\mathbf{y})-\inf_{\mathbf{y}\in B}f(\mathbf{y})<\frac{1}{m^2}.$$

Since $C \setminus U$ is compact there is a finite covering B_1, \ldots, B_t (t minimal) of $C \setminus U$ with open balls $B_j(j = 1, \ldots, t)$ having property (2.4). Next we define a finite family $A_j(j = 1, \ldots, t)$ of disjoint, non-empty, measurable sets recursively by

(2.5)
$$A_1 = (C \setminus U) \cap B_1$$
$$A_j = ((C \setminus U) \cap B_j) \setminus (\bigcup_{i=1}^{i-1} A_i)$$

We set $A_0 = (V \setminus C) \cup (C \cap U)$ and obtain

(2.6)
$$\mu(A_0) < 3\varepsilon, \quad \bigcup_{J=0}^t A_J = V.$$

For fixed A_j put $m_j = \inf_{y \in A_j} f(y)$ and $M_j = \sup_{y \in A_j} f(y)$. We obtain by the definition of U

(2.7)
$$|M_j|, |m_j| \ge \frac{1}{m}$$
 and $M_j - m_j < \frac{1}{m_2}$ $(j = 1, ..., t).$

Hence f is of constant sign on A_j . First we suppose that f is positive on A_j . Since $M_j \ge \frac{1}{m}$ and $m \ge \frac{1}{\varepsilon}$ we get

(2.8)
$$\frac{m_j}{M_j} > 1 - \frac{1}{m_j m^2} \ge 1 - \frac{1}{m} \ge 1 - \varepsilon \quad (j = 1, \dots, t).$$

Furthermore by the hypothesis of the theorem we obtain

(2.9)
$$\liminf_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} \mathbf{1}_{A_j}(x_n) \ge \liminf_{N \to \infty} \frac{1}{NM_j} \sum_{n=1}^{N} f(x_n) \mathbf{1}_{A_j}(x_n) =$$
$$= \frac{1}{M_j} \int_{A_j} f(x) d\mu \ge \frac{m_j}{M_j} \mu(A_j) \ge (1-\varepsilon) \mu(A_j).$$

This estimate can be shown in the same way if f is negative on A_j .

Summing up for j = 0, 1, ...t and using (2.6) we derive from (2.9)

$$(2.10) \lim_{N \to \infty} \inf \frac{1}{N} \sum_{n=1}^{N} \mathbb{1}_{V}(x_{n}) \geq \sum_{j=0}^{t} \liminf_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} \mathbb{1}_{A_{j}}(x_{n}) \geq \sum_{j=1}^{t} (1-\varepsilon)\mu(A_{j}) \geq \mu(V) - 4\varepsilon.$$

Since $\varepsilon > 0$ can be taken arbitrary small, the proof of Theorem 1 is completed by Lemma 2.

Since the metric d of X is only used to construct μ -continuity sets, it is clear that Theorem 1 can be generalized to arbitrary compact Hausdorff spaces; the μ -continuity sets can be constructed by means of Urysohn functions (cf. [8], p. 174). Furthermore the assumption on f can be slightly relaxed:

THEOREM 1*. Let X be a compact Hausdorff space and μ a non-negative normalized regular Borel meausre on X. Let $f: X \to \mathbb{R}$ be a bounded, measurable and μ -almost everywhere continuous function and let $Z(f) = \{x \in X : f(x) = 0\}$. If

(2.11)
$$\mu(Z(f)) = 0$$

or

(2.12)
$$card Z(f) = 1,$$

then any sequence (x_n) of points in X is μ -u.d. if and only if

(2.13)
$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} f(x_n) \mathbf{1}_E(x_n) = \int_E f(x) d\mu$$

for every μ -continuity set $E \subseteq X$.

Proof. If (2.11) holds, the assertion follows in the same way as in the proof of Theorem 1 (using however open sets insetad of balls). Now suppose that (2.12) holds and $\mu(Z(f)) > 0$. Let z be the only element of Z(f) and let E be an arbitrary μ -continuity set. First we assume that $z \in$ int $(X \setminus E)$. Then $f(x) \neq 0$ for every $x \in \overline{E}$. As in the proof of Theorem 1 we obtain that

$$\liminf_{N\to\infty}\frac{1}{N}\sum_{n=1}^n \mathbf{1}_E(x_n) \ge \mu(\mathrm{int} E),$$

and similarly

$$\liminf_{N\to\infty}\frac{1}{N}\sum_{n=1}^n\mathbf{1}_{\bar{E}}(x_n)\leq \mu(\bar{E}).$$

If $z \in int E$, then

(2.14)
$$\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^{n}1_{X\setminus E}(x_n)=\mu(X\setminus E).$$

Since $\mu(E) + \mu(X \setminus E) = 1$, it follows that also the set E satisfies (2.14), and the proof can be completed easily.

