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A CRITERION FOR THE UNIFORM DISTRIBUTION
OF SEQUENCES IN COMPACT METRIC SPACES

ROBERT E. TICHY

Let X be a compact metric space, le p be a non-negative normalized Borel
measure on X and let f be a measurable bounded real-valued function defined on
X such that f is p-almost everywhere continuous and different from zero. It is
proved that a sequence (Zy), n=1,2,... of points in X is p-uniformly distributed
if and only if for every Borel set E C X with u(bd(E)) =0 we have

1 N
i 3 Tetsn) = [ 1@,
E

n=l|

where 1g denotes the characterisic function of E and bdE the boundary of
E. Funthermore some quantitative aspects and generalizations of this theorem are
discussed.

1. Introduction.

In his classical paper [9] H. Weyl investigated uniformly distributed
sequences of points in the unit interval [0, 1).

A sequence (z,), n=1,2,... of points z, € [0,1) is said to be uniformly
distributed (for short: u.d.) if the number of elements of z,,...,zy contained
in an arbitrary subinterval I € [0,1) is asymptotically N-times the length of
LE. Hlawka [5), [6] generalized this concept to sequences with elements in
compact metric spaces.

Let X be a compact metric space and p a non-negative normalized
Borel measure on X. A sequence (z,) with elements z, € X is said to be
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u.d. with respect to u (for short: u-u.d.) if

1 N
1.3) Jm &3 1= [ du
X

n=l

for all continuous real-valued functions f on X. In the case of the unit
interval X =[0,1) with the ordinary Lebesgue measure, (1.1) is equivalent
to the above definition (cf. [8], Theorem 1.1, p. 2).

For the basic facts of the theory of uniform distribution we refer to the
monographs of E. Hlawka [4] and of L. Kuipers and H. Niederreiter [8].

Remark 1.3. It is an easy consequence of the proof of [8], Theorem
1.2, p. 175 that a sequence (z,) with elements in a compact metric space
is p-u.d. if and only if (1.1.) holds for all bounded measurable functions
f that are continuous on a set of measure 1. For example, a characteristic
function 1g of a Borel set E (1g(z)=1 for zx € E and 1g(z) =0 for x ¢ E)
has this property if u(bdE)=0; such Borel sets are called u-continuity sets.

By [8], Theorem 1.2, p. 175, (z,) is p-u.d. if and only if (1.1.) holds
for all characteristic functions 1g of u-continuity sets E.

The object of this article is to give an extension of the following result
of J. Horbowicz [7]: Let f:[0,1) = R be a Riemann-integrable function
which is almost everywhere non-zero and let (z,) be a sequence with
elements in [0, 1); then (z,) is u.d. if and only if for every subinterval {a,b)
of [0, 1)

1 X b
Iéi_l.nm N ; F@n)lap)(zn) = / f(z)dz.

In section 2 we will prove

THEOREM 1. Let X be a compact metric space and u a non-negative
normalized Borel measure on X and let f: X — R be a bounded measurable
function such that f is p-almost everywhere continuous and different from
zero. Then the sequence (z,) with elements in X is p-u.d. if and only if

(13) Jm &3~ fGsn) = [ f@n
n=1 E

for every u-continuity set E C X.
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Remark 14. By Halmos [3], Sec. 50-52, any non-negative normalized
Borel measure on a compact metric space is regular, i.e. for any Borel set
E C X we have

u(E) = sup{u(C) : C C E, C closed} = inf{u(D) : E C D,D open}.
We use the notations int E for the interior of E and E for the closure of a
set E C X.

In section 3 a generalization of Theorem 1 to weighted means
is established. Furthcrmore a concept of discrepancy is introduced for
sequences with elements in an arbitrary compact metric space; quantitative
aspects of Theorem 1 are investigated and extensions of several results of
Fleischer [1], [2] are obtained.

2. Proof of Theorem 1.

The proof of Theorem 1 is based on the following well-known lemmas;
see [8], p. 179, Exercises 1.5. and 1.6.

LEMMA 1. Let (X,d) be a metric space and u a non-negative normalized
Borel measure on X. Then for any T € X and any € > 0 there exists a ball
B=B(z,r)={ye X :d(z,y) <r} with 0<r <e and ubdB) = 0.

