FIRST EIGENVALUES AND COMPARISON
OF GREEN’S FUNCTIONS FOR
ELLIPTIC OPERATORS ON MANIFOLDS OR DOMAINS

By
ALANO ANCONA

Abstract. Given a complete Riemannian manifold M (or a region U in V)

and two second-order elliptic operators Ly, Ly in M (resp. U), conditions, mainly
in terms of proximity near infinity (resp. near 8U) between these operators, are
found which imply that their Green’s functions are equivalent in size. For the
case of a complete manifold with a given reference point O the conditions are
as follows: L) and L, are weakly coercive and locally well-behaved, there is an
integrable and nonincreasing positive function @ on [0, co[ such that the “‘distance”
(to be defined) between L and L, in each ball B(x, 1) C M is less than ®(d(x, O)).
At the same time a continuity property of the bottom of the spectrum of such
elliptic operators is proved. Generalizations are discussed. Applications to the
domain case lead to Dini-type criteria for Lipschitz domains (or, more generally,
Holder-type domains).

Introduction

In this paper, we mainly consider the following question. Given a complete
Riemannian manifold M (or a region U in RY) and two second-order elliptic
operators on M (resp. U), what condition of proximity near infinity (resp. near 9U)
between these operators insures that their Green’s functions are equivalent in size?
If each of these operators is connected to a diffusion, the last property essentially
means that the related hitting probabilities are also uniformly comparable.

It turns out that the condition given in our main result (Theorems 1 and 1/, and
the euclidean versions Theorems 9.1 and 9.1') is a generalization of one part of
a result by L. Carleson (see [C] Theorem, p. 1) which gives a sufficient (and in
some sense necessary) condition for a second-order eiliptic operator acting in the
half-plane to have harmonic measures with bounded densities. The other part of the
theorem in [C], namely a condition for the absolute continuity of these harmonic
measures, has been deeply generalized in several papers starting with [FKJ] (see
[FKP] and references there); in [FKP] a criterion for the mutual absolute continuity
of the harmonic measures with respect to two elliptic operators in the unit ball of
RY is given. In contrast with these papers, the main results below do not rely on
harmonic analysis techniques and require only a few structural assumptions on M.
As a result, they may also be applied to domains which are far from Lipschitz
(see Section 9). A crucial source of inspiration for us is the work of J. Serrin
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46 A. ANCONA

[Ser], where a result of our type for Poisson kernels of C*> domains is proved. See
Section 3.

Comparability (in the above sense) of Green’s functions has been already studied
in various situations involving regions in RV. [HS] is concerned with bounded C"!
domains—see also [Ser] and note that extensions to Dini—Liapounov-type regions
follow from Widman [W1], [W2] (see [W1], p.523) — and [A1] with Lipschitz
domains; in both papers the second-order coefficients are C*, 0 < « < 1, up to the
boundary. Results for global perturbations of the Laplace operator in R appear in
[Pi4] (see also [Pil]).

Other results deal with lower-order perturbations (mainly in domains in RY).
Murata [Mu] shows among other things the stability of the classical Green’s func-
tion in RY under certain kinds of perturbations (see the final note there); [Pi3]
considers more general operators and domains and introduces a notion of small
perturbation (see also [Pi2]); and [Z1], [Z2] deal with Schrédinger operators sat-
isfying a Kato class condition at infinity. See also [Pi3] and the references there.
[CZ] studies A and A+ B.V, B € [?(D), p > N, in a bounded domain D and shows
in particular that when D is C? the corresponding Green’s functions are equivalent.

For the manifold case, [SC2] exhibits a class of complete manifolds (e.g. com-
plete manifolds of nonnegative Ricci curvature) for which all uniformly elliptic
operators in divergence form and without lower-order terms have Green’s func-
tions equivalent in size (see [SC1], [SC2] for background and related references).
We also note that independently of the present paper U. Hamenstddt ((Ham], Ap-
pendix) shows a stability property of the Martin kernels with respect to a class
of elliptic operators with Hélder continuous coefficients for Cartan-Hadamard
manifolds of pinched negative sectional curvatures, a result which is close to
Theorem 1’ in Section 7 below.
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1. Notations and general assumptions. Statement of main results

We start with a Riemannian manifold M with bounded geometry and define as
in [A3] classes of second-order elliptic operators in divergence form on M. Elliptic
operators in nondivergence form will be considered later in Section 7. In Section
9, the results for domains in RY are obtained as particular cases, using the same
approach as [A3], §8. See also Section 6.