3. A generalization and some quantitative aspects

Let $A = (a_{Nn})$ be a positive Toeplitz matrix (cf. [8]); i.e.

$$a_{Nn} \ge 0$$
 $\lim_{N\to\infty} \sum_{n=1}^{\infty} a_{Nn} = 1$, $\sup a_{Nn} < \infty$.

A sequence (x_n) is said to be (A, μ) -u.d. if and only if

(3.1)
$$\lim_{N\to\infty}\sum_{n=1}^{\infty}a_{Nn}g(x_n)=\int_Xg(x)d\mu$$

for all continuous real-valued functions g on X. In the case $a_{Nn} = \frac{1}{N}(1 \le n \le N)$ and $a_{Nn} = 0$ (n > N) the classical concept of μ -u.d. is obtained. The proof of the following result runs along the same lines as the proof of Theorem 1.

338

THEOREM 2. Let X be a compact metric space and μ a non-negative normalized Borel measure on X and let f be a bounded, measurable, real-valued and μ -almost everywhere non-zero and continuous function on X; $A = (a_{Nn})$ denotes a positive Toeplitz matrix. Then the sequence (x_n) , n = 1, 2... is (A, μ) -u.d. if and only if

(3.2)
$$\lim_{N\to\infty}\sum_{n=1}^{\infty}a_{Nn}f(x_n)\mathbf{1}_E(x_n)=\int_E f(x)d\mu$$

for every μ -continuity set $E \subseteq X$.

Remark 3.3. It is easy to show (compare to Remark 1.2) that (3.2) is equivalent to

(3.4)
$$\lim_{N\to\infty}\sum_{n=1}^{\infty}a_{Nn}f(x_n)g(x_n)=\int_Xf(x)g(x)d\mu$$

for all bounded, measurable, real-valued functions g the disconties of which are contained in a null set.

Furthermore, similar to Theorem 1 a stronger version of Theorem 2 can be shown.

Suggested by [1], [2], we consider an arbitrary normed space B and a bounded linear operator $T: B \to C(X)$, where C(X) denotes the Banach space of all real-valued continuous functions (with uniform convergence).

By $\langle TB, 1 \rangle$ we denote the linear subspace of C(X) spanned by the *T*-image of *B* and the identity: $\overline{\langle TB, 1 \rangle}$ denotes the closure of $\langle TB, 1 \rangle$ (in C(X)). Let *T* be as above and *f* a given bounded real-valued and μ -almost everywhere continuous and non-zero function. Then we introduce for any sequence $(x_n), x_n \in X$ the linear functionals $L_N : B \to \mathbb{R}$

(3.5)
$$L_n(g) = \sum_{n=1}^{\infty} a_{Nn} f(x_n)(Tg)(x_n) - \int_X f(x)(Tg)(x) d\mu.$$

In the following $||L_N||$ denotes the norm of L_N .

Example 3.6. Let $A = (a_{Nn})$ be the arthmetic mean: $a_{Nn} = \frac{1}{N}$ for $1 \le n \le N$, $a_{Nn} = 0$ for n > N; let X = [0, 1), $B = L^1[0, 1]$ and T is defined by

$$(Tg)(x) = \int_{0}^{1} 1_{[0,g)}(x)g(y)dy \text{ for } g \in L^{1}[0,1].$$

Let (x_n) bean arbitrary sequence with $x_n \in [0, 1)$. Obviously T is a bounded linear operator. For the linear functional $L_N \in (L^1)^*$ we have

$$L_{N}(g) = \frac{1}{N} \sum_{n=1}^{N} f(x_{n})(Tg)(x_{n}) - \int_{0}^{1} f(x)(Tg)(x)dx =$$

$$\frac{1}{N} \sum_{n=1}^{N} f(x_{n}) \int_{0}^{1} 1_{[0,y)}(x_{n})g(y)dy - \int_{0}^{1} f(x) \int_{0}^{1} 1_{[0,y)}(x)g(y)dydx =$$

$$\int_{0}^{1} \left(\frac{1}{N} \sum_{n=1}^{N} f(x_{n})1_{[0,y)}(x_{n}) - \int_{0}^{y} f(x)dx\right)g(y)dy.$$

From this it follows that

$$||L_N|| = \sup_{0 \le y \le 1} \Big| \frac{1}{N} \sum_{n=1}^N f(x_n) \mathbb{1}_{[0,y]}(x_n) - \int_0^y f(x) dx \Big|.$$

Hence $||L_N||$ is a generalization of the classical concept of discrepancy (cf. [4] and [8]). The following theorem is a generalization of the well-known fact that a sequence is u.d. if and only if its discrepancy tends to 0.