Proof. Let us consider the family ¥ of all balls B(z,r) with center z
and 0 < r <e. Since bdB(z,r) C {y € z : d(z,y) = r}, the boundarics of two
balls B(z,r;) and B(z,r;) with r; #r, are disjoint. Furthermore ¥ contains
more than countably many balls and so, because of u(X) =1, there must
exist a ball B(z,r) with u(bdB(z,r)) =0.

LEMMA 2. A sequence {(z,) with elements in a compact metric space X
is p-ud. in X if and only if

N
@1 dim_inf}~ 1y(zn) > 6(V)
n=l

Jor all open sets V C X.

Proof. Let E be a u-continuity set and put C = E, D =int E. Then we
have by (2.1)

N
1 1 _
lgn mfﬁlE(zN) > ]an mfﬁ E lD(In) > I‘(D) = P(E)v

nw=l
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N N
. 1 N |
lim sup — Y 1g(@a) < 1= liminf N 3 Ixne(@a) < 1= p(X\ ©) = p(C) = u(B).

N—oo n=1 nm=]

By remark 1.2. it follows immediately that (z,) is p-u.d. Now let (z,)

be u-u.d. Let V be an arbitrary open set, C = X\V. Then, by Remark 1.4,

for any £ > 0 there cxists an open set U 2 C with u(V \ C) <e. Applying

Lemma 1 we can find for all ze U a ball BC U with z € B and p(baf) =0.
1

Since C is compact, therc exists a finite covering F = UB.- of C consisting
s=]

of such balls B;. Since F is a p-continuity set and (z,) is p-u.d., we obtain

by Remark 1.2. and V 2 F D C, u(F) — u(C) < € that

N N N

1 1 1

liminf — lv(za) > 1 - limsup — lo(za) > 1 — limsup — 1p(z,) =
iminf 7> 1v NW"N; © Nq,}’NZ; F

n=]

=l—pF)21-pC)—e=plV)—¢

for all £ > 0. Hence we have (2.1) and the proof of Lemma 2 is complete.

LEMMA 3. Let f be a bounded real-valued function on the metric space
(X,d). We put limsup f(y)=S if and only if for every € >0 there is an
vz

open ball B = B(z,6)={y: d(z,y) < 6} such that f(y) < S+¢ for any y€ B
and a sequence (z,) with lim z, =z and nlmg‘> f(za)= 8. Furthermore we put
liminf f(y) = — lim sup(— f(y)) and

y—z

y—z

w(f, ) = limsup f(y) — lim inf f(y).

Al

Then the set Do={z € X : w(f,z) > yo} is closed.

We omit a proof of this Lemma since it is well-known and standard.

We begin the proof of Theorem 1 with the observation that (1.3)
immediately follows from the u-u.d. of the sequence (z,) because of Remark
1.2. Now let Z = Z(f) = {z € X : f(z) = 0} denote all zero-points of f and
D = D(f) the set of all discontinuity points of f. For every intcger m > 1

we set i
Zn={z€X: 1@< )

and )
Dp={z€ X :w(f,z) 2> ;n—z}
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Clearly, Z =i Zm and D =, D, hence D is measurable (D,,
closed). Since u(2)=u(D)=0 and Z, C Z, C Z,UD (Z, mecasurable), we
obtain

@10 "!1_120 wZ,UD)= "!1_120 #(Zn) =0 because of limsup u(Z,, UD)=0.

m—eoo

Hence we have for any £ >0
2.2) wZmUD) <&

for all sufficiently large m > mg(e). By Lemma 3, D,, is closed and so
Z,UD, is a compact sct. Let V C X be an open sct and choose an
arbitrary £ > 0. Consider a fixed integer m > max(my, %).

By (2.2) and Remark 1.4 there exists an open set U 3 (Z,, U D,,) and a
compact set C CV such that
(2.3) #(Zm U Dy) < p(U) <2, p(V\C)<e.

Furthermore for every point z € C\ U, by Lemma 1, there exists an
open ball B = B(z, rm(z)) with p(bdB)=C and

. 1
2.4) sup f@) - inf 7)) < .