1.1. In what follows, M is a noncompact, connected, complete N-dimensional
Riemannian manifold of class C' with the following property: there exists two
positive numbers ry and ¢y and for each a € M a chart ¢ = ¢, : B, — RY in the
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pall B, = B(a,ro) of M such that ¢(a) = 0 and
(1.1) cg ' dx,y) < [p(x) — )| < cod(x,y)

for x,y € Bu; in particular, U, = $(B,) contains the ball B(0,7o/co) of RV. For
convenience, we may and will assume that ry < %. The obvious dependence on g
and c¢g of the various constants to appear below will be implicit, and as usual the
jetter ¢ (or C) will refer to a positive constant whose value may change from line
to line. The Riemannian volume in M is denoted by o (or o).

1.2. Examples. 1. The assumptions above are satisfied (with the exponential
chartata e M) if M is C? with bounded sectional curvatures and injectivity radius

bounded from below.
2. Another example (in fact, a special case of the previous one) is obtained

by taking for M an open region Q in RV, @ # RV, equipped with the metric
ge(u,u) = 5(x)7% |u|?, where 6 is a standard C'-regularization of the distance
function &6(x) = d(x,d9); that is, ¢~ '6(x) < 5(x) < cé(x) and |Vé(x)| < con €,
¢ > 0 (see [A3] §8).

1.3. Let 6 and p be real numbers such that p > N = dim(M) and 6 > 1.
We denote by Du(6,p) the class of all elliptic operators £ on M with a given
representation in the following form:

(1.2) Lu = div(A(Vu)) + D.Vu + div(uD') + yu.

Here A : x — A, € End(T.(M)) is a Borel section of the bundle End(7(M)),
D and D’ are Borel vector fields on M, and v is a real valued Borel function in M.
It is further assumed that

(1.3) 07 €17 < (Aq(6),6) < BEP,

(1.4) | Aallend(raan) + 1Pl 282y + 1D 18,y + 1Vl o2,y < 0,

when a € M and ¢ € T,(M). Recall that B, = B(a, r).

Some Sobolev spaces attached to a region U in M will be needed. Define
H'(U) as the space of all functions f € L?(U) with a weak gradient in L>(U)—i.e.
there is a L? vector field ¥ = Vf in U such that [ V.Wdo = — [fdiv(W)do
for all vector field W of class C}(Uy—equipped with the norm || fllzv) =
U A2y + 1S ))' 72 Let H}(U) denote the closure of C}(U) in H'(U).
The dual H~'(U) of H}(U) is identified with the set of distributions S in U of the
form S = u + div(¥) where u (resp. V) is a function (resp. a vector field) in U
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of class L>. The spaces H}, (U) and H,;C‘. (U) are defined in the obvious way and
each operator £ € Dy (6, p) induces a map £ : H}, (U) — H,;J(U). (See [Sta} and
Proposition 2.1 below.)

A function u in the region U C M is an L-solution if u € H}, (U) and L(u) = 0
on U. As is well-known, « is (after modification on a o-null set) a continuous

function in U and, if u is positive, the following Harnack inequalities hold:
(1.5) cu(a) < u(x) < cu(a)

if B(a,r) C U, r < ryand d(x,a) < r/2, where ¢ = cy(6,p) > 1. Moreover, there
are positive constants ¢’ and § depending on 6, p and M such that

(1.6) (1+'(p/r)) " ula) < u(x) < (L+(p/r)?) u(a)

ifd(x,a) < p < r/2. A well-behaved local potential theory ([Her], [B]), whose
harmonic functions are the £-solutions is attached to £ in M. (Using local charts
we are left with the standard case M = RV, ref. [GT], [Sta], [HH].) Hence, we may
speak of £-superharmonic functions, £ potentials, and so forth (ref. [B]).

1.4. Let £ € Dp(0,p) and let U be an open subset of M. Denote S,(U) the set
of all £ + ¢/-superharmonic functions in U and define the critical level of £ in U
as the number

(1.7) ML, U)=sup{t € R; ue ), 0 <u< ooinU}.

A1(L, U} is also the largest number ¢ for which there exists a positive solution « on
Uto L(u)+tu = 0. Fort < A\ (U) the Green’s function in U for £L+¢] exists. If L is
formally self-adjoint, then A (£, U) coincides with the usual bottom of the spectrum
of —L seen as an unbounded operator on L2(U) with domain {u € H}(U); L(u) €
L(U)} and A (L, U) = inf{{~L(¢),¢); ¢ € C3(U), llpllizw) = 1}. Except the
last equality, this interpretation of \; (£, U) holds also if the symmetry assumption
on L isremoved when U is relatively compact in M. We shall let A\; (£) = A\ (L, M).

