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A b s t r a c t .  Given a complete Riemannian manifold M (or a region U in ~N) 
and two second-order elliptic operators L1, L 2 in M (resp. t5), conditions, mainly 
in terms of  proximity near infinity (resp_ near 0U) between these operators, are 
found which imply that their Green's functions are equivalent in size. For the 
case of a complete manifold with a given reference point O the conditions are 
as follows: L 1 and L 2 are weakly coercive and locally well-behaved, there is an 
integrable and nonincreasing positive function �9 on [0, oo[ such that the "distance" 
(to be defined) between L 1 and L 2 in each ball B(x, 1 ) C M is less than ,r 0)) .  
At the same time a continuity property of the bottom of the spectrum of such 
elliptic operators is proved. Generalizations are discussed. Applications to the 
domain case lead to Dini-type criteria for Lipschitz domains (or, more generally, 
H61der-type domains). 

Introduction 

In this paper, we mainly consider the following question. Given a complete 

Riemannian manifold M (or a region U in ~N) and two second-order elliptic 

operators on M (resp. U), what condition of  proximity near infinity (resp. near OU) 

between these operators insures that their Green's functions are equivalent in size? 

If  each of these operators is connected to a diffusion, the last property essentially 

means that the related hitting probabilities are also uniformly comparable. 

It turns out that the condition given in our main result (Theorems 1 and 1', and 

the euclidean versions Theorems 9.1 and 9.1') is a generalization of  one part of  

a result by L. Carleson (see [C] Theorem, p. 1) which gives a sufficient (and in 

some sense necessary) condition for a second-order elliptic operator acting in the 

half-plane to have harmonic measures with bounded densities. The other part of  the 

theorem in [C], namely a condition for the absolute continuity of  these harmonic 

measures, has been deeply generalized in several papers starting with [FKJ] (see 

[FKP] and references there); in [FKP] a criterion for the mutual absolute continuity 

of  the harmonic measures with respect to two elliptic operators in the unit ball of  

I~ u is given. In contrast with these papers, the main results below do not rely on 

harmonic analysis techniques and require only a few structural assumptions on M. 

As a result, they may also be applied to domains which are far from Lipschitz 

(see Section 9). A crucial source of  inspiration for us is the work of  J. Serrin 
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[Ser], where a result of our type for Poisson kernels of  C 2 domains is proved. See 

Section 3. 
Comparability (in the above sense) of  Green's functions has been already studied 

in various situations involving regions in IR u. [HS] is concerned with bounded C 1, l 

domains---see also [Ser] and note that extensions to Dini-Liapounov-type regions 
follow from Widman [W1], [W2] (see [W1], p.523) - -  and [A1] with Lipschitz 
domains; in both papers the second-order coefficients are C '~, 0 < c~ _< 1, up to the 

boundary. Results for global perturbations of  the Laplace operator in R N appear in 

[Pi4] (see also [Pil]). 
Other results deal with lower-order perturbations (mainly in domains in RN). 

Murata [Mu] shows among other things the stability of  the classical Green's func- 

tion in R '/ under certain kinds of  perturbations (see the final note there); [Pi3] 
considers more general operators and domains and introduces a notion of  small 

perturbation (see also [Pi2]); and [Z1], [Z2] deal with Schr6dinger operators sat- 
isfying a Kato class condition at infinity. See also [Pi3] and the references there. 
[CZ] studies A and A +B.V, B E LP(D),p > N, in a bounded domain D and shows 

in particular that when D is C 2 the corresponding Green's functions are equivalent. 

For the manifold case, [SC2] exhibits a class of complete manifolds (e.g. com- 
plete manifolds of  nonnegative Ricci curvature) for which all uniformly elliptic 
operators in divergence form and without lower-order terms have Green's func- 

tions equivalent in size (see [SC 1], [SC2] for background and related references). 
We also note that independently of  the present paper U. Hamenstgdt ([Ham], Ap- 
pendix) shows a stability property of  the Martin kernels with respect to a class 

of  elliptic operators with H61der continuous coefficients for Cartan-Hadamard 
manifolds of  pinched negative sectional curvatures, a result which is close to 

Theorem 1' in Section 7 below. 
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1. Notations and general assumptions. Statement o f  main results 

We start with a Riemannian manifold M with bounded geometry and define as 

in [A3] classes of  second-order elliptic operators in divergence form on M. Elliptic 
operators in nondivergence form will be considered later in Section 7. In Section 

9, the results for domains in R x are obtained as particular cases, using the same 

approach as [A3], w See also Section 6. 

1.1. In what follows, M is a noncompact, connected, complete N-dimensional 
Riemannian manifold of  class C 1 with the following property: there exists two 

positive numbers r0 and co and for each a E M a chart ~b = ~ba : Ba ~ R o in the 
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ball Ba = B(a, to) of  M such that ~b(a) = 0 and 

O.1) co' d(x,y) < t (x) - ___ co d(x,y) 

for x,y E Ba; in particular, Ua = ~(Ba) contains the ball B(O, ro/co) o f R  N. For 

convenience, we may and will assume that r0 _< �88 The obvious dependence on ro 
and co of  the various constants to appear below will be implicit, and as usual the 

letter c (or C) will refer to a positive constant whose value may change from line 

to line. The Riemannian volume in M is denoted by a (or aM). 

1.2. Examples. 1. The assumptions above are satisfied (with the exponential 

chart at a E M) i f M  is C 3 with bounded sectional curvatures and injectivity radius 

bounded from below. 
2. Another example (in fact, a special case of  the previous one) is obtained 

by taking for M an open region ft in R N, f2 r IR N, equipped with the metric 

gx(U,U) --- 8(x) -2 lul 2, where 8 is a standard Cl-regularization of  the distance 

function 6(x) = d(x, Of~); that is, c-~6(x) < 8(x) < c6(x) and IV6(x)[ _< c on ft, 

c > 0 (see [A3] w 

1.3. Let 0 and p be real numbers such t h a t p  > N =  dim(M) a n d 0  >_ 1. 
We denote by DM(O,p) the class of  all elliptic operators 12 on M with a given 
representation in the following form: 

(1.2) s  = div(.4(Vu)) +D.Vu + div(uD')  + 3'u. 

Here .4 : x ~ .4x E End(Tx(M)) is a Borel section of  the bundle End(T(M)),  
D and D' are Borel vector fields on M, and 7 is a real valued Borel function in M. 

It is further assumed that 

(1.3) o i{i 2 < <_ o1{I 2, 

(1.4) D! 11-4allEnd<T,<M)) -4-IlOllLo(8,/ -4-I[ IIL~(B.) + II~rllzp/2(B=) ~ 0, 

when a c M and { c Ta(M). Recall that Ba = B(a, ro). 
Some Sobolev spaces attached to a region U in M will be needed. Define 

H l (U) as the space o f  all func t ionsf  E L2(U) with a weak gradient in L2(U)-- i .e .  

there is a L z vector field V = V f  in U such that f V.Wdrr = - f f d i v ( W ) d c r  
for all vector field W of  class Col(U)----equipped with the norm II fllH,/u/ = 
(ll fl122(v/ + I]Vfl122(u/) ~/z. Let H~(U) denote the closure of  C~(U) in H~(U). 
The dual H -1 (U) o f  H~(U) is identified with the set o f  distributions S in U o f  the 

form S = u + div(V) where u (resp. V) is a function (resp. a vector field) in U 
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of  class L 2. The spaces H]o~.(U ) and H ~  (U) are defined in the obvious way and 

each operator s ~ Dg(O,p) induces a map E : H]o,.(U ) ~ HTo,l.(U). (See [Sta] and 
Proposition 2.1 below.) 

A function u in the regmn U C M is an E-solution i f u  E H~o,.(U) and s = 0 
on U. As is well-known, u is (after modification on a a-null set) a continuous 

function in U and, i f u  is positive, the following Harnack inequalities hold: 

(1.5) c -I u(a) <u(x) < cu(a) 

if B(a,r) C U, r <_ ro and d(x,a) < r/2, where c = cg(O,p) _> 1. Moreover, there 
are positive constants c' and/3 depending on 0, p and M such that 

(1.6) (1 + c'(p/r)~) -I u(a) <_ u(x) <_ (1 + c'(p/r) ~) u(a) 

if  d(x, a) <_ p <_ r/2. A well-behaved local potential theory ([Her], [B]), whose 

harmonic functions are the E-solutions is attached to E in M. (Using local charts 
we are left with the standard case M = 1~ N, ref. [GT], [Sta], [HH].) Hence, we may 

speak of  E-superharmonic functions, E potentials, and so forth (ref. [B]). 

1.4. Let s ~ Dg(O,p) and let U be an open subset o f  M. Denote St(U) the set 
o f  all E + tI-superharmonic functions in U and define the critical level of  s in U 
as the number 

(1.7) AI(E, U) = sup{t E ]I~; 3u E St(U), 0 < u < c~ in U}. 

A1 (E, U) is also the largest number t for which there exists a positive solution u on 
U to E(u) + t u = 0. For t < A r (U) the Green's  function in U for E + t] exists. I fE  is 
formally self-adjoint, then AI (E, U) coincides with the usual bot tom of  the spectrum 
o f - E  seen as an unbounded operator on L2(U) with domain {u 6 H~(U) ; E(u) E 
L2(U) } and AI(E, U) = inf{(-E(cp),~.o) ; ~o E C~(U), [[~[[L2(tJ) = 1 }. Except the 
last equality, this interpretation of  A j(E, U) holds also if  the symmetry assumption 

on E is removed when U is relatively compact in M. We shall let A1 (s = A 1 (E, M). 

For eo > 0, we denote Du(Oo,p, e0) the class o f  all s E Du(Oo,p) satisfying the 
following "weak coercivity" condition ([A3]): 

(1.8) There is a positive E + eo.I-superharmonic function ( 5 +oo ) on M, 

i.e. A1 (E) > co. This condition implies the existence o f  the Green's  function G for 
s together with the estimate 

(1.9) c -I <_ G(x,y) <_ e 
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for some c = c(Oo,p, e0) > 0 and all x, y in M such that d(x,y) = ro (see [A3]). 
However, if L; is not formally self-adjoint G(x,y) need not be bounded when 
d(x,y) > 1. I f  G = G U is the Green's  function in U, our convention is that 

x ~ G(x,y) is s  in U(and  harmonic in U \  {y}) whereasy  ~ G(x,y) 
is superharmonic in U (and harmonic in U \ {x}) with respect to the adjoint 

operator s Recall that for ~ in L2(U, cr) and compactly supported G(~) = 

f G(.,y)~(Y)da(y) solves s = - ~  in U with G(~) E H)oc(U). Also, if  we 

let G(~)(x) = 0 on M \  U, then G(~) 6 H]oc(M). 

1.5. A reference point O E M is fixed and we set d(x) = d(O,x) for x E 

M. I f  q E [1, + ~ ]  and if s and s are members  of  some class DM(O,p) with 

representations s = div(Aj(Vu)) + Dj.Vu + div(uDj) + 7/u, we define (recall 

that Ba = B( a, ro ) ) 

distq [El, E2](a) =[[A1 - A2 IlLq(Sa) + lID1 - D2 [[LP(B~) 
(1.10) 

+ [[n] -D~IlzpW.)+ []'Yl -"~2]]Lp/2(Ba), 

for a E M; to avoid heavier notation, p is made implicit in the l.h.s, of(1 .10) .  I f  

: [0, +ec) ~ R+ is non-increasing, we shall write "distq[EI, s -< ~ in DM(O,p)" 
ifdistq[s s  _< tI,(p) when a E M and d(a) = p. A similar notion appears in 
[FKP] for second-order elliptic operators in the unit ball o f  IIr N. 

1.6. We may now state our main result. See Section 6 for generalizations to 

non-weakly-coercive operators. 

T h e o r e m  1 Let El and E2 be elements Of DM(O,p, eO) (with p > N and eo > O) 
and let G 1 and G 2 be the corresponding Green's functions. I f  dist .(E1, s -< eg 

in DM(O,p) for  some nonincreasing function �9 on [0, oe) such that f + ~  ~(s) ds < 
+oe, there is a constant c > 0 such that 

(1.11) c -1 a2(x,y) <_ GJ (x,y) <_ c G2(x,y) 

for  x, y in M such that d(x,y) >_ ro. In fact, dis t . (El , /22)  may be replaced above 

by distq0(s , s some qo E [1, +oe[ depending only on co, N, 0 and p. 
Moreover, for  every 6 > 0 there is a number rl = rl(M, O,p, so, 6) > 0 such that i f  

also f o  ~ q~(s) ds <_ ~, we may then let c = 1 + 6 in (1.11). 

The proof  is given in Section 5. When M is a negatively curved Car tan-  

Hadamard manifold, Theorem 3 in Section 8 gives a version o f  Theorem 1 which 
is roughly speaking-- local ised at one point on the sphere at infinity. 

R e m a r k s  1.1 (i) Let s s be members  ofDM(O,p, e), s > 0. Ifdistl  (El, E2) -< 
in DM(O,p) with ff2(t) = c exp( -~ t ) ,  a > 0, then distqo(s ,/22) -< �9 with 

~(t)=(c+el/q~ (q~176 exp ( -  ~0t ) 
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since ]lAl - A21]~ _< 20. Hence Theorem 1 applies and (1.11) holds. 
(ii) By  (1.9) and standard local estimates o f  Green's functions ([Sta]) (1.11) 

holds for d(x,y) <_ ro and another constant c. 

We shall also prove (and use in the proof  o f  Theorem 1) the following continuity 

property of  A1 (12) with respect to E in DM(O,p). See Section 4. 

T h e o r e m  2 Let 0 >_ 1, p > N be fixed. For every 6 > 0 there is number ~ > 0 

such that if121, s E DM(O,p) and distl (121,122) _< r~ on M, then 

(1.12) ]A1(121) - A1(122)1 ~ 6. 

In fact, A1 is Lipschitz continuous in DM( O,p) with respect to the distance d( s s = 

[1 distq0 (/2, s ~,M. 

For s symmetric and without lower-order terms the statement is straightforward 

if  dish is replaced by dist~ (just use Rayleigh quotients). We also note that the 

Lipschitz continuity o f  AI with respect to lower-order coefficients in L ~ and for 

non-divergence-type elliptic operators is proved in [BNV] w 

R e m a r k  1.2 It follows from Theorem 2 that if s E DM(O,p, Eo), eO > O, 
and s E DM(O,p) are such that distqo(s --< tp in DM(O,p) with tI, decreasing 

on (0, + ~ )  and f o  ~ ~P(s) ds small enough (depending on M, 0, p,  and r then 
122 E DM(O,p, r (see Lemma 2.6 and Remark 2.4). Thus, Theorem 1 applies. 

Another criterion for A1 (12) > 0 follows from Theorem 2. See Sections 4.4 

and 4.5. 

C o r o l l a r y  1.1 Let 121 E DM(O,p, eo) and 122 E DM(O,p) (with p > N and 

~o > 0). There is a number ~ > 0 depending only on 121, 0 andp, such that i f  

(i) there is a Green ~ funetion in M for  122, 

(ii) dish (El, 122) _< ~ outside some compact subset K o f  M, (e.g. distl (121,122)(X) 
tends to zero when d(x) ~ +c~), 

then A1(122) > O. Moreover, condition (i) above can be dropped i f s  = O for  

j =  1,2. 