Since C\U is compact there is a finite covering By,...,B: (t minimal)
of C\U with open balls B;(j =1,...t) having property (2.4). Next we
define a finite family A;(G =1,...,t) of disjoint, non-empty, measurable scts
recursively by
2.5 A =C\U)nB

i—1

A;=(Cc\nBy\ {4

$=1

We set 4=V \C)U(CNU) and obtain
t
(2.6) BAo) < 3¢, | JAj=V.
J=0

For fixed A; put m; = inf f(y) and M; = sup f(y). We obtain by the
VEA; yEA;
definition of U

1 1 i
2.7 | M, |m,|2; and Mj-—mj<;2 G=1...,%.
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Hence f is of constant sign on A;. First we suppose that f is positive
. 1
on A;. Since M;> — and m > 1 we get
m [

m; 1
2.8 —£ 1-— >1——21- i=1.... .
@8) A L AR

Furthermore by the hypothesis of the theorem we obtain

N N
S | I |
(2.9) lim] 1£r N E 14,(zn) 2 1}91. lgf NM, E J(@a)la, () =

n=] n=l

] .
"% A/ f(@)dp > %p(A,-) > (1 - e)u(4;).
5

This estimate can be shown in the same way if f is negative on A;.

Summing up for 7=0,1,...t and using (2.6) we derive from (2.9)
(2.10)

X t. 1 & ¢
liminf — g ly (zn) > ; lim jnf 2; 14,(zn) > JX}“ — E)u(4)) > p(V) —4e.

Since € > 0 can be taken arbitrary small, the proof of Theorem 1 is
completed by Lemma 2.

Since the metric d of X is only used to construct u-continuity sets, it
is clear that Theorem 1 can be generalized to arbitrary compact Hausdorff
spaces; the u-continuity sets can be constructed by means of Urysohn
functions (cf. [8], p. 174). Furthermore the assumption on f can be slightly
relaxed:

THEOREM 1*. Let X be a compact Hausdorff space and p a
non-negative normalized regular Borel meausre on X. Let f: X = R be a
bounded, measurable and p-almost everywhere continuous function and let

Z(H={zeX: fx=0}. If

(2.11) wZ())=0
or
2.12) card Z(f) =1,

then any sequence (z,) of points in X is p-ud. if and only if

1 N
@13 Jim L3 Jamiatan) = [ faa
n=1 E
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Sfor every u-continuity set E C X.

Proof. If (2.11) holds, the assertion follows in the same way as in
the proof of Theorem 1 (using however opcn sets insetad of balls). Now
suppose that (2.12) holds and u(Z(f)) > 0. Let z be the only element of
Z(f) and let E bc an arbitrary u-continuity set. First we assume that z €
int (X\ E). Then f(z)#0 for every z € E. As in the proof of Theorem 1
we obtain that

N IR .
liminf < 15(za) 2 p(intE),
n=1
and similarly
I R =
liminf =3 7 12(za) < w(E).

n=1

If z €int E, then
N
(2.14) dim ﬁg 10\£(Za) = (X \ E).

Since u(E)+u(X \ E)=1, it follows that also the set E satisfics (2.14),
and the proof can be completed easily.

3. A generalization and some quantitative aspects

Let A =(an,) be a positive Toeplitz matrix (cf. [8)); i.e.

o0
anys >0 Iéi_l.nmzam =1, supay, < oo.

n=l

A sequence (x,) is said to be (4, p)-ud. if and only if

G Jim 3 amg(e) = [ o)
X

=]

for all continuous real-valued functions g on X. In the case ay, = %(1 <
n < N) and an;, =0(n > N) the classical concept of p-u.d. is obtaincd. The
proof of the following result runs along the same lines as the proof of
Theorem 1.
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THEOREM 2. Let X be a compact metric space and p a non-negative
normalized Borel measure on X and let f be a bounded, measurable,
real-valued and p-almost everywhere non-zero and continuous function on
X, A=(ann) denotes a positive Toeplitz matrix. Then the sequence (z,),
n=12..is (A w-ud if and only if

(32 Jim > oot @alaten) = [ 1@
E

n=l

for every up-continuity set E C X.