For g9 > 0, we denote Dy, (6o, p, €0) the class of all £ € Dy(8o, p) satisfying the
following “weak coercivity” condition ([A3]):

(1.8) There is a positive L + e9.I-superharmonic function (£ +o0) on M,

i.e. A\1(£) > go. This condition implies the existence of the Green’s function G for
L, together with the estimate

(1.9) c'<Gxy)<e
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for some ¢ = c(6o,p,e0) > 0 and all x, y in M such that d(x,y) = ro (see [A3]).
However, if £ is not formally self-adjoint G(x,y) need not be bounded when
d(x,y) > 1. If G = GY is the Green’s function in U, our convention is that
x — G(x,y) is L-superharmonic in U (and harmonic in U\ {y}) whereasy — G(x,y)
is superharmonic in U (and harmonic in U \ {x}) with respect to the adjoint
operator £*. Recall that for ¢ in L*(U,o0) and compactly supported G(p) =
[ G(y) o(y)do(y) solves L(G(yp)) = —y in U with G(p) € H. .(U). Also, if we
let G(¢)(x) = 0 on M \ U, then G(y) € H. .(M).

1.5. A reference point O € M is fixed and we set d(x) = d(O,x) for x €
M. If g € [1,+o0] and if £; and £, are members of some class Dy(6,p) with
representations £;(u) = div(A{(Vu)) + D;.Vu + div(uDj) + ~;u, we define (recall
that B, = B(a, o))

dist,[£1, £2)(a) =[lA1 — A2||Leca,) + [1D1 = D2ll1r(8,)

(1.10) iy
+ 1D} = Dallrs,y + v = 12l 28,

for a € M; to avoid heavier notation, p is made implicit in the Lh.s. of (1.10). If
¥ : [0, +o0) — Ry is non-increasing, we shall write “disty (L1, £2] < ¥ in Dy(6, p)”
if disty[L1, L2)(a) < ¥(p) when a € M and d(a) = p. A similar notion appears in
[FKP] for second-order elliptic operators in the unit ball of RV,

1.6. We may now state our main result. See Section 6 for generalizations to
non-weakly-coercive operators.

Theorem 1 Let £y and L3 be elements of Dy(0,p, <o) (withp > N and eg > 0)
and let G' and G? be the corresponding Green's functions. If diste, (L1, L2) < ¥
in Dy(6, p) for some nonincreasing function ¥ on [0, oo) such that f0+°° ¥(s)ds <
+o0, there is a constant ¢ > 0 such that

(1.11) c'le(x,y) SG](x,y)ScGz(x,y)

Jor x, y in M such that d(x,y) > ro. In fact, diste (L1, L2) may be replaced above
by disty (L1, L2), for some qq € (1, +00| depending only on co, N, 6 and p.

Moreover, for every § > 0 there is a number n = n(M, 6,p, €0, 6) > 0 such that if
also f0+°° U(s)ds <n, wemaythenletc=1+6§in(1.11).

The proof is given in Section 5. When M is a negatively curved Cartan—
Hadamard manifold, Theorem 3 in Section 8 gives a version of Theorem 1 which
is—roughly speaking—Iocalised at one point on the sphere at infinity.

Remarks 1.1 (i) Let £, £; be members of Dy (0, p, €), e > 0. Ifdist; (L1, £2) <
¥ in Dy(8, p) with ¥(#) = ¢ exp(—at), a > 0, then disty, (L1, £2) < ¢ with

B(t) = (c + c'/P) (29)(a0=1)/%0 exp ( - qit)
0
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since ||A; — Azflo < 26. Hence Theorem 1 applies and (1.11) holds.
(ii) By (1.9) and standard local estimates of Green’s functions ([Sta]) (1.11)
holds for d(x,y) < rp and another constant c.

We shall also prove (and use in the proof of Theorem 1) the following continuity
property of A, (L) with respect to £ in Dy(6,p). See Section 4.

