RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO
Serie II, Tomo XXXVI (1987), pp.332-342

A CRITERION FOR THE UNIFORM DISTRIBUTION OF SEQUENCES IN COMPACT METRIC SPACES

ROBERT E TICHY

Let X be a compact metric space, le μ be a non-negative normalized Borel measure on X and let f be a measurable bounded real-valued function defined on X such that f is μ -almost everywhere continuous and different from zero. It is proved that a sequence (x_n) , $n = 1,2,...$ of points in X is μ -uniformly distributed if and only if for every Borel set $E \subseteq X$ with $\mu(bd(E))=0$ we have

$$
\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^N f(x_n)1_E(x_n)=\int\limits_E f(x)d\mu(x),
$$

where 1_E denotes the characteristic function of E and $b dE$ the boundary of E . Furthermore some quantitative aspects and generalizations of this theorem are discussed.

1. Introduction.

In his classical paper [9] H. Weyl investigated uniformly distributed sequences of points in the unit interval $[0, 1)$.

A sequence (x_n) , $n = 1, 2, \ldots$ of points $x_n \in [0, 1)$ is said to be uniformly distributed (for short: u.d.) if the number of elements of x_1, \ldots, x_N contained in an arbitrary subinterval $I \subseteq [0, 1)$ is asymptotically N-times the length of I.E. Hlawka [5], [6] generalized this concept to sequences with elements in compact metric spaces.

Let X be a compact metric space and μ a non-negative normalized Borel measure on X. A sequence (x_n) with elements $x_n \in X$ is said to be u.d. with respect to μ (for short: μ -u.d.) if

(1.3)
$$
\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} f(x_n) = \int_{X} d\mu
$$

for all continuous real-valued functions f on X . In the case of the unit interval $X = \{0, 1\}$ with the ordinary Lebesgue measure, (1.1) is equivalent to the above definition (cf. [8], Theorem 1.1, p. 2).

For the basic facts of the theory of uniform distribution we refer to the monographs of E. Hlawka [4] and of L. Kuipers and H. Niederreiter [8].

Remark 1.3. It is an easy consequence of the proof of [8], Theorem 1.2, p. 175 that a sequence (x_n) with elements in a compact metric space is μ -u.d. if and only if (1.1.) holds for all bounded measurable functions f that are continuous on a set of measure 1. For example, a characteristic function 1_E of a Borel set E ($1_E(x) = 1$ for $x \in E$ and $1_E(x) = 0$ for $x \notin E$) has this property if $\mu(bdE) = 0$; such Borel sets are called μ -continuity sets.

By [8], Theorem 1.2, p. 175, (x_n) is μ -u.d. if and only if (1.1.) holds for all characteristic functions 1_E of μ -continuity sets E.

The object of this article is to give an extension of the following result of J. Horbowicz [7]: Let $f:[0, 1) \rightarrow \mathbb{R}$ be a Riemann-integrable function which is almost everywhere non-zero and let (x_n) be a sequence with elements in [0, 1); then (x_n) is u.d. if and only if for every subinterval (a, b) of [0, 1)

$$
\lim_{N\to\infty}\frac{1}{N}\sum_{n=1}^N f(x_n)1_{[a,b)}(x_n)=\int_a^b f(x)dx.
$$

In section 2 we will prove

THEOREM 1. Let X be a compact metric space and μ a non-negative *normalized Borel measure on X and let* $f: X \rightarrow \mathbb{R}$ be a bounded measurable *function such that f is p-almost everywhere continuous and different from* zero. Then the sequence (x_n) with elements in X is μ -u.d. if and only if

(1.3)
$$
\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{n} f(x_n) 1_E(x_n) = \int_{E} f(x) d\mu.
$$

for every μ *-continuity set* $E \subseteq X$ *.*

Remark 1.4. By Halmos [3], Sec. 50-52, any non-negative normalized Borel measure on a compact metric space is regular, i.e. for any Borel set $E \subset X$ we have

 $\mu(E) = \sup{\{\mu(C) : C \subseteq E, C \text{ closed}\}} = \inf{\{\mu(D) : E \subseteq D, D \text{ open}\}}.$

We use the notations int E for the interior of E and \bar{E} for the closure of a set $E \subset X$.