R e m a r k  1.3 In the case s = 0, s < 0, it will be seen that ~ > 0 may 

be chosen depending only on M, K, O,p and E0 so that A1 (s > e. This improves 
somehow the continuity property of  Theorem 2. 

Let us mention now two applications o f  Theorem 1 to elliptic operators in 

euclidean domains. More general results appear in Section 9 (Theorem 9.1, 9.1'). 

Let f~ be a bounded Lipschitz domain in ]1~ u and let L = El<id<_U Oi(aijOj(')) "~- 
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~l<i<<_N bJ01(') + ~/ and L' = Zl<_id<N Oi(atijOJ(')) be two uniformly elliptic op- 
erators in f~ with measurable coefficients such that 7 _< 0 and ~ i  tlbilllJ,(nl + 

< 0 for some p > N, 0 _> 1. Assume also that Y'~ir [ai/[~ <_ O, 
~i/ai/~i~/ > 0 -1 [~12 for all ( E R N and similarly for the al/. Let Dx denote 

the ball D(x, �89 Of~) ). 

C o r o l l a r y  1.2 Assume that at least one o f  the following two conditions is 

satisfied: 

(i) ~ i j  fD, ta(J(x) -- a~j(x)] dx _< IOx] d(x, Of~)~ for  some e > 0 and all x E ~, 

(ii) ~i, /  ]ai/(x)-a~j(x)[ < ~( d(x, Of~ ) )for x E f~ and some nondeereasingfunction 

/o' ~ veri~ing ~(s) ds < +oc. 
s 

Then G and G', the Green's functions o f  L and L' respectively, are uniformly 
comparable, that is C-1 G' <_ G < C G' with a constant C > 1 depending only on 

f~, O, p and e (or 4). 

Corollary 1.2 extends a result of  Cranston-Zhao ([CZ], Corollary 3.14) about 
first-order perturbations of  the Laplacian in a C I,~ domain. We are grateful to 

Zhen-Qing Chen for this reference and for raising the question of  the Lipschitz 
domain case (i.e. if B E LP(f~) then /x and & + B.V have comparable Green's 
functions in Q) and later the question of  the uniformity in this case of  the constant 

C. 
Another simple application is the absolute continuity of  harmonic measures 

for nondivergence form elliptic operators in a Lipschitz domain f~. Namely, if 

L = ~i,i  a!J( x)O2 is uniformly elliptic in f~ and with H61der continuous coefficients 

aii, then the corresponding harmonic measures #x, x E f~ are in the form #x =f~.A 
where A is the area measure on Of~ andf~ E Lz(A) (see Section 8). This is well- 

known when the ai/ are Lipschitz and (in fact) for wide classes of  operators in 

divergence form (see [FKJ], [D]). 

In Section 6 below, we relate Theorem 1 to some other earlier results and mention 
a generalization. 

2. Auxil iary l emmas  

Fixp > N and let 0 > 1. The following proposition shows in particular that each 
s E D~t(O,p) induces a map s : Hi(M) ~ H- I (M) .  

Propos i t i on  2.1 I f s  E DM(O,p) with s = div(AV.) + D V .  + div(.D') +-,/., 
the bilinear map 

(~, ~) ~ aL(~, ~) = f [(AVe, V~} - ~ (D, V~} + ~/D' ,  VO} - 3 ~ ~] da 
J 
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is defined and continuous in H ~ (M) x H 1 (M). 

P r o o f  Let X be a maximal subset o f  M such that d(m, m') >_ ro/8 whenever 

m,m'  ~ X, rn r  The ba l l sB"  = B(a, ro/4), a ~ X ,  cover M and i f  B~a ~ = 

B(a, r0/2),  (1. l)  implies that ~ e x  1~;, _< CM for some finite constant CM. 

For ~ and ~, in H ~ (M), it follows from the H61der inequality that 

1 
where - 

2* 

f lD.V~ol IV'I d~ < ~ ~ ,  ID.X7r IV, I a~ 
aEX . 

_< ~'~ IIDIlu,(8,)IIX7~llL:(e,)II~'llL-'-~e-), 
aEX 

1 1 1 1 
> - - --  By Sobolev inequalities and (1.1), 

2 p 2 N" 

11~11~-(8,) -< C(lld@(8,,) + IlVd, ll~(8,,)). 

Thus, 

aEX 

0 .~ 
-< 5 c }--~[llX7~llz:(s5) + 11~11~=(85,) + IIV~ll~2(sc,)] �9 

a E X  

Using the property o f  the cover {B~'}aex, we get 

f/~ 9 ~7 9 ID.X7~I Ir _ < OC{IIV~[I~2(M) + IIr + I[ r 

< OC{ll~[l'-n,(M)+ IIr 

Hence, fM ~b D . V  ~ d~r exists and fM I ~b D ' V  ~o[ da <_ 2 0 C I]~0JlH,(M) IIV>lln, (M) (it is 

sufficient to consider the case rl~olJn,(u) = Ifg'fln'(u) = 1). 
Replacing D by D'  and exchanging ~ and % we have the same bound for the 

integral fM J~o D'. V ~bf da. Similarly, 

a E X  " a E X  

0 2 < ~ ~ [ll~o[Iv-(8,) + 11~'112~.(~,)], 
a~_X 
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so that 

MI7 ~ ~1 act <_ 0 C ~{ll~all~2(B;,) + IIVqoI[22(B;,) + 11~)II~2(B;,/ + IIVOlI~2(B; ') } 
a~X 

_< 0 C[II~II2,(M)+ II~II~,(M)]" 

Since (~, ~) ~ f(A(Vqo), V~) da is obviously defined and continuous on 

H 1 (M) x H 1 (M), the proposition follows. 

Notice that the proof  shows that [ac(qo, ~)l < c I1~11 I1~11 for ~, r in H 1 (M) and 

c = cM(O,p). 

C o r o l l a r y  2.2 There exists a positive real A = Am(0,p) such that s - M is 

coercive fo r  all E E DM(O,p), that is 

f. lul2 d cr >_ c{llVull~ + IlulI~ ) = c (]]UlIH,(M)) 2 as + 

for u E Hg (M) and some constant c > 0 (depending here only on O, p and M). 

P r o o f  We adapt an argument from [Sta] (pp. 202-203). By the proof  above, if  
V, V' are measurable vector fields on M, ifT0 is a measurable function on M and 

if/3p = sup{ItVIILp(B~) + IIVt[ILp(B~) + I['Y0[IL~/2(B.) ; a 6 M} < +0% then 

fM[]~ V.V~I + ]~ V'.V~l + 17o ~bl] Nor < /3p II~IIHIcM/ II~ilH' qo Cp (M) 

for ~ and ~ in H l (M) with a constant Cp depending on p and M. 
Fix p '  with N < p '  < p and for t > 0 write D = D1 + D2 where D2 --- 1 { tOl >t~ D ,  

and similarly D'  = D' 1 + D~, 3' = 71 + 72. Then, with 1/p' = 1/p + 1/q, 

[IO=llv,'<8o) --- [IDllzp(8o)[a({D > t} f3 Ba)] 1/q < t-P/q(l[Olll~,(Bo)) l+p/q. 

By the definition ofD~,  D~ and 71, we have, for all r />  0, 

M[[qaDl .~l  + ]qOO'l.~Tqo[ + 1711qo2] d,r _< t{2 IIV~olIv(M/ II~IIL~(M) + II~[l~z<M)} 

-1 2 
< t{(1 +r l  )II~IIL=<M) +011V~II~=~M/}, 

so that 

fM ,~/q ,~1 +p/q [ l ~ D . V ~ l + l ~ D ' . V ~ l + l T q o 2 l ] d ~ r < 3 c p ' t  -~" ~p [ll~ll2~+llV~llz z] 

+ t { ( l  + r/-~) I]~alt 2 + r/llVqo]12 }. 
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Thus, if  we choose (and fix) t so large that 3 cp, t -p/q/~l+p/q <_ 1]40 and then fix r/ 
such that t r/_< 1/40, 

ac(~,~o) + A f ~ 2 d ~  >_ ~O live[122 + All,oil2 - CIl~[] 2 

1 
-> 2-0 { I/v II22 + tt ll2 }' 

provided ,~ is sufficiently large. The proof  is complete. 

R e m a r k  2.1 It follows that for s ~ l~g(O,p) we have a bound : ,~1(s _> 

-)~0(M, 8,p). (See e.g. [A3], Lemma 2). There is also a simpler bound )~L (s _< ~ 
which will not be needed. 

L e m m a  2.3 I f  s E DM(O,p), i f  u is a bounded s (resp. a positive 
bounded s in the open region w C 214, we have for  all ~ E H~(w) 

L~p2 iVu]2 d~ Ilull 2 2 _< c II IIH,,( ) 

with c = c(M, O,p). In particular, u is a multiplier for  H~ (w). 

R e m a r k  2.2 I learned from G. Mokobodzki that he has also proved a similar 
multiplier property in the framework o f  symmetric Dirichlet spaces [Mok]. 

P r o o f  Fix a region w' C c  w and 9~ E H01(w'), with ~ > 0 and bounded. 
Clearly, Ul~,, E Hl(w') ,  and the functions u~o, bt2~o, ht~ 2 belong to Hol(w'). Write 

s = div(A(V.)) + div(D'.) + D.V(.) + 3' with (1.3)-{1.4) and consider the integral 

I = L '  qO2 (.A(V//), Vu) aft. 

By several applications o f  the Leibnitz formula, and on using the assumptions on 
u, we shall derive an inequality o f  the form 

I _< - a 2 ( ~ ,  u2~o) + A L '  u2 ~02 do" + L '  u2 V~o) da, 

for some coercive operator Z~ E Dv(O',p), 0' > 0, and a large constant A = 
;~(O,p,m). 

Observe that I = f~, (.A(Vu), V(u~2)) &r - 2 f~, u~o (A(Vu), V~o) dcr and, since 
s = 0 (resp. u > 0 and s > 0), 

I <_ L '  {u ~o 2 D.Vu - uD'.V(u~o 2) + -y u2~o2 } &r - L ,  dcr 

+ J,o[, u2 (V~o, A*(V~o)} &r. 
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But uqo2Vu = }{99 V(u299) - 11299 V(qO)}, b/V(1199 2) = 1 {99 V(U299) 4- 3 td299 V99}, 
and 

/2 1 u299 {D + 3D'}.V~ + 199 {D - D'}.V(u2~) I s , { - (.A*(V99), V(u299)) - 

+('Y-A)u2992}do"4-~ J~, td2992do"4-fa;, 112('A(V~) ,v~)dO., 

or 
I < -ae(99, 11299)4-/~ j r ,  u299 2 do 4- ~ ,  112 (,A(Vg)), V99) do. 

where Z~(99) = div(.A*(V99)) - �89 3 D').V99 - �89 div(99(D - D ' ) )  + (~, - A)qo. IfA 
is chosen (and fixed) large enough (depending on 0 and p) then, by Corollary 2.2 
above, s is coercive in M and belongs to some class Da,t(O',p). 

If 99 is a s in J ,  the function 99 is nonnegative since 99 E Hg (co') 
and Z~ is coercive. Thus, a2(~o, u299) _> 0 and by the above 

I ~ A Ilull2j  11~112~(~,/§ o II1111~j II 9911>(~,~ 

Using the uniform ellipticity of.A, we see that 

(2.1) ,/e, ~2 iVul2 do- < 0 (0 + A)Ilull~ 11~112>~,). 

This inequality can be extended to all s supersolutions 99 E Hg ( J )  (not necessarily 
bounded) as follows. Since s is coercive and , / i s  bounded, there exists a bounded 
and > 0 supersolution so E H0 J (,/). Applying (2.1) to 99, = inf{ 99, n so } and letting 
n go to infinity, we obtain (2.1) for such ~. 

Finally, i f~ is arbitrary in H~ (,/), it is well-known that there is a s 

~b E H(~(w') such that I~1 -< ~ and IIr --< CII~IIH'(~'/ for some C = C(O,p). 
Just take for ~b the projection (in the Stampacchia sense and with respect to the form 
a~, cf. [Sta]) of  the origin in H~ ( J )  onto the convex set F = { f  E H 1("/) ; f  _> bP[ }. 
The continuity and the coercivity ofa~ provide the constant C. Thus, 

~ , 992 IVU]2 dcr ~ ~ ,  ~2 ]Vu]2 do. < C1 ][u][2,~, ]]~b][2H,(~,) 

< Ge l  Ilull~,,o, 119911~,(0//- 

Since C2 = CC1 is independent of the choice o f J  CC ,;, an obvious argument 
yields the estimate (2.1) in general. The proof is complete. 

The following lemma says that after being suitably normalized a positive s 

solution, s E DM(O,p), has few critical points. 
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L e m m a  2.4 Let s E DM(O,p, e), e > O, I f  u is a positive E-solution on the ball 
B = B(a, p) and i fh  is a positive (E + e I)-solution on B, then 

2 L h(x)2 V ( h ) ( X  ) d<z(x)>_Celu(a)12 

with C = CM(O,p, p) > O. 

P r o o f  Note that since u and h- i  are locally bounded in B the function u/h is 

locally of  class H I. Also we may assume from the start that h(a) = u(a) = 1 so 

that by the Harnack inequalities u and h are in between two positive constants on 

B' = B(a, p/2). Let v = u/h and let ~ be a Lipschitz cutoff  function on M with 

= 1 onB(a ,p /4) ,  supp(~) C -B(a,p/2), 0 < ~ < 1 and IIV~ll~ _< 4p  -1- Then, 

0 = ac(vh, vh~) 

i { (AV(vh), V(hvqo)) - hv~D.V(hv)  + hvD'.V(hvqo) - 7h2v2qo } dcr 

since u = vh is a E-solution. Using a few simple transformations, we find 

0 = ac(h, hv2~) + A  = e i h 2 v 2 ~ d c r  + A  
d 

(2.2) 

where 

whence 

f 
v~o (A(Vh ), XTv) &r - ] h 2 v ~ O.XTv da 

- f hZv~D"Vvdcr" 

From this equality, the uniform estimates for I]vll~,w, i1~11~, IIV~ll ~,  and IlVhllL,(w) 
(using Caccioppoli 's inequality) lead to 

LAi < C I IVvik . ( . )  {1 + IlVvltv(w)}. 

Thus by (2.2) there is a constant e'  > 0 such that 

< e i h2v2~&r < C{llVvll~2(w) + INvllv(w) Ct~ }, 

Cv~ 1 1 INvllL,(W) > e + ~ - 

and the lemma is proven. 
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We require the following formula. For s E DM(O,p) in the form (1.2)-(1.4), we 
set aL(Vv, Vv) = (A(XYv), Vv) where A is the section of End(T(M)) related to s 

by (1.2). 

L e m m a  2.5 Let u and h be (strictly) positive continuous functions in the region 
o f  M such that u~ E H]oc(f~) and h~ E H]oc(f~) for  all ~ E I-(]oc(f~). Let also 

f :  (0, +oo) ~ (0, +oo) be o f  class C 2 and set v = u / h. Then, f o r  each s E 7) M( O , p ), 
we have the following identity in H~o ~ (f~): 

s = hJ*'(v)ac(Vv, ~7v) + f (v) [s - v s + f (v)  s 

R e m a r k  2.3 1. Observe that by the assumptions on u and h, each term in the 

r.h.s, is a well-defined element o f H ~  (9t). Clearly, hf(v) E H]oc(f2) so that the 
1.h.s. is also a well-defined element in H~2 (f~) 

2. By Lemma 2.3, we may take for u (resp. h) a positive solution of  s (u) = 0 

(resp. s (h) + eh = O) in f~ for some s E DM(O',p). 