Theorem 2 Let6 > 1, p > N be fixed. For every § > 0 there is number n > 0
such that if L1, L3 € Dyy(0,p) and dist; (L1, L) < non M, then

(1.12) [A(£1) = ML) <6

In fact, \y is Lipschitz continuous in Dy(8, p) with respect to the distance d(L, L") =
”diStQ(l (E’ ['/)HOO.M-

For £; symmetric and without lower-order terms the statement is straightforward
if dist; is replaced by dist,, (just use Rayleigh quotients). We also note that the
Lipschitz continuity of A; with respect to lower-order coefficients in L and for
non-divergence-type elliptic operators is proved in [BNV] §5.

Remark 1.2 It follows from Theorem 2 that if £1 € Dy(6,p,€0), €0 > 0,
and L, € Dy(6,p) are such that dist,, (L, L2) < ¥ in Dy(6, p) with ¥ decreasing
on (0, +oc) and f0+°° ¥ (s)ds small enough (depending on M, 6, p, and &), then
L € Dy(0,p,e0/2) (see Lemma 2.6 and Remark 2.4). Thus, Theorem 1 applies.

Another criterion for A;(£) > 0 follows from Theorem 2. See Sections 4.4
and 4.5.

Corollary 1.1 Let £ € Dy(8,p,e0) and L, € Du(0,p) (with p > N and
€9 > 0). There is a number § > 0 depending only on L, 8 and p, such that if

(i) there is a Green’s function in M for L,,

(ii) dist; (L, £2) < & outside some compact subset K of M, (e.g. dist; (L1, L2)(x)
tends to zero when d(x) — +o0),

then A\1(L3) > 0. Moreover, condition (i) above can be dropped if L;(1) = 0 for
Jj=12
Remark 1.3 In the case £,(1) = 0, £5(1) < 0, it will be seen that ¢ > 0 may

be chosen depending only on M, X, 8, p and &g so that A\{(£;) > e. This improves
somehow the continuity property of Theorem 2.

Let us mention now two applications of Theorem 1 to elliptic operators in
euclidean domains. More general results appear in Section 9 (Theorem 9.1, 9.1').
Let Q be a bounded Lipschitz domain in RY and let L = )", Jj<n 0i@igi(.) +
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Tigen bi9() +yand L' = 57, ;. 0i(a;9;(.)) be two uniformly elliptic op-
erators in Q with measurable coefficients such that v < 0 and 37, ||bill1r() +
Il < 6 for some p > N, 6 > 1. Assume also that i laile <6,
Y, @it > 9! ¢|? for all ¢ € RY and similarly for the aj. Let D, denote

the ball D(x, $d(x,00)).
Corollary 1.2 Assume that at least one of the following two conditions is
satisfied.

i X, fD‘ lajj(x) — a;(x)| dx < |Dy| d(x,0Q)% for some e > 0 and all x € Q,

(i) 3, lai(x)—aj(x)| < ¢(d(x,00)) forx € Qand some nondecreasing function
1
P verifving/ cp_is_) ds < +o0.
0

Then G and G', the Green's functions of L and L' respectively, are uniformly
comparable, that is C-' G' < G < C G with a constant C > | depending only on
Q, 8, pand ¢ (or ©).

Corollary 1.2 extends a result of Cranston—Zhao ([CZ], Corollary 3.14) about
first-order perturbations of the Laplacian in a C''' domain. We are grateful to
Zhen-Qing Chen for this reference and for raising the question of the Lipschitz
domain case (i.e. if B € LP(Q) then A and A + B.V have comparable Green’s
functions in ) and later the question of the uniformity in this case of the constant
C.

Another simple application is the absolute continuity of harmonic measures
for nondivergence form elliptic operators in a Lipschitz domain 2. Namely, if
L=3%,, ai,(x)af, is uniformly elliptic in © and with Holder continuous coefficients
aj;, then the corresponding harmonic measures py, x € § are in the form p, = fx. A
where ) is the area measure on 09 and f; € L?()\) (see Section 8). This is well-
known when the a;; are Lipschitz and (in fact) for wide classes of operators in
divergence form (see [FKJ], [D]).

In Section 6 below, we relate Theorem 1 to some other earlier results and mention
a generalization.

2. Auxiliary lemmas

Fixp > Nandlet 8 > 1. The following proposition shows in particular that each
L € Dp(8, p) induces a map L : H (M) — H~'(M).