Remark 3.3. It is easy to show (compare to Remark 1.2) that (3.2) is
equivalent 1o

(3.4 Jim S anafanlaten) = [ f@a@dn
n=1 X

for all bounded, measurable, real-valued functions ¢ the disconties of which
are contained in a null set.

Furthermore, similar to Theorem 1 a stronger version of Theorem 2 can
be shown.

Suggested by [1], [2], we consider an arbitrary normed spacc B and
a bounded lincar operator T : B — C(X), where C(X) dcnotes the Banach
space of all real-valued continuous functions (with uniform convergence).

By (TB,1) we denote the lincar subspace of C(X) spanncd by the
T-image of B and the identity: (TB,1) denotes the closurc of (TB,1) (in
C(X)). Let T be as above and f a given bounded real-valued and p-almost
everywhere continuous and non-zero function. Then we introduce for any
sequence (z,), z, € X the linear functionals Ly : B — R

(3.5) Lu(@) =) anaf @a)Tg)(zn) — / f@Tg)(=)dp.
n=1 X

In the followng ||Ly|| denotes the norm of Ly.

Example 3.6. Let A = (ann) be the arthmetic mean: ey, = le for
1<n<N,ay,=0forn>N; let X=[0,1), B=L'0,1] and T is defined by

1
(To)) = [ lop(@e)dy for ge LU0, 1.
0
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Let (z,) bean arbitrary scquence with z, € [0,1). Obviously T is a
bounded linecar operator. For the linear functional Ly € (L')* we have

N 1
Ln(g) = % > F @) (Tg)an) — / f@Tg)(x)dz =
n=] 0

1 1 1
1 N
=21 @) | loyn@Ea)ewdy — | f(z) [ 1po,(@)g(y)dydz =
N n=l ! 0/ 0/‘

1 1 N y
/ ﬁEf(zn)l[o,y)(zn)— / f(z)dz) 9(y)dy.
0

0 n=1

From this it follows that
1 f
L = Su -_ n 1 —/ dz .
1wl = sup | Ngf(z Nio(n) J /(z)dz|

Hence ||Ly|| is a generalization of the classical concept of discrepancy
(cf. [4] and [8]). The following theorem is a generalization of the
well-known fact that a sequence is u.d. if and only if its discrepancy tends
to 0.

THEOREM 3. Let T be a compact operator given as above and
(TB,1) = C(X). Then the sequence (z,) with elements in a compact metric
space X is (A,p)-ud. if and only if limy_ |[Ln||=0. (A= (ans) denotes a
positive Toepliz matrix, u a non-negative Borel measure and Ly is defined

as in (3.5)).

Proof. 1f lim ||Ly|| =0 then (34) holds for all g € TB. Since
limy_o0 Y ooy ann = 1, (3.4) holds also for g = 1. Furthermore supy ||Ln|| < oo
and, so (3.4) is valid for all g € C(X). By Remark 3.3, (z,) is (4, w-ud.
Now we assume that (3.4) holds for all g € C(X). Since T is compact it
follows that the image TS of the unit sphere § of B is relatively compact.
Hence for any £ > 0 therc cxists a finite e-net gy,...,g, in TS. Let g€ S
and € > 0; then there exist posilive integers N(g) and j with 1 <7 <r such
that for all n > N(g)

n=1

| D" awnf @n)(Tg)(za) — / J@)(Tg)(z)dp| <
X
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I ana f@a)Tg)(za) — Y annf(@ndgs(za)|+

n=1 n=1
4 Y- ol anestan) - [ 10 + | [ 1@ - [ 1@
=1 X X X
< MFe+e€+ Fe,

oo
where M = s;pEaN,,, F = sup|f(z)|. Hence limy—o ||Ly|| =0 and the proof
n=1 zeX

of Theorem 3 is complete.

Remark 3.7. In [1] it is shown that for any normed space B and any
compact metric space X there exists a compact operator T with the property
(TB,1) = C(X). Furthecrmore wec want to remark that the following converse
of Theorem 3 can be proved:

Assume that (z,) is (A, w-ud. if and only if I}i_[r]w||LN|| =0. Then T is
compact and (TB,1) = C(X).

We do not work out the proof in detail since it is rather tcchnical; for
a special case see [2], Satz 2.
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