The proof, which is (at least formally) a straightforward computation, is left to 

the reader. 
Finally, the following simple technical remark will also be needed. 

L e m m a  2.6 There is a constant C > 1 depending only on M and such that 

distq(/:l, s _< C sup{distq(s ; d(x) = ro/4 } 

when a E M, d(a) < to~8, Ej E DM(O,p),j = 1, 2 andq E [1, +oo]. 

P r o o f  Consider a maximal set E c OB(O, r0/4) such that d(x,x') > ~ro when 
x, x' are distinct points in E. By (1.1) the cardinality of  E is bounded by a 
constant C' = C~t and, i fz  E B(O, ~ r0), there is a point z a E OB(O, r0/4) such that 
d(z,z') < 7 ro, and thus also a point z" E E with d(z,Z') < ro. 

Hence B(a, r0) C UhEE B(b, r0). Thus, with obvious notation for the coefficients 

ofs 

IIA  - Anllzq(Ba) II 1~ h [A1 - .42 IIIL (M) 
bEE 

bEE 

_< C' sup{llA1 -.A2IILq(Bh); d(b) = ro/4 }. 

Similar inequalities hold for the three other terms in the expression of  

distq(E1, E2)(a) and the lemma follows with C = 4 C'. 

R e m a r k  2 .4  The lemma shows that whenever we have a relation distq (El, s  -'< 
~b in DM(O,p), with ~b nonincreasing on [0, +e~), we may replace the function ~b(t), 
t E [0, oo), by ~bl (t) = inf{~b(t), Czk(ro/8) } where C is the constant in Lemma 2.6. 
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3. T h e  m a i n  c o n s t r u c t i o n  

Let 121 E DM(O,p, e0), p > N, e0 > 0 and let ~bl be a continuous nonincreasing 
and integrable function on [0, +oe). Starting from some positive and s 
function u in the ball BR = B(O,R) in M, with R > 2 and u(O) = 1, we shall 
construct a function w which is in some sense close to u and (uniformly) "almost" 
superharmonic with respect to all 12 c D~t(O,p) such that dist~(s -< ~bl in 
DM(O,p) (see 1.5) provided that I1~1111 = f o  (s)ds is small enough. A key 
idea in the construction goes back to the work [Ser] of J. Serrin and was already 
used by the author in other contexts (e.g. [A1 ]). Serrin used functions f - (Pr  of  
the standard Poisson kernel Pr in the unit ball B of R N, ff E 017, to get bounds 

for the Poisson kernel of  a sufficiently regular second order elliptic operator L 
in B whose principal part at ~ is the Laplacian (more general principal parts at 
are treated similarly). The bounds follow from the L-superharmonicity (resp. L- 
subharmonicity) off+ (Pc) (resp. f_  (Pc)) which is checked by explicit computations 
(see [Ser]). Here, we combine this construction with a relativization procedure 
which is allowed by Lemma 2.3. Relativization methods are familiar in potential 
(and probability) theory and they have proved useful in a number of  problems. 

Let ~1 (t) = ~1 (t + r/~) where r D = ro/32, and let 

(3.1) 
1 ~1 (I log(t)[) 

Q(t ) -  ~ t , ~ /  

for t > 0. Here ~ is some large positive constant which will be chosen later and 
which will depend only on M, O,p (and r0). Observe that Q is positive, continuous, 

and integrable on (0, +ec). Also, f+~ Q(s)ds <_ 2~ 2 ~ f o  ~ ~,(s)ds. 

L e t f  be the solution of the differential equation y"(t) + Q(t)y' (t) = 0 with initial 
conditions y(0) = 0, y'(0) = 1. In fact, we just set (using the integrability of Q) 

(3.2) f0 t f0 S f(t) = exp(-  Q(-c) dr) ds. 

The func t ionf  is concave and C 1 on [0, + ~ ) ,  and Co t <_ f(t)  < t with Co = 

exp(-  f + ~  Q(r) dT). 
Finally, fix a positive (s + e0.I)-solution h on M with h(O) = 1 and let w = 

hf(u/h). It is well-known and easily seen that w is s (see e.g. 

[GK] or the end of  Remark 3.2.2 below). Clearly, w E H]oc(BR ) and Co u _< w _< u. 

P r o p o s i t i o n  3.1 Let I1 = f ~  ~b1(s)ds. Let 12 E DM(O,p) and R > 10 be such 
that 

(i) 12 = 121 on the "annulus" wn = { x  E M ;  R - 1 < d ( O , x )  < R} ,  and 

(ii) distq(121,12) -< ~bl in DM(O,p), 
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where q E [qo, +o~] and qo is sufficiently large depending on M, 0 and p. Then f o r  

each 6 > O, there is a number ~( 6) = 77M( O,p, ~o, 6) > 0 independent o f  R and such 

that, ifI1 <_ 77(6), we may write 

(3.3) s  = S -  # in B(O,R)  

where # is apos i t ive  measure on B(O,R) ,  # C t-II-o~(BR), S E H- I (BR) ,  supp(S) c 

-B(O, R - 1 ) and 

(3.4) II511.-,<8o/,-0/2>9 < 6 #(B(a, r0/4)) 

f o r e v e r y a  E B ( O , R  - 1/2). 

P r o o f  o f  P r o p o s i t i o n  3.1 We may assume from the start that I1~111 is so small 

that 
t /2  < f ( t )  < t on [ 0 , + ~ )  and ~l(0) = ~bl(rD) <_ 1. 

(Recall that ~; is to be chosen below independently of  6.) 

1. By Lemma 2.5, 

s  = s  f ( v ) )  = h f ' ( v ) ~ c ( V v ,  ~Tv) + f (v) [12(u) - v C(h)] + f(v)12(h),  

where v = u/h, so that by (1.2) ,  (3 .2)  and the assumptions on u and h (namely 

s (u) = 0 and s (h) = - ~ o  h) 

s  = f ( v ) [ - Q ( v ) h  (.AVv, Vv) + (12 - 121 )(u)] + If(v) - vf(v)][12(h) - 121 (h)] 

- ~oh[f(v) - vf'(v)]. 

From the concavity o f f  we havef(v)  - vf '(v)  > O. We thus define a positive 

and absolutely continuous measure # = g.CrM on BR on setting 

(3.5) g = Q(v) h (,AVv, Vv) f (v) + ~o h ( f ( v )  - vf' (v) ). 

Clearly, by Lemma 2.3, # E H ~  (BR). We also set 

S = s  [12 - 121](u) "q'-(f(v) - v f ( v ) )  [12(h) - 121 (h)]. 

2. By the Harnack inequalities, we have that for some constant A = AM(O,p, ro), 

exp(-A (d(a) + r0/2)) _ u(x)/h(x) <_ exp(A (d(a) + r0/2)) 
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fo rx  E B~ C B ( O , R  - �88 Thus, choosing ~ = 18A, using the definition o f  Q and 
1 setting C = (ll~bl[It)-�89 we have for 2r6 <_d(a) <_R 2 

[A(ro 
Q ( v ( x ) ) = C ~  z},[~- '  l ~  > C ~ u - ' ~ ' -  L t~ \2  + d ( a ) ) ]  

h(x) 
> C~  ~ ~t (d(a)). 

uix) 

(Recall that ~i is nonincreasing and that r6 = r0/32.) Taking into account Lemma 
2.4, we see from (3.5) that for all a E M with ro/8 < d(a) < R 3 

- -  4 '  

(3.6) #(B(a, r~o)) >_ ceo C ~1 (d(a)) u(a). 

Here, c is a positive constant which depends only on M, 0, p and 1"0. 

3. It is easy to see that for each ball B~ = B(a, ro) c B (O ,R  - 4), the function 

f ' ( v )  is a multiplier for Hg(B~) with a multiplier norm estimated by some constant 
I 

c --cM(O,p, ro) > 0. Observe that by (3.1), ff,,(t)r _< Q(t) _< [~ fl~l Jl~--'~l (r6)] t -I  _< 
c / t since 

1 

(using the monotonicity o f  ~bl). Thus, 

If"(v) Vvl _< c v  -1 IVvl, 

and the claim follows from Lemma 2.3 and Harnack inequalities for u and h. 

This also shows tha t f (v )  - vf ' (v)  is a multiplier o f  Hg(Ba) with a multiplier 
norm less than c v(a) = c u(a) (h(a) ) -1 . 

4. The next step is to bound the norm o f  [E - s (u) in H -  z (Ba) ( i fd(a)  < R - �89 
We have 

(3.7) I[(E - s < c u(a) ~'1 (d(a)) 

( i fq  is large enough) as the following computation shows. Recall that by a theorem 

o f  MeTers [MET], there exists e = e(c0, O,p,N) > 0 such that 11~7u[12+,,8o < cu(a) 
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(see also [Gia], Chap. 5). It follows that for ~ E HoZ (Ba), we have (using obvious 
notation and Harnack, Caccioppoli's and Sobolev inequalities) 

/ {I((A - AI )Vu, V~)[ + [(D - DI,  VU) qo I -t- I(D' - D'1, V~o) u[ I((; Z;1 )u,  < 

�9 - + I('y - , l ) u  ~,! } d ~  

<_e 11~7u112+~,8.11~7~112,8.11A - A1 llq,8~ 
+ liD - D~ IIp,~. II~'ull=,~~ 11~ol12.,Bo 

+ lib - 13111p,aollV~ll=,Bo Ilull2-,Bo 

+ II'r - "n IIp/2,BollulIz',B~II~'II2",Bo 
_<c' II~llng<Bo) distq(E, El ) (a)  u(a), 

if2* = 2p/(p - 2) and i fq  > qo where q0 is such that �89 + 1/(2 + e) + 1/qo = 1, 
whence (3.7). 

It also follows from (3.7) that II(z; - s _< ch(a)~,1 (d(a)). Thus, by 
the previous paragraph and the definition of  S, 

(3.8) IISIIH-,r _< cu(a) Ol(d(a)). 

5. At least if  d(a) > r0/16 = 2r 6, (3.4) follows at once from (3.6) and 
(3.8) since C increases to + ~  as I1~1111 tends to 0. I fd(a)  < 2r6, observe that 
B(a, ro/2) c B(b, ro), and B(a, ro/4) D B(b, ro/8) for any b taken on the sphere 
OB(O,2r~o) and (3.6)-(3.8) at b imply (3.4) at a. The proof of  Proposition 3.1 is 

complete. 

R e m a r k s  3.2 1. (Added in final version) The proof above is made simpler 

if one uses the second term in the r.h.s, of  (3.5) to bound g from below. Ob- 
serve that by the Taylor formulaf(t) - t f ( t )  -- fl f~ s Q(ts)f '(ts)ds is larger than 
~t 2 inf{Q(s);t/2 < s < t }. This argument makes it possible to get rid of  Lemma 

2.4. 
2. We also need a slightly different version of Proposition 3.1 which follows 

easily from the proof above. Here, u is positive E1 superharmonic in B(O,R), 
continuous and s harmonic outside a ball B(ao, ro) C B( O, R) with d(ao, O) >_ 2 ro 
and u(O) = 1. Besides (i) and (ii) in Proposition 1.3, it is also assumed that 
s = s on B(a, 2r0). Then, the conclusions in Proposition 3.1 hold---except that 

we now only assert that # is locally of  class H -I in B(O,R) \ B(a0,r0)---and 

supp(S) C -B(O,R - 1) \ B(a,2ro). 
Also, it is easily seen that C -1 ~ >_ -El (u)  in B(a,2ro). Just observe that since 

f is concave, w = inf{dj u + d~ h ; j  _> 1 } where dj and d~ are positive and 1 _> dj _> 

Co = i n f { f ( t ) ;  t _> 0}. Thus, -s  >_ in f{ -d j s  >_ 1} = -Cos in 

B(a,2ro) (since i f s  = infj>l sj, with sj >_ 0 and s <_ O, then s <_ 0). 
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While Proposition 3.1 is the main ingredient in the proof o f  Theorem 1, our 

proof of  Theorem 2 is based upon a (simpler) variant w h e r e f  is replaced by the 

concave function x H ~ (so that nowf ( t )  ~ t does not hold). 

Proposition 3.3 Let s E 79 M( O ,p, r u, h, v = u / h and wR be as in Proposition 

3.1 and set now w = h ~ = v/ff-h. Then for  every given 6 > 0 there is a number 

s = s(0, p, 5) > 0 such that i f s  E DM(O,p) verifies dish (/21, s  <_ s uniformly in 

M and s = s on we, we have 

s  = S -  # in B(O,R)  

where It is a positive measure on B(O,R) ,  # E Hio~!(BR), S E H- I (BR) ,  

supp(S) c -B( O, R - 1) and 

when a c B ( O , R -  1/2). 

tlSIIH '(B~(ro/2)) ~-- ~ #(B(a, r0/4)) 

Proof We have now Q(t) = t /2 t .  Computing s  as in the preceding proof, 

we find 

h s ( }, ) = l ~ ~ h [~0 + [2 {~V~, VV)] + ~ [ h - l ( s  1 (s -/21)(u))] �9 

and set 

Let # be the positive measure on B(O, R) defined by the density 

h v -2 (AVv, Vv)], g = ~ v~ [~0 + 

h 
s = 5 v 5  Eh-' (/2 - /2,)(h))  + u-' (/2 - / 2 , ) /u ) ) ]  

As in the end of  the proof of  Proposition 3.1 (parts 3 and 4), it is easily seen that 

IlSllH-'~B~a,r,,/211 <--ch(a)v/v(a){dis t , ( /2 , /2 , ) (a)}  '/q, 

i f  one uses also the inequality I[A - gtl [[Lq(B.) --< (20) l-1/q [I[A - gtl [[L'(Bo)]l/q. 

Proposition 3.3 follows. 

R e m a r k  3.4 The normalization conditions u(O) = h(O) = 1 are now super- 

fluous. 

R e m a r k  3.5 The proof shows that 6 <_ C(M, O,p) e o 1 [] distq0 (/2,/21 )U ~,M. 
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4. P r o o f  o f  T h e o r e m  2 a n d  C o r o l l a r y  1.1 

4.1. It is enough to show that i f  E 1 E 79M(O,p, eo), e0 > 0, and if  a > 0 is 

sufficiently small depending on M, O,p, e0, then )`l (s _> 0 holds for s E DM(O,p) 
with dish (s s 5 c~ in M. To this end, we shall show that under these conditions 

the first eigenvalue )`l [s B(O, r)] o f s  for the Dirichlet problem in B(O, r) is positive 

for r _> 1. Observe that from the Harnack convergence theorem (for s and the 

second definition o f  )`i (s in paragraph 1.4, it follows that l i m , . ~  )̀ 1 (s f~,-) = 

)`l(s 
Let f~R = B(O, R + 2). Because )̀ 1 (s B(0, r)) is a nonincreasing function of  r, 

it even suffices to show that ),1 (s DR) > 0 under the additional assumption that 
s = s on w~ = {x E M;  R < d(x) < R + 2 }, the number R _> 1 being now fixed. 