Proposition 2.1 If L € Dy(6,p) with L = div(AV.) + DV. + div(.D') + ~.,
the bilinear map

(0,) = ac(py¥) = / (AV, Vi) - % (D, V) + o (D', V) — o] do



52 A. ANCONA
is defined and continuous in H'(M) x H'(M).

Proof Let X be a maximal subset of M such that d(m,m’) > ro/8 whenever
m,m" € X, m # m'. The balls B, = B(a,r/4), a € X, cover M and if B] =
B(a,ro/2), (1.1) implies that 3 15 < Cy for some finite constant Cyy.

For p and ¢ in H' (M), it follows from the Holder inequality that

[ p~elido <3 [ Dvalvldo
aeX B,
< Z IDN sy IVell2ary ¥l 8y,
acx

where — = L1 > L] By Sobolev inequalities and (1.1)
"2 p 2 N 4 )

2 2 2

1l 5y < CUPNL ) + 1IVYI28y))-
Thus,

8
/M [D.Vg||¢|do < 3 Z(IIV‘P’Iiz(B;) + “1/)“22*(35))

acx

C Z[”VLP”zZ(B;) + ”1[)”%2(8{,’) + “VU’HiI(Bg)] :
acx

<4
-2

Using the property of the cover {B} },cx, we get

[ 105l 1o < 6 C Tl + 19100 + IV 100)
< GC{”‘P”%'(M) + ||¢”/2q'(M)}-

Hence, [,, v D.V pdo exists and [, ¢ D.V p|do < 26 C |||y an 191l ary (it is
sufficient to consider the case ||¢|ly1ay = [¥llmran = -

Replacing D by D’ and exchanging ¢ and v, we have the same bound for the
integral f,, o D'.V ¥|do. Similarly,

//;4 [vypildo < Z/B’ lyeyldo < Z IVl er2ay Nl 2 () N1l e ()

aeXx a€X

6
< 2 Z [”‘P”zr (B:) + lW“iz'(Bg)]a
acX
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so that

’/M lyedldo < 6C Z{H‘P”izwg) + ”V‘PH%Z(B};) + Wniz(ay) + ”VU’“%Z(B;)}
aeX

< O Clllelzn iy + 19170 an)-

Since (p,%) = [{A(Vy),Vi)do is obviously defined and continuous on
H!(M) x H'(M), the proposition follows.

Notice that the proof shows that |az(p,¥)| < clig|| [¢] for ¢, ¢ in H'(M) and
c = cm(8,p).

Corollary 2.2 There exists a positive real A = A\y(8,p) such that L — A is
coercive for all L € Duy(8,p), that is

aclu,u) + ) /M 2 do > ¢ {IVul + 43} = ¢ (luflanan)?

for u € HY(M) and some constant ¢ > 0 (depending here only on 6, p and M).

Proof We adapt an argument from [Sta] (pp. 202-203). By the proof above, if
V, V' are measurable vector fields on M, if o is a measurable function on M and

if B, = sup{\V o8,y + 1V lr(8s) + 0llrr2(s,y s @ € M} < +o00, then
/M [ V. V| + o V. VY| + [ el do < ¢ Bp |l ay 19111 (m)

for ¢ and ¢ in H' (M) with a constant ¢, depending on p and M.
Fix p’ with N < p’ < p and for ¢ > 0 write D = Dy + D, where D, = 1 pj>1y D,
and similarly D' = D, + D}, v = v + 72. Then, with 1/p' = 1/p+ 1/q,
ID20l 5,y < IDlsen oD > £} N B))Y? < £77/9(|Dlliris,) /7.
By the definition of Dy, D} and v;, we have, for all n > 0,
/M [l D1.Vy| + |0 D). V| + Imle?do < t {21Vl 2 lellzmy + lellZ2(01 }
<t{(1+ n_])|l<P||1%2(M) + 77||V<P||z2(M) h

so that

/M (loD.Vo| + oD Vol + |y @2l do <3 cy 7779 3, P9 [[l0ll3 + | Veoll3]

+t{(1 +77 Y el +nliVel3 ).
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Thus, if we choose (and fix)  so large that 3 ¢, £=7/9 8,77/% < 1/46 and then fix 7
such that rn < 1/46,

1
aclp.o)+ [ @do > L I9pl3+ Ml - Clipl3

> 55 IVl + ol ),

provided A is sufficiently large. The proof is complete.

Remark 2.1 It follows that for £ € Dy(6,p) we have a bound : A(L) >
—Ao{M,0,p). (See e.g. [A3], Lemma 2). There is also a simpler bound A (L) < AQ
which will not be needed.