In section 3 a generalization of Theorem 1 to weighted means is established. Furthermore a concept of discrepancy is introduced for sequences with elements in an arbitrary compact metric space; quantitative aspects of Theorem 1 are investigated and extensions of several results of Fleischer [1], [2] are obtained.

2. Proof of Theorem 1.

The proof of Theorem 1 is based on the following well-known lemmas; **see** [8], p. 179, Exercises 1.5. and 1.6.

LEMMA 1. Let (X, d) be a metric space and μ a non-negative normalized *Borel measure on X. Then for any* $x \in X$ and any $\varepsilon > 0$ there exists a ball $B = B(x, r) = \{y \in X : d(x, y) < r\}$ with $0 < r < \varepsilon$ and $\mu(bdB) = 0$.

Proof. Let us consider the family $\mathcal F$ of all balls $B(x, r)$ with center x and $0 < r < \varepsilon$. Since $bdB(x,r) \subseteq \{y \in x : d(x,y) = r\}$, the boundaries of two balls $B(x, r_1)$ and $B(x, r_2)$ with $r_1 \neq r_2$ are disjoint. Furthermore $\mathcal F$ contains more than countably many balls and so, because of $\mu(X) = 1$, there must exist a ball $B(x, r)$ with $\mu(bdB(x, r)) = 0$.

LEMMA 2. A sequence (x_n) with elements in a compact metric space X $i s$ μ - μ .d. in X if and only if

(2.1)
$$
\lim_{N \to \infty} \inf \sum_{n=1}^{N} 1_V(x_n) \ge \mu(V)
$$

for all open sets $V \subseteq X$.

Proof. Let E be a μ -continuity set and put $C = \bar{E}$, D =int E. Then we have by (2.1)

$$
\liminf_{N \to \infty} \frac{1}{N} 1_E(x_N) \ge \liminf_{N \to \infty} \frac{1}{N} \sum_{n=1}^N 1_D(x_n) \ge \mu(D) = \mu(E),
$$

CRITERION FOR THE UNIFORM DISTRIBUTION OF SEQUENCES, ETC. 335

$$
\limsup_{N\to\infty}\frac{1}{N}\sum_{n=1}^N 1_E(x_n)\leq 1-\liminf_{N\to\infty}\frac{1}{N}\sum_{n=1}^N 1_{X\setminus C}(x_n)\leq 1-\mu(X\setminus C)=\mu(C)=\mu(E).
$$

By remark 1.2. it follows immediately that (x_n) is μ -u.d. Now let (x_n) be μ -u.d. Let V be an arbitrary open set, $C = X \setminus V$. Then, by Remark 1.4., for any $\epsilon > 0$ there exists an open set $U \supseteq C$ with $\mu(V \setminus C) \leq \epsilon$. Applying Lemma 1 we can find for all $x \in U$ a ball $B \subseteq U$ with $x \in B$ and $\mu(b\alpha\beta) = 0$. h Since C is compact, there exists a finite covering $F = \int B_i$ of C consisting of such balls B_i . Since F is a μ -continuity set and (x_n) is μ -u.d., we obtain by Remark 1.2. and $V \supseteq F \supseteq C$, $\mu(F) - \mu(C) \leq \varepsilon$ that

$$
\liminf_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} 1_V(x_n) \ge 1 - \limsup_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} 1_C(x_n) \ge 1 - \limsup_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} 1_F(x_n) =
$$
\n
$$
= 1 - \mu(F) \ge 1 - \mu(C) - \varepsilon = \mu(V) - \varepsilon
$$

for all $\epsilon > 0$. Hence we have (2.1) and the proof of Lemma 2 is complete.

LEMMA 3. *Let f be a bounded real-valued function on the metric space* (X, d) . We put $\limsup f(y) = S$ if and only if for every $\varepsilon > 0$ there is an *y-"*Z open ball* $B = B(x, \delta) = \{y : d(x, y) < \delta\}$ *such that* $f(y) \leq S + \varepsilon$ *for any* $y \in B$ *and a sequence* (x_n) with $\lim_{n\to\infty} x_n = x$ and $\lim_{n\to\infty} f(x_n) = S$. Furthermore we put $\liminf f(y) = -\limsup(-f(y))$ and

$$
\omega(f, x) = \limsup_{y \to x} f(y) - \liminf_{y \to x} f(y).
$$

Then the set D₀ = { $x \in X : \omega(f, x) \ge y_0$ *} is closed.*

We omit a proof of this Lemma since it is well-known and standard.