Let s denote the formal adjoint of  s and let s* c Hl(f~R) be a positive eigen- 

Nnction for s associated to the first eigenvalue )`0 = )̀ 1 (s DR) = )`1 (s DR). 

4.2. Since s E DM(O,p, eo), we may choose a continuous positive s 

superharmonic function u E H01(f~n), the function u being s on 

fir \ B(ao, 2r0) for some ao in M with d(ao) = R + 3. We may take for u the 

solution of  the problem s (u) -- -1B(a,Zr0) in f~8, u = 0 on 0DR. 
Fix a positive [s + e0./]-solution h on M and l e t f  : [0, + o c [ ~  R be a smooth 

- / 2  
concave function such tha t f ( t )  = x/t i f t  > 2el andf ( t )  = e 1 I t i f 0  < t < el, 

where el is positive and small. Set now w = hf(u/h) and choose el so small that 

w =  v / ~ i n B ( O , R  + 1). 
S i n c e f  is Lipschitz on [0, co) with f (0 )  = 0 and (u/h) E H~(f~n), the function 

w is in H(~(f~n). Moreover, by Proposition 3.3 and the concavity o f f ,  if  a is 

small enough depending on 6 > 0, the continuous function w has the following 

properties: 

s = - u  + S, S E H-I(f~R), supp(S) C B(O,R), 

u being a positive measure in H -1 (DR). Also, for all a E B(O,R + 1) 

IISIIH-'Igr ~ ~ u(B(a, r6/2)), 

ifr~) = ro/2. 

4.3. Now, arguing by contradiction and assuming that )`0 < 0, we have 

( - s  = - ( w , s  s*) = )`o (w , s ' )  < O. 

On the other hand, on using a Whitney partition {~j} corresponding to the radius 

r6 (see the definition below), we find also that because supp(S) c B(O, R) and u is 
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a positive measure, 

/ .  
(-s = (u,s*) - IS, s*) >_ ~_. [ / s * v j d .  - (S, vjs*)]. 

a~x~)<R+ d 

Here {~j}j>l is a smooth partition of  unity in M with Fj = supp(~j) c B(X/, r~), 
xj E M, ~j > c- l  on B(xj, r~/2) and [V~j] _< c where c = cu(r~). Such a partition is 

easily constructed starting with a maximal subset {xj ; j > 1 } in M with d(xj, xk) > 
/o/4 when j  r k and with smooth nonnegative functions gj in M such that gj = 1 
on B(xi, r~/2 ), and supp(gj) c B(xj,r'o). Clearly, n(x) = [{j > 1; x 6 ~(xj,r~)}l, 
x E M, is bounded by a constant c = cu(r~) and we may let ~j = gJ/(~,k>l gk). 

It now follows from the Harnack and Caccioppoli inequalities that 

I(s, cs'(xj) IISIIn-,(B(x,,r;)) 

(recall that by Corollary 2.2 there is a bound I.~0l _< c~(O,p)) and 

f s* ~jdu > c -1 s*(xj)u(B(xj, r/~/2)) 

for some constant c = Cg(O,p, r0) > 0. Taking 6 so small that C 2 6 ~ 1 we get 
(-s  s*) > 0, a contradiction. This proves the first claim in Theorem 1. Since 

< c -2 was what we wanted above, Remark 3.5 shows that supMdistqo(s s <_ 
c(M, O,p) eo insures hi (s _> 0, and the last claim follows. 

4.4. P r o o f  o f  C o r o l l a r y  1,1 Choose 6 > 0 such that the condition 

dish (s163 < 6 inM, s E Dg( 8,p ), implies that s E Dg( O,p, eo / 2 ). 
Ifs verifies (ii) (in Corollary 1.1), the operator s E Dg(O,p) whose coefficients 

coincide with those ofs on K and with those ofs  on M \ K is in DM(O,p, e0/2). 

Thus A1 (s \ K) >_ e0/2. By assumption (i) the Green's function in M with 

respect to s exists and it follows from Lemma 21 in [A3] that ,~l (s > 0. 

Assume now, instead of  (i), that constant functions are s in M for 

/ = 1, 2. Set s = ~ s  + (I - ~)s where ~ is a cutoff function with 0 _< ~ < 1, 
= 1 in a neighborhood of  K, ~(x) = 0 i fd(x ,K)  _> 2 and ]V~I _< 1. It is easily 

checked that s may be represented in the form (1.2) such that with respect to this 

representation s E Dg(O',p) for some 8' depending only on M, 8 andp (not on K) 

and dish (s s ) _ c dish (s s ). Thus by Theorem 2, ,~l (s _> 3eo/4 if6 is small. 
Also, s 1 ) = 0. If  U is an open neighborhood of  supp(~) the r6duite function (ref. 
[B] p. 36, [Her]) v = R1 v (in M and with respect to s is a E-potential because 

Green's function for s exists. Hence v being nonconstant is s superharmonic and 

nonharmonic. Thus (i) holds and A1 (s > 0. 
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4.5. P r o o f  o f  R e m a r k  1.3 Constant will mean a constant depending only 

on M, K, 0, p, eo. Assume first that/~2(1) = 0 and consider s E Dg(O',p, 43-e0) as 

above. Let G2, G denote the Green's functions in M of s s respectively, let C# 2 
resp. (7 denote the corresponding Green's functions in smooth domains Uj chosen 

such that B(O,j) C Uj C B(O,j + 1). Fix Po E M with d(O, P0) = 1 and R > 3 such 
that K c B(O,R - 1). By Hamack inequalities and by (1.9) for s there exists a 

constant C _> 1 such that 

C -I GJ(o,P)) <_ G~(O,P)/G~(O, Po) < CGi(O,P) 

for P E 0B(0, R) and j large, and hence by the maximum principle, for P E 
Uj \ B(O, R). It follows (using the Stokes formula and regularizations of  s near 

0 ~ )  that the harmonic measures #2 (resp. #j) of  O in Uj with respect to s (resp. 
s verify C-~/4j < [C/2(O, P0)] -1 #2, whence G~(O, Po) <_ C. Lett ingj  ~ oo and 

using Harnack inequalities, this yields G2(P, Q) < C for P, Q in B(O, R + 2), 
d(P, Q) = 1, and another C. By the argument in Lemma 5.2 below, it follows that 

C~ J G(P, Q) < G2 (P, Q) < C1 G(P, Q), for all P, Q in M and a constant C~ > 1. 

Fix a positive solution s ofs  + �89 s = 0 in M. Then s = �89 G(s) in M (since 
G(s) > C'~tes by (1.9), s is a potential). Hence w = G2(s) verifies 

~0 
/~2(w) -f- ~ 1  w ___ 0. 

This means that L2 E 'DM(O,p, so/2 C1 ). 
For general s denote Aj, D] .... the coefficients ofs in the representations (1.2) 

of  s g2. Write s = E' + s where g'(s) = div(A2Vs) + (D2 + D~ -D~) .Vs  + 
div(sD~ ) + 9qs and s = s [div(D~ - D~) + 9'2 - "rl]. By the case already treated, 

there is a positive solution s to 

E0 
z: ' (s) + T-C  = o 

and by the assumption s < 0, whence A1(s _> eo/2C1 and the proof is 

complete. 

5. P r o o f  o f  T h e o r e m  1 

Fix a class 7)M(O,p) and a positive number rl E (0, ro/100) which is a coercivity 

radius for DM(O,p). This means that for some constant c = CM(O,p, rl ) > O, 

aLOp,~p) > c(ll~llng(B(,,,r,))) ~- 

when a E M, s E DM(O,p) and ~ E H~(B(a,r~)). Fix also e0 > 0. 
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5.1. We shall need the following simple fact. 

L e m m a  5.1 L e t S  E H- l (B(a ,  rl)) with supp(S) C B(a,r~l) where a E M and 
0 < rPl < rl. Let s ~ DM(O,p, ~o), and let Gu denote the Green's kernel o f s  with 
respect to some region U ~ B(a, rl ). Then, for  all A > 0 

(5.1) a[{x ~ B; IGu(S)(x)l >_ A }] _< ~ IISIIH-,<8), 
where B = B( a, rl ) and C = CM( O,p, ~o, rl , r] ) is a positive constant. 

P r o o f  Set G = Gu, 77 = [[S[[H-.(B). There is a positive constant c (depending 
' and M) such that for P E OB(a, rl ) o n 0 ,  p ,  60, r l ,  r 1 

IG(S)(P)[ = [(S, G~,)I = I(S, ~ G~)l _< w [l~ G*pI[H~(BI <-- CW 

i f  9: is a C l cut-off  function with ~ = 1 on B(a, r I ), supp(~) c B(a, r'l' ), r 1 

(r' 1 + rl) /2 and [[V~[[~ _< 3 (rl - r ' l )  -1. We have used (1.9), Caccioppoli 's and 

Harnack inequalities to estimate ][~o G~,[]H~(e/. 

Write G(S) = u + GB(S) in B = B(a, rl), where u is the s  function in 

B with boundary value u -- G(S) on OB. Since [u[ < cr /on OB, it is easy to see that 

tu] _< c' ~ on B for another constant c' > 0. (Compare with a positive s solution in 

M using the maximum principle and the local Harnack inequalities.) 

By uniform coerciveness of  s in B, we have  [IGB(S)[[HI(B) < c'trl. Hence, i f  
A' _> 2c' ,  

cr[{x E B; IG(S)(x)l >_ A '~  )] < ~[{x E B; IGB(S)(x)I >_ �89 A'*I )] 

_< 4A '-2 77-2 IIGB(S)IIZ2(B) 
< 4 (c") z A '-2. 

I f  cl > 0 is such that (Cl/c') 2 > er[B(x, rl )] for all x E M, and if  c2 = sup(c ' ,  cl ), 

B; IG(S)I _ A'W }] _< 4[e212A ' - 2  

for all A' > 0. The proof is complete. 

5.2. With the notations and assumptions o f  Theorem 1, and under the extra 
assumption that s = s on some ball B(a, rl ) in M with d(a) >_ rl, we show the 

following: i f  f +r O(s) ds is small enough depending on 6 > 0 ( O, p, so and M 
are regarded as fixed), 

(5.2) G2(a,b) < ( l + 6 )  Gl(a,b) 
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for all b E M such that d(a, b) > 3 rl. 

P r o o f  Let (~R denote the Green's function in f2R = B(O,R + 1) with respect 

to the operator z~ which coincides with s on B(O,R - 1) (i.e. the coefficients 

of/~ coincide with those o f s  on B ( O , R -  1)) and with s on M \  B(O,R - 1). 
Observe that distl(s Z~) -< c v  in 7)M(0,p), so that by Theorem 2 and Remark 

1.2, Z~ r 79~(O,p, eo/2) i f f o  ~ zp(s)ds is small; thus, we may assume that s r 
~ 

I?M(O,p, e0/2) and consider GR. 
It suffices to show that if  f o  z)(s) ds is small, then for every large ball f2R, 

(5.3) GR(a,b) ~ (1 +6) G~(a,b) 

when b E f2R_ 1 and d(a, b) _> 3 rl. In fact, it follows from (5.3) that G 2_ i (a, b) _< 
GR(a, b) < (1 + 6) G~(a, b) (for R large), whence (5.2) with R tending to infinity. 

(G~ denotes the Green's  function o f s  in ~R.) 
To derive (5.3), we use the construction of  Section 3. We take for u the Martin 

kernel (with respect to s in f~R) u = Ka ~ = Gle(.,a)/G~(O,a) and construct 
w = hf(u/h)  as in Proposition 3.1, the function h being any fixed positive solution 

ofs  + eoh = 0 with h(O) = 1. If61 > 0 is given and i f f  + ~  ~ ( s )ds  is small 

enough, 

(5.4) (1 - 6 1 )  <_fs(t) < 1 

on (0, +oc) by (3.1)-(3.2), and thus (1 - 61) t <f( t )  < t for t > 0. 
The function w is s on f~R and is in Hl(f~R \ B(a,p)) with 

vanishing boundary value on 0f~R, for all p > 0. Moreover, it follows from 

Proposition 3.1 (see Remark 3.2) that z~(w) = - u  + S where u is a positive measure 

on f28, S E H-l(f2R),  supp(S) c -B(O,R - 1) \B(a,  rl) and 

(5.5) <- 61 u(B(x, r i /4))  

for all x E f~R-1 (provided that f o  ~ zp(s)ds is small enough). The measure u is 
such that u,(nRx~(.,p~) E H-I(QR) for p > 0, and by (5.4), the concavity o f f  (see 

Remark 3.2) 

(5.6) u >_ ( 1 -  61)[GlaR(O,a)] -1 e~ 
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where ea is the Dirac measure at a. 
Now, we may consider GR(S) as well as GR(v) and we have w = -GR(S) + (~g(u). 

I f  {~j} is a Whitney partition associated to r' 1 = rL/4 (see Section 4.3) and J = 

{/>>_ 1; d(xA < R}, 

~R(S)(b) = ~ OR(~jS)(b) 
j~s 

= ~ (~R(b, .), ~jS) + ~ GR(~jS)(b). 
jcJ,d(x s,b) >rl/3 jEJ,d(x s,b) <rl/3 

By Harnack and Caccioppoli 's  inequalities and by (5.5) each term J( GR(b,. ), ~j S) 
with d(xj, b) _> r l / 3  is less than c2 61 fB(x/,r',) GR(b, .) du. The sum of  these terms is 

hence less than C2 61 (3R(v)(b). 
Ifd(xj, b) _< r l /3 ,  the set o f  points b' E B(b, rl) with 

[GR(~jS)(b')[ >>_ v/~, GR(~ju)(b) 

has measure less than c 61 by Lemma 5.1 (since by (1.9), 

GR(~,~j u)(b) >_ c v(B(xj, r]/2)) > c' 6-1II~jSI[H -,(s(h,r,)) ). 

It follows that for 61 small and s = (~8(v) there is a b' with d(b,b') < 61/(u+ll 
such that [(~8(S)(b')[ < v~GR(v)(b) and 

(1 - x/61)w(b) <_ s(ff) < (1 + x/61)w(b). 

The function s is E superharmonic and positive. Thus, by (5.6) and the Riesz 

decomposition, we find that s > (1 - 61)[G~(O,a)] -1 (38(.,a) on OR (globally). 
Hence 

(1 - 61) (TR(ff , a) <_ GIR(O, a) s(b') < G~(O, a) (1 + x/61) w(b). 

Since 

G~,,, = [G~(O,a)] -1 G~,R w <_ h a~,a(O)h 

becausef ( t )  <_ t, we  have 

(1 - 61) GR(if,a) < (1 + v~ l )  G~(b,a). 

Finally, by Hamack  inequalities (1.6) 

(1 - 61)(1 - ~ ( 6 1 / ( N + l ) ) )  (Tn(b,a) <_ (1 + v ~ )  G1R(b,a) 
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where x(t) tends to zero when t --, 0. This proves (5.3) and hence (5.2). 
Interchanging s and s we also have under the same assumptions on s a, b 

that 

(5.7) (1 +6)  -1Gl(b,a)  <_ G2(b,a) <_ (1 + 6)Gl(b,a). 