Lemma 2.3 [f L € Dy(6,p), if u is a bounded L-solution (vesp. a positive
bounded L-subsolution) in the open region w C M, we have for all y € H}(w)

[ & 1vudo < el el

with ¢ = ¢(M,0,p). In particular, u is a multiplier for H}(w).
Remark 2.2 [ learned from G. Mokobodzki that he has also proved a similar
multiplier property in the framework of symmetric Dirichlet spaces [Mok].

Proof Fix a region o' CC w and ¢ € H}(u'), with ¢ > 0 and bounded.
Clearly, u,, € H'(w'), and the functions uyp, u2p, up® belong to Hi(w'). Write
£ =div(A(V.)) +div(D".) + D.V(.) +~ with (1.3)~(1.4) and consider the integral

I= / & (A(Vi), Vi) do.

By several applications of the Leibnitz formula, and on using the assumptions on
u, we shall derive an inequality of the form

Is-arloiio)+a [ e gdo s [ A,V ds,

for some coercive operator £ € Dy(¢,p), & > 6, and a large constant A =
A6, p, M).

Observe that / = [, (A(Vu), V(up?))do -2 [, uy (A(Vu), V) do and, since
L(u) =0 (resp. u > 0 and L(u) > 0),

I 5/ {up*D.Vu —uD' V(up?) +yu*¢p? Y do —/ (V(?p), A* (Vo)) do

w!

+‘/, u? (Vo, A* (Vo)) do.
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But up’Vu = 3{p V(ile) — 1o V(p)}, uV(up?) = 3 {p V(iPp) + 312V},
and

2
+(7—/\)u2<p2}da+)\/

w

I= / {~ (4 (90), V0) - 510 {D+3D) .90 + 50 (D - DLV(2)

w2t do+ [ i (AT), Vo) do,

or
I< —ag(p, )+ A /

w

wotdo + / u? (A(Vy), Vo) do

where £(p) = div(A*(Vg)) = 3(D+3D').Vp — L div(p(D — D)) + (v — A)p. If A
is chosen (and fixed) large enough (depending on 8 and p) then, by Corollary 2.2
above, £ is coercive in M and belongs to some class Dy/(¢’, p).

If p is a L-supersolution in «', the function ¢ is nonnegative since ¢ € Hj(w")
and £ is coercive. Thus, az(y, u*p) > 0 and by the above

2 2 2 2
I <M lulls.o ”80||L2(u/) + 6 [Jel 56 o ”V<P”L2(w')~

Using the uniform ellipticity of A, we see that
21) [ o 19u do <06+ ) [uli el

This inequality can be extended to all £ supersolutions ¢ € H}(w") (not necessarily
bounded) as follows. Since £ is coercive and «’ is bounded, there exists a bounded
and > 0 supersolution sy € H}(w'). Applying (2.1) to ¢, = inf{p,nso} and letting
n go to infinity, we obtain (2.1) for such ¢.

Finally, if ¢ is arbitrary in H} ('), it is well-known that there is a L-supersolution
¥ € H}(w') such that || < ¢ and W””S(w’) < C[]apHH(;(w,) for some C = C(6,p).
Just take for ¢ the projection (in the Stampacchia sense and with respect to the form
a;, cf. [Sta]) of the origin in H}(w’) onto the convex setT' = {f € H}(w'); f > |¢| }.
The continuity and the coercivity of a; provide the constant C. Thus,

| e1vuitdo < [ v vup do < Gl 191
<CG “u“go,w’ “‘lollill(w’)

Since C, = C () is independent of the choice of w’ CC w, an obvious argument
yields the estimate (2.1) in general. The proof is complete.

The following lemma says that after being suitably normalized a positive £-
solution, £ € Dy(8, p), has few critical points.
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Lemma 2.4 Let L € Dy{0,p,¢), € > 0. Ifu is a positive L-solution on the ball
B = B{a, p) and if h is a positive (L + € I)-solution on B, then

/B h(x)? .v(%)(x){zda(x) > Celu(a)|?

with C = Cy(8,p,p) > 0.

Proof Note that since u and A~! are locally bounded in B the function u/A is
locally of class H'. Also we may assume from the start that h(a) = u{a) = 1 so
that by the Harnack inequalities u and /4 are in between two positive constants on
B’ = B(a,p/2). Let v =u/h and let ¢ be a Lipschitz cutoff function on M with
¢ = 1 0n B(a, p/4), supp(y) C B(a,p/2),0 < ¢ < 1 and |[Vpllos < 4p~". Then,

0 = ar(vh, vhyp)
= / {(AV(vh), V(hvp)) — hvp D.V (hv) + kv D' V(hvp) — yh*V'p } do

since u = vk is a L-solution. Using a few simple transformations, we find
(2.2) 0=ac(hhp)+A=¢ /hzvchda+A

where

A= / B (A(VY), V(hvg))do — / hvo (A(VR), V) do — / K v D.Vvdo

- / kv D' Vvdo.