We begin the proof of Theorem 1 with the observation that (1.3) immediately follows from the μ -u.d. of the sequence (x_n) because of Remark 1.2. Now let $Z = Z(f) = \{x \in X : f(x) = 0\}$ denote all zero-points of f and $D = D(f)$ the set of all discontinuity points of f. For every integer $m \ge 1$ we set

$$
Z_m = \{x \in X : |f(x)| \leq \frac{1}{m}\}
$$

 $y \rightarrow z$

and

$$
D_m = \{x \in X : \omega(f, x) \ge \frac{1}{m^2}\}.
$$

Clearly, $Z = \bigcap_{m=1}^{\infty} Z_m$ and $D = \bigcup_{m=1}^{\infty} D_m$, hence D is measurable (D_m) closed). Since $\mu(Z) = \mu(D) = 0$ and $Z_m \subseteq \bar{Z}_m \subseteq Z_m \cup D$ (Z_m measurable), we obtain

(2.1)
$$
\lim_{m \to \infty} \mu(Z_m \cup D) = \lim_{m \to \infty} \mu(Z_m) = 0
$$
 because of $\limsup_{m \to \infty} \mu(Z_m \cup D) = 0$.

Hence we have for any $\varepsilon > 0$

(2.2) a(~,,, u D) <

for all sufficiently large $m \geq m_0(\epsilon)$. By Lemma 3, D_m is closed and so $\bar{Z}_m \cup D_m$ is a compact set. Let $V \subseteq X$ be an open set and choose an arbitrary $\varepsilon > 0$. Consider a fixed integer $m \ge \max(m_0, \frac{1}{\varepsilon})$. ,i

By (2.2) and Remark 1.4 there exists an open set $U \supseteq (\bar{Z}_m \cup D_m)$ and a compact set $C \subseteq V$ such that

(2.3)
$$
\mu(\bar{Z}_m \cup D_m) < \mu(U) < 2\varepsilon, \quad \mu(V \setminus C) < \varepsilon.
$$

Furthermore for every point $x \in C \setminus U$, by Lemma 1, there exists an open ball $B = B(x, r_m(x))$ with $\mu(bdB) = C$ and

(2.4)
$$
\sup_{y \in B} f(y) - \inf_{y \in B} f(y) < \frac{1}{m^2}.
$$

Since $C \setminus U$ is compact there is a finite covering B_1, \ldots, B_t (*t* minimal) of $C \setminus U$ with open balls B_j ($j = 1,...t$) having property (2.4). Next we define a finite family A_i ($j = 1, ..., t$) of disjoint, non-empty, measurable sets recursively by

(2.5)
$$
A_1 = (C \setminus U) \cap B_1
$$

$$
A_j = ((C \setminus U) \cap B_j) \setminus \bigcup_{i=1}^{j-1} A_i).
$$

We set $A_0 = (V \setminus C) \cup (C \cap U)$ and obtain

(2.6)
$$
\mu(A_0) < 3\varepsilon, \bigcup_{J=0}^t A_j = V.
$$

For fixed A_j put $m_j = \inf_{y \in A_j} f(y)$ and $M_j = \sup_{y \in A_j} f(y)$. We obtain by the definition of U

(2.7)
$$
|M_j|, |m_j| \ge \frac{1}{m}
$$
 and $M_j - m_j < \frac{1}{m_2}$ $(j = 1, ..., t)$.