5.3. We check now that the restriction d(a) > rl may (of course) be dropped 
in (5.7). To this end fix O' E M w i t h d ( O , O ' )  = r6 = r0/16 and take O' as 
a new origin. If  ~(a) = dist'q(El,E2)(a), we have ~(a) < ~(/o - d(a,O')) if 
d(a, 0') < r' o and ~(a) < zp(d(a, 0') - r'o) otherwise. I f~l  (t) = Cz~(r'o) li0,2r;~)(t) + 
C~(t  - / o )  l(2,.~,~)(t), Lemma 2.6 shows that ~(a) < ~l(d(a, O')). Clearly, ~1 

is nonincreasing and f o  ~1 (s)ds < 2 C I1~111. Applying the previous step--for 
a E M such that d(a,O) < r l - - w e  obtain (5.7) for all a E M, b E M with 

d(a, b) _> 3rl, Z~l = s on B(a, rl ), if It~btll is small enough. 
It is also quite easy to remove in (5.7) the assumption that s = s on B(a, rl ). 

Consider the operator s E DM(O,p) whose coefficients are equal to those of  s 
outside B(a, rl) and equal to those of  s on B(a, rl). Clearly, s E DM(O,p) and 
dist(Ej,s -< ~ for j  = 1,2 ifdist(s s -< ~ in DM(O,p). Also, i f f o  ~(s)ds is 
small s E 7)M(O,p, ~0/2) by Theorem 2 and Remark 1.2. From what has already 

been proved, 

(5.8) (1 +6)  -1Gl(b,a)  < G3(b,a) <_ (1 + 6) Gl(b,a), 

(5.8') (1 +6)  - l  G2(b,a) < G3(b,a) < (1 + 6)G2(b,a), 

i fd(a,b) >_ 3r~ and i f f o  ~b(s)ds is small. (In (5.8) we have applied (5.7) to the 
adjoint operators and in (5.8') we have interchanged a and b in (5.7).) It follows 
that (1 + 6) -2 G 1 (b, a) < G2(b, a) < (1 + 6) 2 G 1 (b, a) and the last claim of  Theorem 

1 is established. 

5.4. Finally, the first claim in Theorem 1 will be proved by combining the 

above and the following simple lemma. 

L e m m a  5.2 Let s s in DM(O,p, eo) be such that E.1 = s on M \  B( O,R) for 
some finite R > O. The corresponding Green "s functions in M verify 

(5.9) c -1 G2(x,y) < Gl(x,y) < cG2(x,y) 

for all x, y in M with d(x,y) > ro and a constant c = cM(O,p, co, R) > O. 
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P r o o f  Consider x in the ball B(O, R). From the Harnack inequalities and the 

local estimates (1.9), we see that i f y  E B(O,R + 1), d(x,y) >_ ro, 

(5.10) 

with c = cM(O,p, s0,R) > 1. Using the maximum principle and the equality ofs  

and s on M\B(O, R) we thus have Gx 1 (y) >_ c G~(Y) for all x E B(O, R), y E M with 
d(x,y) >_ ro. Exchanging s and s and considering then the adjoint operators it 

follows that c -1 G{ <_ G~ <_ cG~ on B(O,R) i fd(y)  >_ R + 1. By a variant of  the 

maximum principle ([B], p. 39) 

( S l l /  > c -1 

on M. Here, we have observed that u -- G~. - c -1 G~ is s superharmonic on 

M \ B(O, R) (since c _> 1), positive and continuous on OB(O, R) and bounded from 

below by - c  -I GI" 

The lemma follows then from (5.10) and (5.11). 

E n d  o f  p r o o f  o f  T h e o r e m  1. Let s  be the operator in D~t(O,p) which 

coincides with s on B(O, R) and with s on M\B(O, R). I fR is chosen sufficiently 

large, then s E DM(O,p, t0/2) (Theorem 2), and moreover dist(s s  -< ~R = 
inf(~b, ~b(R)) in DM(O,p) So that f ~  ~R(s) ds can be made arbitrarily small. The 

second part of  Theorem 1 which has already been proved shows that i fR  is fixed 

large enough (depending only on 0, p, t0, and if  G' denotes the Green's 
function for s  then �89 G 1 (x,y) < G'(x,y) < 2G 1 (x,y) for all x and y in M with 

d(x,y) >_ ro. Also, by the previous lemma, c -1 G2(x,y) <_ G'(x,y) < cG2(x,y) for 

some constant c = cM(O,p, t0, II~lll) > 0. (1.10) follows and the proof of  Theorem 

1 is complete. 

6. C o m m e n t s  a n d  f irst  e x a m p l e s .  G e n e r a l i z a t i o n s  to  t h e  c a s e  A1 (s  = 0 

6.1. We first relate Theorem 1 to a known criteria for comparability o f  Green's 

functions which is specific to zero-order perturbations. Assume that s E DM(O,p), 
0 _> 1, p > N, admits a Green's function G1 = Go.. Following Definition 2.1 of  

[Pi3], a measurable function W : M ~ I1~ is called a small perturbation for s if  for 

R ---, c~, 

sup{f  6 (x,z) W(z) 61(z,y) d(x) > e, a(y) _> o. 
(z)>_R 

A simple adaptation o f  the argument in [Pi3] shows that if  W is a small perturbation 

for s and i f s  -- s + W admits a Green's function G, then G1 and G are comparable. 

A weak converse o f  this is observed in Remark 2.6 of  [Pi3]. 
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C o r o l l a r y  6.1 Let 0 : [0, c~[--* lt~ be nonincreasing and integrable and assume 
that s E DM(O,p, ~) for  some ~ > O. Then V(x) = g;(d(x)), x E M, is a small 
perturbation for  s 1. 

P r o o f  Choose ~ : [0, ~ [ ~  II~ positive, nonincreasing integrable and such that 

limt--.~ q?(t)/O(t) = + ~ .  By Theorems 1 and 2, s and s + ,I,(d(.)) 1M\SIO,RI(.) 
have, for R large enough, comparable Green's functions. By the resolvant argument 

in Remark 2.6 of[Pi3], it follows that f G1 (x, z) q~(d(z)) Gl (z,y) da(z) < C GI (x,y) 
for some C > 0, whence the corollary. The same argument shows that any zero 

order perturbation s = s + W of  E1 allowed by Theorem 1 is a small perturbation 

for s 

Note that for the case at hand the proof o f  Theorem 1 reduces considerably. 

However, I do not know of  a "direct" proof  o f  Corollary 6.1 (except e.g. when M 

is hyperbolic and on using the Harnack principle at infinity of  [A3]). Note also 

that using the methods in Section 9 the corollary implies a version for domains. 

Details are left to the reader. 

6.2. Let us now consider the case o f  the Laplacian A in IR N, N _> 3, and of  its 

perturbations, a case which is treated in [Pi 1 ], [Pi4]. It may seem that Theorem 1 

is useless here since A1 (A) = 0; moreover, the other requirements in Theorem 1 

(withp = oc say) look different from the sharp conditions in [Pi4]. However, after 

a simple change of  metric, Theorem 1 leads to similar conditions. 

Fix a uniformly coercive N x N-matrix Ax which is a bounded measurable 

function o f x  E R x and an elliptic operator in R u in the form 

L = div(AV.) + B.V. + div(B'.) + b 

with B, B' locally Lp, b locally Lp/2 in RN for some p > N. Note L1 = div(AV.). 

Let M denote I~ N equipped with the metric g(dx) = ~(r)[dxt 2 where r = [xl, ~v is 

positive and smooth with ~(r) = r - 2  when r _> 1. It is easily seen that M satisfies 

our assumptions in Section 1. 

Let s = ~- i  L1,  Z; - -  ~ - 1  L. Simple computations show that s = d i V M ( . A . V M . ) +  

D. + div(D'.) + %  with D = ~ - I B  - ( In  - 1)~-2.A*(V~p), D' = ~-1B ' ,  7 -- 2 
~ - l b  - �89 (n - 2) ~-2 V~2.B' where in the last three equations the gradients and the 

scalar products are the standard ones in t~ u . 
Clearly s ~ DM(O, oc) for 0 large enough. Also, s is weakly coercive in M: 

this means that for small e > 0, the operator LI + e/(1 + r 2) admits a positive 

supersolution. This is clear for L1 = A (just take s(x) = 1/]xJ ~, 0 < & < N - 2) 

and amounts to the inequality 

(6.1) f( 1 +r2)  -1 u2dx < ~-1 f iv.12& 
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for u E C ~  (11~ N). This inequality implies in turn the desired property for general 

Lt. 
It is easily checked that E E DM(O, oo) for some 0 _> 1 if (1 + r) (]B[ + [B']) 

+( 1 + r )  2 [b] _< C. Moreover i f~  is nonincreasing on ~ and such that f o  O(t) dt < 
~x~ then disto~(Ej, E) < ~b in DM(O, oo) i f(  1 + r) (IBI + IB'I) + ( 1 + r) 2 Ibl _< ~p(log(r)) 

(note that dg(O,x) ~ log([xl) for ]x I > 2). 
In agreement with the results o f  [Pi4], it follows that if  L is Greenian and 

if  (1 + r)(lBI + IB'l) + (1 + r) 2 Ib] _< f (r)  w i t h f  nonincreasing and such that 

fl~ dt < ~x~, then the Green's functions G and G1 of  L and LI (acting in ~N 
with its usual metric) are comparable. It is well-known that G1 is comparable to 
G~ [Sta]. Note that ( forp  = ~ )  our conditions on B, B' and b are slightly stronger 

than the Kato conditions of  [Pi4] (see Lemma 2.3 there) and that an extra uniform 
C 1,'~ regularity condition is made there on ,4.. Also, by Theorem I, if for some 

p > N > 3, and all p _> 1, 

(1 + p)(p-N ~<_jxl<_2p[llall + i[a,[i]p dx) '/p + (1 + p)2 (p-N fo_<lxl_<2o ]blp/2 dx)2/p 

<_f(P) 

w i t h f  as before, then Gc ,.~ GLx. 
For nondivergence-type elliptic operators, using now the results o f  Section 7, 

the argument above yields (again in agreement with [Pi4]) the following. Let 

L = ~ ai/(x) OiOi + ~ Bi Oi + b be uniformly elliptic in I1~ N with bounded measurable 

coefficients. Assume that [[aij[lu,i~N < oo ,  [a i j ( x )  --  a~ <_ C Ix[ -6 for some 6 > 0, 

a > 0 and constants a ~ Suppose further that ~ j  <i_<N IX[ [Bi(x)[ + Ix[ 2 ]b(x)[ _<f(lxD 
w i t h f  satisfying the same Dini condition as above. Then the Green's  function o f  
L, if it exists, is comparable to Gzx. 

6.3. We now mention generalizations o f  Theorem 1 and Theorem 2 for general 
M as in Section 1. Let 7r : It~+ --, ItS+ be a positive nonincreasing function such 

that 7r(r + 1) _> c Tr(r) for all r _> 0 and some constant c > 0. We denote by 
the same letter rr the function m ~ 7r(d(0, m)), m E M, and for 0 >_ 1, p > N, 

denote Dg(O,p, 7r) the set o f  s E Dg(O,p) such that there exists a s + 7r positive 

superharmonic function in M. Let now 

A]~(s = sup{t E ~;  s + tTr has a Green's function} E [-oo,  oo). 

It is quite straightforward to generalize Theorem 2 and its p roof  in Section 4 in the 
following way. 

T h e o r e m  6.2 LetE1 E Dg(O,p) with AT(El ) >_ -A, A < oo. There isa constant 
c = c~,g(O,p,A) > 0 such that ]A~(E1) - A~(E2)[ _< 6for E2 E Dg(O,p), verifying 
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distq,,(s163 < cTr(d(m))6 for m E M. Here qo >_ 1 is some large constant 

depending only on co, O, and p, in fac t  the same qo as in the p r o o f  o f  Proposition 

3.1. 

Let now s E DM(O,p, ~r), s E DM(O,p, 7r), 0 > 1, p > N. Let u (resp. h) be 
a positive s (resp. s + ~r-harmonic) function in BR (resp. M) such 
that u(O) = h(O) = 1. The proof of  Proposition 3.1 shows the following more 
general statement. Let 7; : [0, c~) ~ ~ be a positive continuous nonincreasing 
and integrable function and l e t f  be as in Section 3. Let w = h f ( u / h ) .  

Proposition 6.3 We have •2(W) : S -  # where S E H~olc (BR), and # is a 

positive measure in BR such that f o r  each a E BR- 1 

distq0 (s s 
(6.2) IISllH-,(B(a,,.~/2)> <_ C [[X/~I ~ ~ ( ~ ( a ) )  u (B(a ' r~  

where c = cM(Tr, O,p) is a positive constant. 

Proposition 6.3 leads to the following extevsion of Theorem 1. 

T h e o r e m  6.4 I f  distqo(s163 < 7r(m)~pl(d(m)), m E M, with ~bl non- 

increasing in [0, ~ [  and f o  ~bl (t) dt < oo, then f o r  some constant c > 1, we have 

c - 1 G l ( x , y )  <_ G2(x,y) < cGl (x , y )  

for  all (x,y) E M x M such that d(x,y)  > ro and some constant c > 1. In fact, 

for  a given 6 > 0 we may even take c = 1 + 6 i f  f o ~bl(t)dt is sufficiently small 

depending on 6. 

The extension of  the proof in Section 5 requires the following remarks. Firstly, 
if in the statement of  Lemma 5.1 it is only assumed that s E DM(O,p) admits a 
Green's function, then the conclusion holds if one replaces A in the l.h.s, of(5.1) 
by "y(a)A where 7(a) = sup{G(a,P);  P E OB(a,r]) }. The estimates of  the terms 

with d(xj, b) < r l /3  in the paragraph after (5.6) are then easily extended. 
As shown by the examples in 6.1 the above result is far from sharp in the case 

o f M  = II~ N, N >. 3, equipped with the standard euclidean metric, and s = AM, 
s = A + D.V say. One of the reasons behind this is that we have used in the 
proof of Theorem 1 the Harnack inequalities in their weakest form whereas in 
the above example with the Laplacian in •N much better Hamack inequalities are 
available. More generally, the next paragraph shows that Theorem 6.4 can be 
seriously improved when s has no lower-order terms and if M has nonnegative 
Ricci curvature, or if  M is a Lie group with polynomial growth endowed with a 
left invariant metric (such M verifies conditions (PI) and (DV) below). 



74 A. ANCONA 

6.4. Assume now that the complete manifoldMverif ies  : (PI) Uniform Poincare 

inequalities hold for all balls, (DV) the volume doubling condition for balls holds 

(for precise definitions see [SC2]), and that moreover with respect to the fixed 

point O E M w e  have Vol(B(O,s))/Vol(B(O,r)) >_ c(s/r) ~ fors  > r > 1 and some 

> 2. Here we may drop the assumptions (1.1). 

Manifolds M verifying the first two conditions above have been extensively 

studied ([SC2], see also account and references there). In particular, uniform 

Harnack inequalities in (all) balls for operators in the form s = div(,A27) with .4 

bounded verifying (1.3) are known as well as the fact that our third assumption 

implies that the Green's function Go, for s exists and is comparable with G/,. 