THEOREM 3. Let T be a compact operator given as above and $\overline{\langle TB,1\rangle} = C(X)$. Then the sequence (x_n) with elements in a compact metric space X is (A, μ) -u.d. if and only if $\lim_{N\to\infty} ||L_N|| = 0$. $(A = (a_{Nn})$ denotes a positive Toepliz matrix, μ a non-negative Borel measure and L_N is defined as in (3.5)).

Proof. If $\lim_{N\to\infty} ||L_N|| = 0$ then (3.4) holds for all $g \in TB$. Since $\lim_{N\to\infty} \sum_{n=1}^{\infty} a_{Nn} = 1$, (3.4) holds also for $g \equiv 1$. Furthermore $\sup_N ||L_N|| < \infty$ and so (3.4) is valid for all $g \in C(X)$. By Remark 3.3, (x_n) is (A, μ) -u.d. Now we assume that (3.4) holds for all $g \in C(X)$. Since T is compact it follows that the image TS of the unit sphere S of B is relatively compact. Hence for any $\varepsilon > 0$ there exists a finite ε -net g_1, \ldots, g_r in \overline{TS} . Let $g \in S$ and $\varepsilon > 0$; then there exist positive integers $N(\varepsilon)$ and j with $1 \le j \le r$ such that for all $n \ge N(\varepsilon)$

$$\Big|\sum_{n=1}^{\infty}a_{Nn}f(x_n)(Tg)(x_n)-\int_Xf(x)(Tg)(x)d\mu\Big|\leq$$

$$\begin{split} \Big|\sum_{n=1}^{\infty}a_{Nn}f(x_{n})(Tg)(x_{n}) - \sum_{n=1}^{\infty}a_{Nn}f(x_{n})g_{j}(x_{n})\Big| + \\ + \Big|\sum_{n=1}^{\infty}a_{Nn}f(x_{n})g_{j}(x_{n}) - \int_{X}f(x)g_{j}(x)d\mu\Big| + \Big|\int_{X}f(x)g_{j}(x)d\mu - \int_{X}f(x)(T_{g})(x)d\mu\Big| \\ < MF\varepsilon + \varepsilon + F\varepsilon, \end{split}$$

where $M = \sup_{N} \sum_{n=1}^{\infty} a_{Nn}$, $F = \sup_{x \in X} |f(x)|$. Hence $\lim_{N \to \infty} ||L_N|| = 0$ and the proof of Theorem 3 is complete.

Remark 3.7. In [1] it is shown that for any normed space *B* and any compact metric space *X* there exists a compact operator *T* with the property $\overline{\langle TB,1\rangle} = C(X)$. Furthermore we want to remark that the following converse of Theorem 3 can be proved:

Assume that (x_n) is (A, μ) -u.d. if and only if $\lim_{N\to\infty} ||L_N|| = 0$. Then T is compact and $\langle TB, 1 \rangle = C(X)$.

We do not work out the proof in detail since it is rather technical; for a special case see [2], Satz 2.

Acknowledgement.

I am grateful to the referee for several valuable comments, especially for pointing out that in Theorem 1 the assumptions on X and f can be relaxed.

REFERENCES

- [1] Fleischer W., Diskrepanzbegriff fr kompakte Rume, Anzeiger sterr. Akad. Wiss., math.-naturw. Klasse 1981, 127-131..
- [2] Fleischer W., Charakterisierung einer Klasse von linearen Operatoren, Sitzungsber. sterr. Akad. Wiss., math.-naturw. Kl. 191 (1982), 157-163.
- [3] Halmos P., Measure Theory, Van Nostrand, Princeton, N.J., 1950.
- [4] Hlawka E., Theorie der Gleichverteilung, Bibl. Inst., Mannheim-Wien-Zrich, 1979.
- [5] Hlawka E., Folgen auf kompakten Rumen, Abh. Math. Seminar Hamburg 20 (1956), 223-241.
- [6] Hlawka E., Zur formalen Theorie der Gleichverteilung in kompakten Gruppen, Rend. Circ. Math. Palermo 4 (1955), 115-120.

- [7] Horbowicz J., Criteria for uniform distribution, Indag. Math. 43 (1981), 301-307.
- [8] Kuipers L., Niederreiter H., Uniform Distribution of Sequences, John Wiley and Sons, New York, 1974..
- [9] Weyl H., ber die Gleichverteilung von Zahlen mod Eins, Math. Ann. 77 (1916), 313-352.

Pervenuto il 12 marzo 1986,

in forma definitiva il 4 marzo 1987

Robert F. Tichy Abt. f. Techn. Math. Technical Univ. Vienna Wiedner Hauptstrasse 8-10 1040 Vienna, AUSTRIA