Hence f is of constant sign on A_i . First we suppose that f is positive on A_j . Since $M_j \geq \frac{1}{n}$ and $m \geq \frac{1}{n}$ we get

(2.8)
$$
\frac{m_j}{M_j} > 1 - \frac{1}{m_j m^2} \ge 1 - \frac{1}{m} \ge 1 - \varepsilon \quad (j = 1, ..., t).
$$

Furthermore by the hypothesis of the theorem we obtain

(2.9)
$$
\liminf_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} 1_{A_j}(x_n) \ge \liminf_{N \to \infty} \frac{1}{NM_j} \sum_{n=1}^{N} f(x_n) 1_{A_j}(x_n) =
$$

$$
= \frac{1}{M_j} \int_{A_j} f(x) d\mu \ge \frac{m_j}{M_j} \mu(A_j) \ge (1 - \varepsilon) \mu(A_j).
$$

This estimate can be shown in the same way if f is negative on A_j .

Summing up for $j=0, 1, \ldots t$ and using (2.6) we derive from (2.9)

(2.10)
\n
$$
\liminf_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} 1_V(x_n) \ge \sum_{j=0}^{t} \liminf_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} 1_{A_j}(x_n) \ge \sum_{j=1}^{t} (1 - \varepsilon) \mu(A_j) \ge \mu(V) - 4\varepsilon.
$$

Since $\epsilon > 0$ can be taken arbitrary small, the proof of Theorem 1 is completed by Lemma 2.

Since the metric d of X is only used to construct μ -continuity sets, it is clear that Theorem I can be generalized to arbitrary compact Hausdorff spaces; the μ -continuity sets can be constructed by means of Urysohn functions (cf. [8], p. 174). Furthermore the assumption on f can be slightly relaxed:

THEOREM 1^{*}. Let X be a compact Hausdorff space and μ a *non-negative normalized regular Borel meausre on X. Let* $f: X \rightarrow \mathbb{R}$ be a bounded, measurable and μ -almost everywhere continuous function and let $Z(f) = \{x \in X : f(x) = 0\}.$ *If*

$$
\mu(Z(f))=0
$$

or

$$
(2.12) \t\text{card } Z(f) = 1,
$$

then any sequence (x_n) *of points in* X *is* μ *-u.d. if and only if*

(2.13)
$$
\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} f(x_n) 1_E(x_n) = \int_{E} f(x) d\mu
$$

for every μ *-continuity set* $E \subseteq X$ *.*

Proof. If (2.11) holds, the assertion follows in the same way as in the proof of Theorem 1 (using however open sets insetad of balls). Now suppose that (2.12) holds and $\mu(Z(f)) > 0$. Let z be the only element of $Z(f)$ and let E be an arbitrary μ -continuity set. First we assume that $z \in$ int $(X \setminus E)$. Then $f(x) \neq 0$ for every $x \in \overline{E}$. As in the proof of Theorem 1 we obtain that

$$
\liminf_{N\to\infty}\frac{1}{N}\sum_{n=1}^n1_E(x_n)\geq\mu(\mathrm{int}E),
$$

and similarly

$$
\liminf_{N\to\infty}\frac{1}{N}\sum_{n=1}^n1_{\tilde{E}}(x_n)\leq\mu(\tilde{E}).
$$

If $z \in \text{int } E$, then

(2.14)
$$
\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{n} 1_{X \setminus E}(x_n) = \mu(X \setminus E).
$$

Since $\mu(E) + \mu(X \setminus E) = 1$, it follows that also the set E satisfies (2.14), and the proof can be completed easily.

3. A generalization and some quantitative aspects

Let $A = (a_{Nn})$ be a positive Toeplitz matrix (cf. [8]); i.e.

$$
a_{Nn}\geq 0 \quad \lim_{N\to\infty}\sum_{n=1}^{\infty}a_{Nn}=1,\quad \sup a_{Nn}<\infty.
$$

A sequence (x_n) is said to be (A, μ) -u.d. if and only if

(3.1)
$$
\lim_{N \to \infty} \sum_{n=1}^{\infty} a_{Nn} g(x_n) = \int\limits_X g(x) d\mu
$$

for all continuous real-valued functions g on X. In the case $a_{Nn} = \frac{1}{N} (1 \leq$ $n \leq N$) and $a_{N_n} = 0$ ($n > N$) the classical concept of μ -u.d. is obtained. The proof of the following result runs along the same lines as the proof of Theorem 1.