Fix u > 2 such that vol(B(x, r))/Vol(B(x, s)) <_ C (r/s) ~ for some C _> 1 and all 

0 < s < r ,x  E M. Put rm = 2 m - 1  i fm  > 1 and ro = 0. Let s = div(.427) +DAT. + 

div(D'.) + 7 be such that 

f (IOl + IO'l)Pd~] lip am : ( 1  + rm) [ .<_d(x)<_r,.+E 

f i.ylp/2 do-]2/P < + (1 + rm)2[ rm<d(x)<rm+t 

1 for all m _> 1 and somep  > u.  Here fA means ~ fA" We then have the following. 

T h e o r e m  6.5 I f  the Green's function Go for  s exists and i f  am < bm, m >_ O, 
for  some nonincreasing and summable sequence {bin}, then Gc and Go, are 
comparable. 

The proof follows to some extent the same lines as before. Details will appear 

elsewhere. 

7. The  case o f  second-order  el l iptic operators  in nondivergence  form 

7.1. In this section, in addition to (1.1) it is also assumed that in every chart 

~P = ~ba, a E M, there is a bound 

(7.1) IOxkgo[ < co 

on Ba = B(a, ro), 1 <_ i, j ,  k < N, for the coefficients go of  the metric of  M, and 

that a (global) orthonormal moving frame {X1,...,XN} verifying 

(7.2) IVxk(Xj)l ~ co 

f o r j a n d k i n  { 1 , . . . , N } , i s g i v e n i n M .  F o r 0  > 1 a n d 0  < a_< 1, w e d e n o t e  

by AM(0, cQ the set o f  all second-order elliptic operator s on M with a given 
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representation of  the form 

N N 

(7.3) s = ~ a,jXjX,.(u) + ~ bkXk(u) + 7u, 
i , i= 1 k =  I 

where the coefficients aij, bk, 7 are bounded (borel) functions on M satisfying 

(7.4) 
N N 

k=l  i j  k=l  

N 

(7.5) Z [ai/(x) - aO.(x')[ <_ 0 d(x,x') ~, 
id= l  

N 

(7.6) ~ laii(x)[ + Z Ibk(x)[ + 17(x)] _< 0, 
l <_i,j<N k =  1 

whenx E M, x' E Mare  such that d(x,x') < 1 and ( E R x. The global existence of  

the frame {X1,... ,XN} is assumed for the sake of  notational simplicity and what 
follows may easily be extended to the class considered in [A3], pp. 512-514. 

Let s E AM(0, c~). A s (or a s harmonic function) on a region U C M is 
a function of  class W 2,p for some (or for all) finitep > N satisfying s = 0 a.e. 

It is well-known that Harnack inequalities (1.5), (1.6) hold for positive s 
(with 3 = 1 in (1.6)) ([Ser]) and that a well-behaved local potential theory may 

be attached to s ([Her]). (Using a local chart, one is left with the standard case 
where M = R x and {X1,...,XN} is the (constant) standard frame of  RN.) On 

each transient region U ([A4]), there is a well-defined Green's function G~(x,y) 
which is continuous in U x U, s with respect to x in U \ {y} and such 
that for each compactly supported ~ E LP(U), G(~) E WfoP(U) and s = -~;  
moreover, G(~) admits no positive s harmonic minorant in U. Finally, an adjoint 
potential theory ([Her]) may be defned: by definition, each function y ~ G~(x,y) 
is s in U \ {x} and adjoint potentials in U are the functions of  the 

form s = G~(#) = f G~(x, .) d#(x) where # is a positive measure in U such that 
G~ (#) ~ +oo. Harnack inequalities (1.5) hold for the adjoint theory with a constant 
c = c(O, a, ro) (by the local estimate of  the Green's functions in the case M = RN). 

By the invariance of  the class A~N (0, a) under dilations, one also gets (1.6) (for 

adjoints) in the case M = IR u and hence also in the general case. 
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I f s  E AM(0, a) and i f U  c M i s  open, Al(s U) is defined as before by (1.7) and 

we set Al(s = AI(s AM(O,a,eo) = {s E AM(O,a); Al(s _> e0}. Moreover, 

for s E AM(0, a,  e0), e0 > 0, estimates (1.9) still hold (see [A3]). 

For s  AM(O, a ) , j  = 1,2, q _> 1 and a E M we now set 

dist'q(s s = ~ I la]  i - a~IIL,,(B.) + ~'~ l i b ]  - b~IIL,(Bo) + I1"~' - "~2IIL'(~), 
i , j  i 

where the a~., b~, 7 k are the (given) coefficients o f  s  The choice q = + ~  

is certainly the most natural, but the method works as weli for q > 1. For 

~0 : (0,+oo) ~ I~+ and s E AM(0,a) , j  = 1,2, the notation dist'q(s163 -< ~b in 

A,,(O, ~) means that dist'q(s s <_ ~b(p) when a E M and p = d(a). 

7.2. To establish the analogues o f  Theorems 1 and 2 in this setting we follow 

the same lines as above for divergence-form operators and in some respect the 

proof is much simpler now. We start with the following (obvious) version of  2.5. 

L e m m a  7.2 Let u and h be two continuous positive functions o f  class W~o p in 
the region f~ o f  M and let v = u/h. Let also f : (0, +co) ---, (0, +c~) be o f  class C 2 

on (0,+oo). Then, for  each s E AM(O,a), 

s = hf"(v)ac(Vv,  Vv) + f (v) [s - vs + f (v)  s 

holds a.e. in f~. Here ac(Vv, Vv) = Y-~4,i ao'Xi(v)~(v) i f  s is in the form (7.3). 

P r o o f  Straightforward computation. 

We also have the following obvious substitute to Corollary 2.2. l f s  E AM(0, a) 
then s - (~ + 0)1 E AM(O, a, ~). Finally, we have to replace the last argument is 

w This is the content o f  the next lemma. 

L e m m a  7.3 Let s k = 1,2 be two elements in AM(0, a,~o), eo > 0, such 
that s = s in M \ B(a, ro) for  some a E M, and denote by Gi the corresponding 
Green's functions. For each given 6 > O, there is a positive e such that when 

dist'l (s s _< E 

(7.8) (1 +~5) -1G2(b,a)  <_ Gl(b,a) <_ (1 + 6) G2(b,a) 

for  all b E M such that d(a, b) >_ 2r0. (See also Remark 7.4 below.) 

&st~(Cl,s < ~. P r o o f  We may as well assume that " ' 

inequalities (1.6) for adjoint harmonic functions with respect to s 

By Hamack 

(7.9) (1 + 6 / 4 )  -I  G)(.,a) < Gj(~) <_ (1 + 6/4)Gj(.,a) 
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in M \ B(a, ro) if  ~ = c o 1B(a,o), co - [~r(B(a, p)]-l and if  p is sufficiently small 
(depending on M, 0, a and 6, but not on e). Next we note the formula 

(7.10) G2(qo) = G1 (qo) q- G2((122 -- 121)[Gl(qO)]) 

where zp = (122 - 121)[G1(99)] is in LP(M), p < oo, with supp(~) C B(a, ro). To 
prove the formula observe that by the basic properties of  the Green's  functions, 

2,p the r.h.s, is a Wio c (M) function w such that s = - ~  and, in particular, w is 
s Also, because 121 = z22 on M \ B(a, ro) the function [wl is 
dominated by C G2(., a) where C is a large constant (by the maximum principle, 
[B] p. 39). It follows that w is a potential ([B]) and hence that w -- G2(~), which 

proves the formula. 

Observe now that [[r ~ 0 when e ~ 0. In fact, by the interior W z,p 
estimates, [[GI (~)[[~.p(So) _< c [[[~[]Lp(M) + [[al(~)[[o~,B(a,Zr0)] --< C' since by (1.9) 
G1 (~o) is bounded in B(a, 2r0) by a constant which depends on ~5. Thus 

id i 

+ I1"/2 - "r ~ Ilz,,(B/II G1 (~o)II ~,B 

By Harnack's inequalities for s functions, 

Gz(l~b])(b) _< cG2(b,a)[]~[[L~ 

for b E M such that d(b, a) >_ 2ro. Thus, if  e is sufficiently small G2([r _ 
(6/4) a2(~)  on M \ B(a, 2r0) and formula (7.10) yields a l  (~) _< G2(~o)( 1 + 6/4). 

Combining this with (7.9) we obtain (7.8). 

R e m a r k  7.4 The restriction d(a, b) >_ 2r0 may be removed. Note that the 

proof above extends to the case where this condition is replaced by d(b, a) >_ rl, for 

any fixed rl in (0, r0). On the other hand, by the known local behavior o f  Green's  

function, for each given 6 > 0 there is a number rl such that (7.8) hold for all 

b E B(a, rl ) provided rl is small enough. 

7.3. It is easy to adapt the key construction in Section 3 and Proposition 3.5. 

Fix El E AM(O,a,eo), e0 > 0. Let u be positive El harmonic in B(O,R) and let h 

be a positive Ej +eoI solution in M with u(0) = h(0) = 1. As in Section 3, we 

may construct a function w in the form w = hf(u/h) in B(0,R) w h e r e f  is given 
by (3.1)-(3.2) and depends on the choice o f  the auxiliary nonincreasing function 

r  : [0, - - ,  
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P r o p o s i t i o n  7.4 Fix q > 1 and let s E AM(0, &) be such that 

(i)s163 i n w R = { x E M ; R -  1 < d ( 0 , x ) < R } a n d  

(ii) dist'q(s163 -< ~l with f o  ~ ~ l ( s )ds  <_ ~7. 

Then, for  each given 6 > O, there is a number 77(6) = 77M(O, a, q, eo, 5) > O, such 

that i f  ~ < ~7(6) we may write s = S - # in B(O, R), where # is positive and in 

L]o~ (BR), S E L I(BR), supp(S) c B(0, R - 1) and for  every a E B(O, R - 1/2) 

(7.8) IlSIIL'(e,,(ro/211 ~ 6 L ~(x) do'(x). 
(a,rll/4) 

Observe that ~7(6) is independent o f  R and can be taken in the form 7/(6) = 

C(M, co, O, ~, q)e o ~ 5. The proof  is similar to the proof  of  Proposition 3.1, using 
Remark 3.2.1 and the norms ]].]]n-, being replaced by L 1 norms. The required 

bounds on 11[s - s and 11[s - s (compare (3.7)-(3.8)) are 
now straightforward (and are the reason for the assumption q r 1). The content o f  

Remark 3.2 and Proposition 3.3 extend in the obvious way to the present setting. 

We omit further details and rather state now the analogues o f  Theorem 1 and 
Theorem 2. 

T h e o r e m  1' Fix q > 1. Let s and s be two element in AM(0, a, e0) (with 0 < 

a <_ 1 and eo > O) and denote G 1 and G 2 the corresponding Green's functions in 

M. I f  ~ is nonincreasing in [0, c~) with f + ~  ~(s) ds < +oo and tfdist'q(E1, E2) ~ 

in AM(O, a), 

(7.9) c -1GZ(x,y) < Gl(x,y)  <_ c GZ(x,y) 

for  all x, y E M and some constant c > O. Moreover, for  every 6 > 0 there is a 

number ~ = v(M, O, a, co, 5) > 0 such that i f  f + ~  ~(s) ds < ~ we may let c = 1 + 6 

in (7.9). 

T h e o r e m  2' Let 0 > 0, a E (0, 1] be fixed. For each 6 > 0 there is a positive 

real 77 such that when El, E2 E AM(O, a) and dish'(s  E2) _< 7/on M, 

(7.10) IA (L ) - ,x1(s  ~ 6. 

In fact, A1 is Lipschitz continuous in AM(O, a) with respect to the distance d( s s = 

supMdistq(s s for  each q > 1. 

7.4. P r o o f  o f  T h e o r e m  2' To extend the proof  in Section 4, we use the 
following fact which holds for every s E AM(O, a) and every bounded region 
in M such that A0 -- A1 (s ~) > 0: if  G is the Green's function for s in ~ and if  

G* (x,y) = G(y, x) for x and y in ~, there is a positive continuous function a* on 
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such that e* = A0 G* (a*). This is well-known at least under some extra smoothness 

assumptions. See 7.5 below. 
The proof in Section 4 may then be repeated, with ~R = ~. Now, S is a negative 

measure with compact support c B(0, R - 1 ), and the integration-by- parts formula 

(v - S, ~*) = (w, A0 or*) holds since by Fubini 's theorem 

(u - S, or*) = (u - S, A0 G* (c~*)) = (G(u - S), A0 or*). 

The other parts o f  the proof are unchanged. 

7.5. The existence of  c~*. We sketch a proof for the existence o f  e* in 7.4. 

Replacing s by s - A2I, )~2 : II/~(l)[Io~, we may assume that /2(1) _< 0 thanks 

to the resolvant equation. In this case, and since ~ is bounded, there is a bound 
G(x,y) <_ CkN(d(x,y)) where kN(r) = r 2-N i f N  > 3 and kz(r) = 1 + log+(1/r) .  

By Harnack property (1.6) it follows that G defines a compact operator in L2(~t). 

Fredholm's theorem shows then that Green's function for s + ~01 fails to exist, so 

that up to scalar multiples there is a unique s + A0I positive supersolution a* in 
and a* is s + A0I harmonic (see e.g. [A4], Chap. 1 and 3). Finally, in the Riesz 

decomposition a* = A0 G*(a*) + h with h > 0, it is easily checked that u = G*(e*) 

is s + ),0I superharmonic and thus a* = A0 G*(a*). 

7.6. P r o o f  o f  T h e o r e m  2 Using now Proposition 7.3 instead of  Proposition 

3.1, the proof in Section 5 may be repeated, the only changes being as follows. 

(i) Given s s in AM(O, ~) and a closed set F C M, in general there is no 

s E AM(0, c~) which agree with s on F and with s on M \ F.  However, using a 

smooth cutoff function ~ we may define in the obvious way s E AM(4 0, a) equal 

to s on F and to/~2 on {x E M; d(x,F) >_ 1}. 
(ii) In the formula after (5.6), S is in the form S = f a  withfe~ E Ll(Ba) , f  < 0 

and (7.8). It follows that the terms corresponding t o j  c J with d(xj, b) _< r l /3  in 

the 1.h.s. may now be estimated using the H61der inequality and the standard local 

estimate of  G by d(x,y)  2-N (resp. - log Ix - y[ i f N  = 2): 

(7.11) IIOR(~jS)I[L'W<b,r,)~ ~ C IIS[IL'~BIx,,r, II, 

so that r E B(b, r l ) ;  IGR(~jS)(x)I >_ t I[~jSI[L~IB~xj,r, II } ~ C-1 t-I" 
(iii) At the end of  the proof (see Section 5.3) the argument is replaced by 

Lemma 7.3. 

8. S o m e  appl icat ions  o f  T h e o r e m  1 to manifo lds  

8.1. A version o f  Theorem 1 localized at one point at infinity. In this paragraph 

we assume that M, besides the assumptions in Section 1, is also hyperbolic in the 
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sense o f  Gromov (e.g. M is a Cartan-Hadamard manifold with pinched negative 
sectional curvatures). We refer to [A4], [A3] for definitions, notations and potential 

theoretic results. Let I" = 0(  be a geodesic (minimizing) ray in M, ~ E S ~ ( M ) ,  and 
let r be a positive function on [0, +ec).  Set 

Ur = {x E M;  d(x,F) < q~(d(O,x))}. 