From this equality, the uniform estimates for ||||oo,8, |©]lco» | V|l 00> and [| V2| 1257
(using Caccioppoli’s inequality) lead to

4] < CliVVlizey {1 + Vil 3
Thus by (2.2) there is a constant ¢’ > 0 such that

cese [ BV odo < C{IVVIRg + 9V )

c 1 1
IVVll2 ) > \/ EE + 5 - 3

whence

)

and the lemma is proven.
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We require the following formula. For £ € Dy(8, p) in the form (1.2)(1.4), we
set az(Vv, Vv) = (A(Vv), Vv) where A is the section of End(T(M)) related to £

by (1.2).

Lemma 2.5 Let u and h be (strictly) positive continuous functions in the region
Q of M such that up € H), (Q) and hp € H) (Q) for all ¢ € H,,(Q). Let also
f:(0,+00) — (0, +00) be of class C? and setv = u/h. Then, foreach L € Du(6,p),
we have the following identity in H,;Ll (Q):

L(Rf(v) = hf"'(¥) ac(Vv, Vv) + 1 (v) [£() = v £(B)] +/(v) L(R).

Remark 2.3 1. Observe that by the assumptions on u and 4, each term in the
rh.s. is a well-defined element of H,;}(Q). Clearly, Af(v) € H},.(Q) so that the
Lh.s. is also a well-defined element in ;! (Q)

2. By Lemma 2.3, we may take for u (resp. h) a positive solution of £;(u) =0
(resp. £i(h) +¢eh = 0) in Q for some £y € Dy (¢',p).

The proof, which is (at least formally) a straightforward computation, is left to

the reader.
Finally, the following simple technical remark will also be needed.

Lemma 2.6 There is a constant C > 1 depending only on M and such that
dist, (L1, L2)(a) < C sup{disty(L1, L2)(x); d(x) = ro/4}

whena € M, d(a) <ry/8, L; € Dy(8,p),j=1,2andq € [1,+o0].

Proof Consider a maximal set E C 8B(O, ry/4) such that d(x,x'} > %ro when
x, x' are distinct points in E. By (1.1) the cardinality of E is bounded by a
constant C' = C}, and, if z € B(O, § ro), there is a point z' € 8B(0, ro/4) such that
d(z,2') < § ro, and thus also a point 2’ € E with d(z,z") < ro.

Hence B(a, ry) C Uy B(b, o). Thus, with obvious notation for the coefficients
of £j

AT = Aallaca,y < 1) 15, 141 = Az [llzea)
hEE
< Z A — A HLq(E,,)
beE
< C'sup{|lA1 = Aallzes,) ; d(b) =r0/4}.

Similar inequalities hold for the three other terms in the expression of
dist, (L1, £;)(a) and the lemma follows with C =4 C'.

Remark 2.4 The lemma shows that whenever we have arelation dist; (L1, £2) <
¥ in Dy (8, p), with ¢ nonincreasing on [0, +0c0), we may replace the function v(z),
t € [0,00), by ¥ (t) = inf{y(¢), Cy(ro/8) } where C is the constant in Lemma 2.6.
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3. The main construction

Let £1 € Dy(8,p,€0), p > N, €0 > 0 and let ¢; be a continuous nonincreasing
and integrable function on [0, +00). Starting from some positive and £;-harmonic
function u in the ball By = B(O,R) in M, with R > 2 and »(O) = 1, we shall
construct a function w which is in some sense close to « and (uniformly) “almost”
superharmonic with respect to all £ € Dy(6,p) such that diste(£1,£) < ¢ in
Dup(8,p) (see 1.5) provided that [[¢1])1 = f0+°° ¥1(s)ds is small enough. A key
idea in the construction goes back to the work [Ser] of J. Serrin and was already
used by the author in other contexts (e.g. [Al]). Serrin used functions fi (P¢) of
the standard Poisson kernel P in the unit ball B of RY, ¢ € 8B, to get bounds
for the Poisson kernel of a sufficiently regular second order elliptic operator L
in B whose principal part at ¢ is the Laplacian (more general principal parts at ¢
are treated similarly). The bounds follow from the L-superharmonicity (resp. L-
subharmonicity) of /3. (P ) (resp. f- (P¢)) which is checked by explicit computations
(see [Ser]). Here, we combine this construction with a relativization procedure
which is allowed by Lemma 2.3. Relativization methods are familiar in potential
(and probability) theory and they have proved useful in a number of problems.