THEOREM 2. Let X be a compact metric space and μ a non-negative *normalized Borel measure on X and let f be a bounded, measurable, real-valued and p-almost everywhere non-zero and continuous function on X;* $A = (a_{N_n})$ denotes a positive Toeplitz matrix. Then the sequence (x_n) , $n = 1, 2...$ is (A, μ) -u.d. if and only if

(3.2)
$$
\lim_{N \to \infty} \sum_{n=1}^{\infty} a_{Nn} f(x_n) 1_E(x_n) = \int_{E} f(x) d\mu
$$

for every μ *-continuity set* $E \subseteq X$ *.*

Remark 3.3. It is easy to show (compare to Remark 1.2) that (3.2) is equivalent to

(3.4)
$$
\lim_{N \to \infty} \sum_{n=1}^{\infty} a_{Nn} f(x_n) g(x_n) = \int_{X} f(x) g(x) d\mu
$$

for all bounded, measurable, real-valued functions g the disconties of which are contained in a null set.

Furthermore, similar to Theorem 1 a stronger version of Theorem 2 can he shown.

Suggested by $[1]$, $[2]$, we consider an arbitrary normed space B and a bounded linear operator $T: B \to C(X)$, where $C(X)$ denotes the Banach space of all real-valued continuous functions (with uniform convergence).

By $(TB, 1)$ we denote the linear subspace of $C(X)$ spanned by the T-image of B and the identity: $\overline{(TB, 1)}$ denotes the closure of $\langle TB, 1 \rangle$ (in $C(X)$). Let T be as above and f a given bounded real-valued and μ -almost everywhere continuous and non-zero function. Then we introduce for any sequence (x_n) , $x_n \in X$ the linear functionals $L_N: B \to \mathbb{R}$

(3.5)
$$
L_n(g) = \sum_{n=1}^{\infty} a_{Nn} f(x_n) (Tg)(x_n) - \int_{X} f(x) (Tg)(x) d\mu.
$$

In the followng $||L_N||$ denotes the norm of L_N .

Example 3.6. Let $A = (a_{Nn})$ be the arthmetic mean: $a_{Nn} = \frac{1}{N}$ for $1 \leq n \leq N$, $a_{Nn} = 0$ for $n > N$; let $X = [0, 1)$, $B = L^1[0, 1]$ and T is defined by

$$
(Tg)(x) = \int_{0}^{1} 1_{[0,g)}(x)g(y)dy \text{ for } g \in L^{1}[0,1].
$$

Let (x_n) bean arbitrary sequence with $x_n \in [0,1)$. Obviously T is a bounded linear operator. For the linear functional $L_N \in (L^1)^*$ we have

$$
L_N(g) = \frac{1}{N} \sum_{n=1}^N f(x_n)(Tg)(x_n) - \int_0^1 f(x)(Tg)(x) dx =
$$

$$
\frac{1}{N} \sum_{n=1}^N f(x_n) \int_0^1 1_{[0,y)}(x_n)g(y) dy - \int_0^1 f(x) \int_0^1 1_{[0,y)}(x)g(y) dy dx =
$$

$$
\int_0^1 \left(\frac{1}{N} \sum_{n=1}^N f(x_n) 1_{[0,y)}(x_n) - \int_0^y f(x) dx \right) g(y) dy.
$$

From this it follows that

$$
||L_N|| = \sup_{0 \le y \le 1} \Big| \frac{1}{N} \sum_{n=1}^N f(x_n) 1_{[0,y)}(x_n) - \int_0^y f(x) dx \Big|.
$$

Hence $||L_N||$ is a generalization of the classical concept of discrepancy (cf. [4] and [8]). The following theorem is a generalization of the well-known fact that a sequence is u.d. if and only if its discrepancy tends to 0.