T h e o r e m  3 Assume that log(t) = o(~(t))  when t ~ +oo. Let s E DM(O,p, e), 

j = 1,2 and e > 0 be such that distq,,(s163 < ~ ( d ( x ) ) f o r x  E Ue~(~) where 

is a nonincreasing and integrable function on (0, +oo). Then the corresponding 

Green ~ funct ions verify 

C - 1 G I ( x , y )  <_ GZ(x,y) <_ C G l ( x , y )  

f o r  x and y on the ray r" = 04 and some C = CM(q~,O,p, ~,e)  > O. Moreover, the 

ratio G 1 (x, O ) / GZ (x, O) has a limit when x ~ ~, x E F. 

Here q0 = qo(M, O,p) is as in Theorem 1. Simple changes in the proof  show 
that the similar statement with s E AM(0, a,~) and d i s t ' ( s  s <_ ~(d(x))  for 

x E U~(~) holds as well. 

P r o o f  It suffices to show that the conclusions of  the theorem hold if we keep 
the assumptions on the operators s but take ~(t) = ~sA(t) = A log(2 + t) with 

a constant A > 0 sufficiently large (depending on M, 0, p and e). This will 
follow from Theorem 1 and the following properties. Fix s E DM(O,p, e), set 

U = UA,p = {x E M;  d(x, Fp) < rbA(d(ap,x))} where ap is the origin o f  the ray 
I'p = F \ B(0, p). Let G (resp. g) denote the Green's function of  s in M (resp. in 

U). We then have 

(i) g(x ,y)  < G(x,y)  < C g(x ,y)  fo rx  a n d y  on I', 

(ii) the limit g = limx~r,x-~r g(x, O)/G(x, 0) exists and g > 0. 
Assuming for the moment that (i) and (ii) hold, let us see how Theorem 3 

follows, using Theorem 1. Introduce the operator s having the same coefficients 

as s (resp. s in U (resp. in F --- M \  U). By Theorem 2, i fp  is chosen sufficiently 

large s E DM(O,p, e/2),  so that s and s satisfy the assumptions of  Theorem 1 and 
thus have Green's  functions o f  similar size. By  (i) above, it follows that G 2, G, g 
and G l are also equivalent in size on F (because g is also the Green's function for 

s in U). The first claim in the theorem follows. By Proposition 8.4 below the 
second claim follows similarly from (ii). 

Let us now prove (i) and (ii) following closely the method in [A5], w (see 

also [A4]). We assume as we may that p = 0 and ap = O. Denote Rs a the r6duite 
o f s  over B C M with respect to s (ref. [B]). 
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L e m m a  8.1 For x e M, R >_ 1 and VR = M \  B(x,R), 

(8.1) Rg~(x) <_/3-! e -aR 

with/3 =/3g(O,p, r > O. 

P r o o f  Fix t with 0 < t < s and let G t be the Green's function for s  By [A4], 

Prop. 10, there is a constant/3 = 3g(O,p,e) > 0 such that G~O') </3 -1 e-~RG~O') 
for d(x,y) >_ R. Hence, setting w = RoY! (the r6duite is taken with respect to s 

R~(x)  < 3 -1 e -r w(x) < Ce -;~R, 

since w(z) < G~(z), by the s o f  G~ and the definition o f  the 

reduite and because Gt(z) < c on OB(x, 1). This proves (8.1). 

L e m m a  8.2 Assume that A is sufficiently large and let Kx = Gx/G(O,x). Then 
(a) for x and y in F, RF (y) <_ e(x,y) G(x,y) where limx-.r162 s(x,y) = O, 
(b) we have limx~r RF(0)  = RFr and RF~(o) < 1. 

Recall F = M \ U. The second part o f  (b) means that F is minimally thin at 

and is observed in [A4] under a symmetry assumption which is removed here 

using Lemma 8.1. 

P r o o f  It suffices to prove (a) for x = zk and y = ze where zj E F, d(O, zj) = j ,  
j _ > 2 .  

Assume that k < g and let Fj = {m e F ;  d(m,F) = d(m,[zj-l,Zj+l])}, Bk = 
{m ~ F; d(m,[zk,~]) = d(m,zk) }, Ce = {m 6 F; d(m,[O,ze]) = d(m,ze) }. Note 

that R / =  d(zj, Fy) verifies Rj > (A/2) log(j + 1 ) for sufficiently largej.  
Using the Hamack  principle at infinity ([A4]) several times, the hyperbolicity 

o f  M and Lemma 8.1, we get, for k < j  < g, 

F: cG(zj,x)R~::O,) <_ c' G(zj,x) GO,,zj)R~./(zj) RedO,) <<_ 

< c"GO,,x)R~.(zj) < c"GxO,)e - 'R'  < c"( j+ 1) -A' GxO,) 

where A' = /3A/2. It is shown similarly t ha t /~ko ' )  < c"(1  + k)-'4' GO',x) and 

RG O') < c" ( 1 + g)-'4' GO, , x). 
Summing up, we find that 

RF~ O') <-- RSG~O')+RC'~ O')+ Z RFdJ~ O') <- c"[ Z (1 +j)-'4']GO',x), 
k<j<~ k~<_~ 

which proves (a) wheri k < g ifA > 2/3 -1 . The case g < k is treated similarly. 
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To prove (b), we first observe that Kx <_ cKr outside B(x, 1), x E F. In fact, 
G~ <_ c [Kr162 on M \ B(x, 1) since this holds on OB(x, 1) and Gx is a s 
potential. Thus K~ < c [G(O,x) Kr162 outside B(x, 1). But from the Hamack 
inequality at infinity Kr Gx(O) >_ c when x E F ([A4], p. 99) and the observation 
follows. 

Since Kx ~ Kr when x ~ (, x E F ([A4]), RF Cv) ~ RF (y) for all y E U by 
dominated convergence (recall that RFCv) = fK , ( z )d#(z )  if # is the harmonic 
measure o f y  in U). 

By the proof of  (a), for x and y on F with d(x) > d(y), we have RF (y) < 
c"(1 + d(y)) 1-A' Kx(y). Letting d(x) go to infinity and using the above we get 

RF(y)  < C'(1 +d(y))l-A'Kr 

Thus, Kr - RFr is positive harmonic in Uand _> �89 a ty  E F ifd(y) is sufficiently 
large. It follows from Harnack inequalities that RFr (0) < (1 -- 6) for some 6 = 
6g(&p, e) > 0. The proof is complete. 

We may now prove properties (i) and (ii) after Theorem 3. From the formula 
g(y,x) G (v) g = - RG~ (y) and Lemma 8.2, it follows that g(y, x) > 1/2 G(y, x) for x 
and y on F and sufficiently far from O. Using Harnack inequalities this yields (i). 
Also g~(O)/Gx(O) = 1 - R F, (0), whence (ii) by (b) in the lemma. 

8.2. Dirichlet problem and harmonic measures for  manifolds. In this subsection 
and the next, we consider again a general manifold M (with a given reference point 
0 E M) that verifies only the assumptions of  Section 1. Note that i fM is hyperbolic 
then the E-Martin compactification coincides with the compactification with the 
sphere at infinity, for all s E 7)g(O,p,e), 0 _> 1,p > N, e > 0 (ref. [A3], [A4]). 

Proposition 8.3 Assume that the hypothesis o f  Theorem 1 holds and let 
A/I = M U OM be a compactification o f  M such that OM contains at least two points 
and such that the Dirichlet problem s (u) = 0 in M and u = f in 034 is solvable 
for  f E C(OM; R) with u E C(35/; 11~). The similar Dirichlet problem for  Ez is then 
also solvable and the corresponding harmonic measures ~x, x E M, j = 1,2 verify 
c -I #.~ <_% #2 x < C#Ix wherec = c(s > O. 

R e m a r k s  1. Ifh is a s with boundary value 1, infx~g h(x) > 0 by the 
available minimum principle. Uniqueness for the Dirichlet problem with respect 
to s follows. 

2. If  the existence of  a function u E C(AS/; II~) harmonic with respect to s and 
> 1 in M is assumed from the start, Proposition 8.3 follows from Theorem 1 along 
familiar barrier arguments. 

Proof  of  Proposition 8.3 Observe first that if C -1 Gl(x,y) <_ G2(x,y) <_ 

C G 1 (x,y) when d(x,y) _> l, then for each nonnegative s function u in 
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M there is a E2-harmonic function v with C- lu  < v < C u. To see this, consider 
Bp the reduite Po = Rz, (x) (with respect to s where B o = B(0, p). This function 

is the G j-potential o f  a positive measure #p on OB(O, p) and vp = G21to verifies 
C-Ipo  < vp < Cpp in B(0, p - 1). Sincepp = u on B(0, p), any cluster value v o f  

vp when p --, oc has the desired property. 
! 

Let u be continuous > 0 in M, 1; ~ -harmonic in M. Let s E Dg(O,p) be such 

that s = 1;I in B(O,p) and 1;~ = l;2 on M \  B(O,p). If~5 E (0, 1), by Theorem 1 

and the above observation, there exists a 1;~-harmonic function w = wp in M with 
( 1 + ~5)-1 u _< w < (1 + 6) u in M i fp  is large. By a standard extension result ([Her], 

Lemme 13.1) there is a s function el in M and a positive measure 

# with compact support in M such that el - w = G2(#) in M \  B(0, p + 2), Since 

card(0M) > 2, the assumptions on 1;1 imply that there is a barrier with respect to 

E1 at each ( E OM. Thus G l (#) and hence also G2(#) vanishes at infinity in M. 

In particular ( 1 + 26) - 1 ol <_ u < (1 + 2t5) or1 near infinity and the upper envelope 

given by the Perron method for 1;2 and the boundary value f -- Ulos verifies 

_< (1 + 26)2u near infinity. Hence limx~c 7(x) < f ( ~ )  for ~ E 0 M a n d  there is a 

similar lower bound for the Pert'on lower function. The corollary follows. 

8.3. The Martin boundary. We denote by 2~/L the Martin compactification of  M 

with respect to s E Dg(O,p, e0) (P > N, 0 > 1 and e0 > 0) and we let Az ----- 2~/c \ M .  
The minimal part o f  Ac is denoted A~ (see [A4] for definitions and references). 

When 1; is submarkovian (i.e. when 1;(1) < 0), the 1; harmonic measure t~f o f  

x E M is defined as follows. I fu  is the largest harmonic minorant of  1 in M and if  u 

is the unique positive borel measure on Af  such that u = K~ := f Kr (.) du(~) where 

K is the/ ; -Mart in  kernel with normalization at O, then d~.f(~) -- Kr du(~). 

P r o p o s i t i o n  8.4 Under the assumptions o f  Theorem 1, the Martin compacti- 
fications o f  M with respect to 1;1 and s coincide, i.e. there is a homeomorphism 

: ~IL~ --* ~I~2 inducing the identity on M. Also, .for x, y in M, the ratio 
G1 (x, .)/G2(y, .) o f  the adjoint Green's functions admits a continuous extension to 

R e m n r k  8.5 I f  both operators are submarkovian, the corresponding harmonic 

measures verify c-1 #{ < #x2 < c #l for x E m and some constant c = c(s > 0. 

Moreover, there is a continuous dens i tyf (x ,~)  on M • A~, such that d#2(~) = 

f(x, 

We need the following simple complement to Lemma 5.2 (see [T], [Pi2] for the 

first claim). 

L e m m a  8.5 Under the assumptions o f  Lemma 5.2, the identity map in M 
extends to a homeomorphism ~Ic~ ---, ~ic.z. I f  ~ E A f ] ,  and i f  x E M tends to ~ in 
~4c,, the ratios G 2 (a, x) /G 1 (b, x), (a, b) E M x M, converge to a finite positive and 
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continuous function Ur (a, b) on M x M. 

P r o o f  Let V be a component of  U = M \ B(0, R) with a fixed reference point 
Q E V and let g denote the s i -Green's function in V. For a E V, 

g,-(a) Gl,(a) - RIo~ (a) l X '  G~(Q) x(a) - R~,, (a) 
- -  X ~---  

g~(O) G~(Q) G~(Q) - R~t (Q) 1 - Rlx: (Q) 

where R~, is the r6duite with respect to s of  the fimction u over B(0,R) and K~ is 
the s kernel in M with Q as reference point. When x E V converges in 3?/cj 

to r E A~, (M), 
gx K ~ ( . ) - R '  ,(.) Kr 

kr 
gx(Q) 1 - R~  (Q) 

If kr = kr for some r E AL, (M) n V, the uniqueness property of  the Riesz 

decomposition shows that r = r It follows that a sequence {xi} in V with 

d(xi, O) ~ +oo converges in/~/c, if and only i fg , , /g(Q,x/)  converges in V. Inter- 

changing s and s it is seen that {x/} converges in/Qc, iffit  converges in Mc2, 
which proves the first claim of  the lemma. For b E M, x E V and using the same 
notations as before 

g(Q,x) G~(Q) - R~(Q)  
Gl(b,x) a (b) 

G{(Q) - R~I (O) 

G~(Q) 
G~(Q) 

x 
I -1 Ix; (b)] [1 ' _ - R K ~  (Q)]. 

Hence for each compact K c M, 

I g(Q,x) 1 - RK, ~ (Q) 

a'(b,z) x (b) when x ~ r 

uniformly with respect to b E K .  Using the similar properties for G 2 and g, it 

follows that uniformly with respect to (b, b') E K x K 

a ' ( b , x )  K (b) 
lim - • 62(b,,x) 1 - R~c ~ (Q) 

P r o o f  o f  P r o p o s i t i o n  8.4 Let R be a (large) positive real and let s denote 

the operator in DM(O,p) which coincide with s on B(0,R) and with s on U --- 
M \  B(0,R). For each given 5 > 0, Theorem 1 and Theorem 2 imply that i fR  is 

large the Green's function G for s exists and (1 + 6)- l <_ G(x, a) /G ~ (x, a) _< ( 1 + 6) 
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if  d(x,a) > 1. Using Lemma 8.5, it follows that if K is compact in M and if  
x, y belong to a small neighborhood (in 3~/L,) o f  ( E AL,, then (1 + 26) -I  < 

[G2(a,x)/Gl(a,x)] : [G2(a,y)/GI(a,y)] < (1 + 26) for a E K. This means that 
Gz(. ,x)/G 1 (.,x) converges uniformly in K when x ~ (. 

In particular, Kx 2 converges when x ~ ( in f-/c~ and the identity extends contin- 
uously to ~ : f4L, ~/~/L, .  Interchanging s and s Proposition 8.4 follows. 

9. Applicat ions  to elliptic operators in eucl idean domains  

To simplify the exposition, we have discussed above (w the case o f ~  s itself and 

we shall restrict here to bounded domains. Note, however, that the results below 
in 9.4 for divergence type operators are valid without the boundedness assumption 

on fL 

9.1. Let f~ be a bounded domain in II~ s and for 0 _> 1, 0 < a _< 1, let An(O, a) 

denote the class o f  elliptic operators L in f~ o f  the form 

(9.1) L(u) (x) = y ~  aO.(x ) uO.(x ) + ~_~ bj(x) uj(x) + "r(x) u(x) 

where the coefficients satisfy the following conditions. For x E ~2 and ~ E ~U, 

(9.2) 0-' I~12 ~ y~aij(x)~i~j, ~-~la;j(x)l ~ o, 

(9.3) y~ lao.(x ) -ao.(y)[ < 0 -1 ([x-Y['~ a i f y e  9tandd(x ,y)  < �89 
- ~ 6(x) J 

(9.4) Ibj(x)l ~ 0 6(x) -t,  I'Y(x)l ~ 0 6(x) -2, 

where 6(x) = d(x, Of~c). If6 is a standard regularization of  6, i f M  is the Riemannian 
manifold (fL g) where g(x, dx) = $-2 [dx[2 (Example 1.2.2), equipped with the 

frame ~- = 6(x) ej, 1 <_ j <_ N, where ( e l , . . . ,  eN) is the standard basis o f  II~ N, the 

operator 

s = 62L = ~ aij(x)XiXj + Z [ 6 ( x ) b ,  - Za~j(x)6j(x)]X~ + 6(x)2~'(x) 
i j 

is in AM(0', a)  for some 0' > 1 (see definitions in Section 7). Moreover, Z: 

AM(0', a, e) i f fL  + e 6(x) -2 admits a positive supersolution. We let An(0, a, e) = 

{L e A~(O, ~); L e AM(O', ~, ~) }. 
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Recall from [A3] w thatL E Aa(0, a) is in Aa(0, a,  e) for some e > 0 i f  there is a 

Green's function forL in f2, i f 6 (x ) (~ i  [bi(x)[) +6(x) 2"r+(x) = o(1) when ~(x) ~ 0 

and i f  one o f  the following conditions is also satisfied 

(i) the region f~ is uniformly regular (in the sense o f  [A2]) and the coefficients 

aij are (globally) H61der continuous in f~, 

(ii) there is a constant c > 1 such that forx E 0f~ and r > 0 there existsy E f~' 

with lY-  x[ _< c r and B(.y, c-~ r) C ft c. 

I f  L(1) _< 0 the Green's function existence condition is implied by the others 

([A3]). Also, in this case f~ is Dirichlet regular with respect to L. (See [A2] 

Theorem 4 and its proof.) 

9.2. John domains o f  H6lder type. Let 0 < /3 < 1. We say that 9t is a John 

domain o f  H61der type/3, i f  there is a point O E f~ and a constant c0 = c0(g0 > 0 

such that each point a E f~ can be joined to O by a rectifiable path I'(t), 0 < t < 1, 

with F(0) = a, I'(1) = O, F C f~ and 

(9.5) 6(I'(t)) ~ _> co e(t) 

where g(t) is the length of  I'([0, t]). For/3 = 1 we recover the John domains (ref. 

[NV]). For general/3, the simplest examples are provided by the HOlder domains 

o f  exponent/3. 

For such domains we have the following (compare [HS], [A1]). 

T h e o r e m  9.1 Assume that f~ is a John domain f~ o f  Hdlder type/3 > O. Let Lb 

L2 belong to a class Aa(0, a, e), ~ > 0, and let Gj denote the Green's function o f  Lj 
in fL Suppose that for  some bounded nondecreasing fimction �9 : (0, +oo ) ~ R+ 
and all x E f~, 

(i) Zij lab(x)-ag.(x)l +6(x) ( ~ j  [b)(x)- b~(x)[) +,5(x) 2 b', (x)-'~2(x)[ < ,I,(6(x)), 
(ii) r satisfies the Dini condition 

fo t--s dt < +oo 

where we have used obvious notations for  the coefficients o f  Lj. Then, for x and y 
in [2, 

(9.6) c -1 Gl(x,y) < Gz(x,y) < cGl(x,y),  

where c = c(f~,L1,L2) > O. I f f t  is Dirichlet regular with respect to Lb it is also 
Lz-Dirichlet regular and fx, x E f~, the corresponding harmonic measures in f~ 

verify 

(9.7) c -1 #x 1 _< #x 2 _< C#x 1. 
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R e m a r k s  9.2 1. The theorem still holds if in condition (i), Ib)(x) - b~.(x)l 
is replaced by the mean 6(x) -N fB(x,6(x)/2)]b)(y)- b](y)[dy and similarly for 

1"~1 (x) - 72(x) 1. 
2. Let 6 > 0. Using Theorem 1', we see that if f l  ~ dt is sufficiently small 

depending on f2,/3, 0, c~, then we may take c < 1 + & 

P r o o f  Let M = (~, ~-2 [dxl2) be the Riemannian manifold attached to f~ as 

above, and let d(x) = dM(O,x). I f F  is a path F : [0, 1] --, f~ connecting a E f t  to 

O with (9.5), we obviously have 6(F(t)) ~ >_ Cl (6(a) ~ + g(t) ) with cl = cl (c0,/3). 

Therefore, 

fo fo I dg(t) 
l de(t) c' 

d(a) <_ c 6(Y(t)--------) <- (6(a)~ + g(t))l/~' 

c' /3 if/3 < l, andd(a) < c, log(6~a))  i f  /3= l" and d(a) <<_ 1 ~ /3 6(a) !-;3 
On the other hand, it is easily checked that (i) implies that (in M) the operators 

s = 62Lj are such that d i s t ' ( s  s < ~(c6(a)) (away from O) and hence, 

since �9 is nondecreasing, 

, ( ) &sto~(s163 < �9 d(a)fT(l_~) = ~(d(a)) 

if/3 # 1. Thus, with the notation of  Section 6 and for/3 < 1, d i s t , ( E l , E 2 )  -< 
in AM(O', ~) (away from O, for some large 0'). But (ii) means that �9 is integrable 

over (0, + ~ ) ,  so that we may apply Theorem 1' (Section 7), and since the Green's  

function Gj in M of  s is related to Gj by the formula ~j(x,y) = 6~v) u-2 Gj(x,y), 
(9.6) follows. The case/3 = 1 is handled similarly. The claim on the harmonic 

measures follows from the "nondivergence'" version of  Proposition 8.3. 

9.3. Localization. Assume that f~ is such that 0 E 0f~ and f~ A B(0, p) = 

{x E B(0,p) ;  Xn > f ( x l , . . . , X U - l ) }  for some Lipschitz f u n c t i o n f  : I~ u-1 ~ II~ 

with f (0 )  = 0 and p > 0. Let 

U = {x E B(O, p) fq f~ ; [l(xl,. . . ,XN-l)ll < 6(x) g(6(x))) 

where g is decreasing on (0, p) and such that log(1/s) = o(g(s) ~) when s ~ 0 for 

each ~ > 0. If  the assumptions of  Theorem 9.1 hold with/3 = 1 and (i) restricted 

to x E U then (9.6) holds for x andy  in S = { (0 , . . . ,  O, t), 0 < t < p/2 }. This may 
be deduced from the nondivergence variant o f  Theorem 3 (Section 8). 

9.4. Operators in divergence form. Similar results hold for operators in 

divergence form. We briefly describe what is obtained in this case. Set Dx = 
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{y 6 12; Ix - y )  < �89 fo rx  E ft. F o r p  > N and 0 _> 1, denote 7)a(O,p) the class 
o f  operators L in the form 

(9.8/ Z(u/= O (ai, Oj(ul)+ F_, b/Oju + O/(b;u) 
1 < i , ] < N  l < j '<N 1 ~/_<N 

the coefficients being measurable functions on f~, with (9.2) and for x E 12, 

(9.9) 6(x) J-NIp (llb#llz~(D,> + Ilbjllv,(o,)) + ~(x) 2-2NIp []~/[ILt'/2(D~,) ~-~ O. 
J 

Set Dn(O,p, e) = {L E Da(O,p) ; L + ~ - 2 .  admits a > 0 supersolution in ft}. 
As before, i l L  E Da(0,p) ,  then s = 62L has a natural representation in some 

class 73M(O',p) where M = (12,g), g = /~(x) -2 [dx[ 2, and L E / )a (0 ,p ,e )  i f f s  E 
DM(O',p, e). Straightforward calculations show that for Lti) E Da(O,p),j = 1, 2, 
the function distq (s  s (x) related to M and the corresponding operators s 
(and a small radius ro) is estimated by a constant t imes the expression 
(9.10) 

iJ JlLq(D,) "Jr- ~l-N/p Z (llb~ I ) -  b~ 2)IILp(D,) --I-IIb'~ I) I)'(2) - - /  II.,(o,>) 
J 

..~ 62(1 --N/p)I1"/I -- ")'2 I]D~/2(O,), 

where [J.lIZq(Dd is the L q norm with respect to the normalized measure #x = 
6(x)-N dx. 

I f L  6 Da(O,p) has bj = b; = 0 for 1 < j  < N a n d  "y < 0 and if12 is uni formly 
regular, then L E D~(O,p,e). This follows immediate ly  from the validity o f  a 
version o f  Hardy's inequality for 12. (See [A2].) Thus by Remark 1.3 we have the 
following statement. 

Propos i t ion  9.2 Assume that 12 is uniformly regular and that L E 79a (O,p) 
is in the form (9.8) with L(1) < 0 and ~j~(x)l-N/P(l[bjlltp(o,) + [[b~l[L~(Od)+ 
~(x) =-2NIp II'~)lz~/2/Dx) _< f(~(x)) for x e 12 and a function f in (0, oo) such that 

limt-.of(t) = O. 
Then, L E Dn(O,p,e) for  some e > 0 depending only on 12, O, p and f . 

The next statement is the variant o f  Theorem 9.1 for divergence-type operators. 

T h e o r e m  9.1'  Suppose that f~ is a uniformly regular John domain o f  HOlder 
type ~, 0 < ~ <_ 1, and let LO), L (2) be members o f  a class Da(O,p,e), (p > N, 

0 > 1, E > 0). Assume further that when x E f~, 

Z la~ ))(x) - a~ ?>(x)[ + Z 6'-N/P (If# ' > -  # 2>I[/p(D0 + llb') ' ) -  b')2)lI~(Dd ) 
id j 

+ ,5 2(1-N/p) [17 0) - "/(2)11/~/:(D,) _< ~@5(x)) 
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where ~ = 6(x), ~ is nondecreasing with fd S 13-2 qO(S) (Is ( +00 and where we have 

used obvious notations f o r  the coefficients o f  L (/). Then, the Green's functions G o) 

o f  these operators - -wi th  respect to f t - -  satisfy 

C -I G(1)(x,y) <_ G(2)(x,y) <_ CG(l)(x,y) 

with C = C~(O,p,e,~) > O. 

Similar inequalities hold for the Lj-harmonic measures in ft. Also, in the 

condition above one may replace the terms involving the at(;) by the sum 

Z Ilal~ ~/- .~2~,,_ "i/ ~L,(D~) with q sufficiently large depending on p and 0. Observe 
that by Proposition 9.2, Corollary 1.2 follows from the particular case where/3 = 1 

and the L p norms in the condition above are bounded. 

9.5. An application to Green "s functions and harmonic measures with respect 

to nondivergence-type elliptic operators. Suppose that ft is a uniformly regular 
John domain of H61der type/3, 0 </3 _< 1, and letL E A~(0, a) be in the form (9.1) 

verifying (9.2), air -~ aft, "3" ~ 0 and 6(x) ~ i  ]bi[ + 6(x) 2 ]')'(x)l <_ ~p(6) where ~ is an 
increasing function on (0, +c~) such that f l  s~_2 ~(s) ds < +c~. Assume further 

that for x 6 ft (recall 6(x) = d(x, f~c)) 

(9.11) - 

Denote G and G the Green's functions of L and L = ~ i j  Oi(aoOj(')), respectively. 

T h e o r e m  9.3 Under the above conditions there is a constant c >_ 1 such that 

c -1 G(x,y) <_ G(x,y) < e G(x,y) 

for  all x and y in ft. In particular, (i) G is quasi-symmetric in the sense that 
G(x,y) <_ cZ G(y,x), and (ii) c- l  [~x < #x < C [~x i f  m (resp. [~) denotes the 

harmonic measure o f  x in ft with respect to L (resp. L). 

P r o o f  We assume as we may that bj = 0, -y = 0 (Theorem 9.1) and we construct 
functions a ~ by regularising a,j in the usual way, using a fixed Whitney partition 
of  ft (ref. [Ste]). Standard arguments show that a ~ satisfy the uniform ellipticity 

condition (9.2), and that 

(9.12) IVa~ 5 c' ~(x) -~ ~(~(x) ) ,  la~ - ao(x)l 5 ~(~(x) ) .  

In particular, the operator L ~ = E Oi( a~ Oj(.)) = E a~ Oi Oj(.) + E 0,(a~ Oy(.) 
belongs to (or rather has a representation in) a class Aft(0', a) and by Theorem 
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9.1 has a Green's function comparable to G. At the same time, it is a formally 

self-adjoint operator of  divergence type with a representation in 7?a(O",p, e) for 

some 0", any fixed p > N, e > 0 small. By Theorem 9.1 ', L ~ and L have Green's 

functions equivalent in size. The same reasoning applies to harmonic measures, 

and the theorem follows. 

As a consequence we finally show the following. 

T h e o r e m  9.4 Suppose that f~ is a Lipschitz domain. Let  L be an elliptic operator 

in ~ in the fo rm (9.1) andsuch that ( 9 . 2 ) a n d ~ j  ~(x) [bjl+~2(x)l'y(x)[ < ~(~(x)) hold 

f o r  some nondeereasing funct ion ~ verifying the Dini condition f~ t-I  ~( t) dt < 

+ 2 .  Assume moreover that the aij are globally HOlder continuous in ~. Then. the 

L-harmonic  measures #x in ~2, x E ~, are absolutely continuous with respect to the 

area measure cr on O~ and #x = fx.cr with fx E L2(a). 

P r o o f  By Theorem 9.3 we may assume that bl . . . . .  bN = "~ = 0, aij =a/i ,  

and then replace L by Ll = ~ i j  Oi(aoOi('))" By the main result in [FKJ] (or [D]) 

we are done. 

We may also use an argument based on Theorem 9.1, which we may sketch as 

follows. IfL~ is in the form L1 = ~ i j  Oi(aoOj) with aij = ajg, and i f P  c 0~ is such 

that the as/are constant along a direction transverse to 09t in a neighborhood V of  

P, it is known that the required property holds in the neighborhood of  P. This is 

observed in [FKJ] and follows easily from the Rellich formula ([N], p. 244). 

Pick P E 09t, a transverse direction u to 0~ around P and a small ball B(P, r). 

Let Lp = Eij Oi(a~ be the (divergence-type) operator whose coefficients 

are constant along the parallel to u in B(P, r) and coincide with those o f  L1 on 

Of~ u B(P, r) C. Clearly, [aO.(x ) - a~ _< 6(x) ~ in f~. Using Theorem 9.1' again it 

is seen that the harmonic measures with respect to L and Lp are uniformly compa- 

rable on Oft. The result then follows from Theorem 9.1' and a standard covering 

argument. 

Notes added in p r o o f  

1. Analogues o f  our main results for discrete potential theoretic settings, as 

well as extensions o f  Section 7 to more general second-order elliptic operators in 

nondivergence form will be discussed elsewhere. 

2. After the revised version of  this paper was sent to the Editors with a new 

Section 6 inserted, we learned from a letter o f  Prof. Minoru Murata that he also 

remarked that (a domain version of) Corollary 6.1 follows from Theorem 1. 
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