THEOREM *3. Let T be a compact operator given as above and* $\overline{\langle TB, 1 \rangle} = C(X)$. Then the sequence (x_n) with elements in a compact metric *space X is* (A, μ) *-u.d. if and only if* $\lim_{N\to\infty}$ $||L_N|| = 0$. $(A = (a_{N_n})$ *denotes a positive Toepliz matrix,* μ *a non-negative Borel measure and* L_N *is defined as in (3.5)).*

Proof. If $\lim_{N\to\infty}||L_N|| = 0$ then (3.4) holds for all $g \in TB$. Since $\lim_{N\to\infty}\sum_{n=1}^{\infty} a_{Nn} = 1$, (3.4) holds also for $g \equiv 1$. Furthermore $\sup_N ||L_N|| < \infty$ and so (3.4) is valid for all $g \in C(X)$. By Remark 3.3, (x_n) is (A, μ) -u.d. Now we assume that (3.4) holds for all $g \in C(X)$. Since T is compact it follows that the image *TS* of the unit sphere S of B is relatively compact. Hence for any $\varepsilon > 0$ there exists a finite ε -net g_1, \ldots, g_r in \overline{TS} . Let $g \in S$ and $\epsilon > 0$; then there exist positive integers $N(\epsilon)$ and j with $1 \le j \le r$ such that for all $n \geq N(\varepsilon)$

$$
\big|\sum_{n=1}^{\infty}a_{Nn}f(x_n)(Tg)(x_n)-\int\limits_X f(x)(Tg)(x)d\mu\big|\leq
$$

$$
\left| \sum_{n=1}^{\infty} a_{Nn} f(x_n)(Tg)(x_n) - \sum_{n=1}^{\infty} a_{Nn} f(x_n)g_j(x_n) \right| +
$$

+
$$
\left| \sum_{n=1}^{\infty} a_{Nn} f(x_n)g_j(x_n) - \int_{X} f(x)g_j(x)d\mu \right| + \left| \int_{X} f(x)g_j(x)d\mu - \int_{X} f(x)(T_g)(x)d\mu \right|
$$

<
$$
< M F \varepsilon + \varepsilon + F \varepsilon,
$$

where $M = \sup \sum a_{Nn}$, $F = \sup |f(x)|$. Hence $\lim_{N\to\infty} ||L_N|| = 0$ and the proof $N \frac{m-1}{n}$ $x \in X$ of Theorem 3 is complete.

Remark 3.7. In [1] it is shown that for any normed space B and any compact metric space X there exists a compact operator T with the property $\langle \overline{TB}, 1 \rangle = C(X)$. Furthermore we want to remark that the following converse of Theorem 3 can be proved:

Assume that (x_n) *is* (A, μ) *-u.d. if and only if* $\lim_{M \to \infty} ||L_N|| = 0$. *Then T is compact and* $\langle TB, 1 \rangle = C(X)$ *.*

We do not work out the proof in detail since it is rather technical; for a special case see [2], Satz 2.

Acknowledgement.

I am grateful to the referee for several valuable comments, especially for pointing out that in Theorem 1 the assumptions on X and f can be relaxed.

REFERENCES

- [1] Fleischer W., *Diskrepanzbegriff fr kompakte Rume,* Anzeiger stem Akad. Wiss., math.-naturw. Klasse 1981, 127-131..
- [2] Fleischer W., *Charakterisierung einer Klasse yon linearen Operatoren,* Sitzungsber. sterr. Akad. Wiss., math.-naturw. KI. 191 (1982), 157-163.
- [3] Halmos P., *Measure Theory,* Van Nostrand, Princeton, N.J., 1950.
- [4] Hlawka E., *Theorie der Gleichverteilung,* Bibl. Inst., Mannheim-Wien-Zrich, 1979.
- [5] Hlawka E., *Folgen auf kornpakten Rumen,* Abh. Math. Seminar Hamburg 20 (1956), 223-241.
- [6] Hlawka *E., Zur formalen Theorie der Gleichverteilung in kompakten Gruppen,* Rend. Circ. Math. Palermo 4 (1955), 115-120.
- [7] Horbowicz J., *Criteria for uniform distribution,* Indag. Math. 43 (1981), 301-307.
- [8] Kuipers L., Niederreiter H., *Uniform Distribution of Sequences,* John Wiley and Sons, New York, 1974..
- [9] Weyl H., *bet die Gleichverteilung von Zahlen rood Eins,* Math. Ann. 77 (1916), 313-352.

Pervenuto il 12 marzo 1986,

in forma definitiva il 4 marzo 1987

Robert F. "Iichy Abt. f. Techn. Math. Technical Univ. Vienna Wiedner llauptstrasse 8-10 1040 Vienna, AUSTRIA