Let 41 (¢) = ¢1(t + r}y) where ry = ro/32, and let

« 1. |log()
G- 06) =~ 701 ()

for ¢t > 0. Here « is some large positive constant which will be chosen later and
which will depend only on M, 6, p (and 7). Observe that O is positive, continuous,

and integrable on (0, +0o). Also, ;7> O(s)ds < 2k? 4/ [;™ v1(s) ds.

Let f be the solution of the differential equation y”(¢) + Q(¢) '(¢) = 0 with initial
conditions y(0) = 0, y/(0) = 1. In fact, we just set (using the integrability of Q)

(3.2) ) = /0 exp(— /0 " O(r) dr) ds.

The function f is concave and C! on [0,+00), and Cot < f(t) < t with Cp =
+oo
exp(— 0 Q(r)dr).
Finally, fix a positive (£; + £o./)-solution # on M with #/(O) = 1 and let w =
hf(u/h). It is well-known and easily seen that w is £;-superharmonic (see €.g.
[GK] or the end of Remark 3.2.2 below). Clearly, w € H}, (Bg) and Cou < w < u.

Proposition 3.1 Letl; = f0°° Vi(s)ds. Let L € Dy(6,p) and R > 10 be such
that

(i) £ = £, on the “annulus” wg ={x € M; R— 1< d(0,x) <R}, and

(ii) disty (L1, £) < 91 in Dy(6, p),
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where q € [qo, +00] and qq is sufficiently large depending on M, 6 and p. Then for
each & > 0, there is a number n(6) = nu(8, p, €0, 6) > 0 independent of R and such
that, if [ < n(6), we may write

(3.3) L(w)=S—yu inB(O,R)

where 1 is a positive measure on B(O,R), p € H; 1(Br), S € H'(Bg), supp(S) C
B(O,R — 1) and

(3.4) 1S1 =18, 002y < 6 (B(a,r0/4))

for every a € B(O,R - 1/2).

Proof of Proposition 3.1 We may assume from the start that |||, is so small

that
1/2<f(t)<t on[0,+00) and ¢i(0)=141(rp) < 1.

(Recall that « is to be chosen below independently of 6.)

1. By Lemma 2.5,
L(w) = LIASV)) = hf"(v) ac(Vv, V) + 1 (V) [L() = v L)} +1(v) L(R),

where v = u/h, so that by (1.2), (3.2) and the assumptions on « and h (namely
.C](u) = 0 and E](h) = =&y h)

Lw) = f(v) [-O) h (AVY, V) + (L = L1)()] + [/ () = v W][L(R) = L1(R)]
— eoh[f(v) = vf' (V)]

From the concavity of f we have f(v) — vf'(v) > 0. We thus define a positive
and absolutely continuous measure p = £.0y on Bg on setting

(3.5) £ = QW) h{(AVY, YW (V) + o h (f(v) = vf' (V).
Clearly, by Lemma 2.3, 1 € H,;C' (Bg). We also set
S=7) [£= L))+ (f(v) = () [£(R) = L1(R)]-
2. By the Harnack inequalities, we have that for some constant 4 = Ay (6, p, o),

exp(—A4 (d(a) +r0/2)) < u(x)/h(x) < exp(4 (d(a) + 70/2))
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forx € B, C B(O,R — l) Thus, choosing x = 18 4, usmg the definition of Q and
setting C = (|| ])1)~ *, we have for2ryg <d(a) <R-5

00) = Cxtdtin [ 1og (5 )] 2 Cn i3 in [ £ (3 + d(@)
> Cr i 1 (d(@).

(Recall that ¢ is nonincreasing and that r, = r9/32.) Taking into account Lemma
2.4, we see from (3.5) that for all @ € M with ro/8 < d(a) < R — 2,

(3.6) u(Bla,rh)) > ceo C 1 (d(a)) u(a).

Here, c is a positive constant which depends only on M, 6, p and ro.

3. It is easy to see that for each ball B, = B(a,ry) C B(O,R — }), the function
f'(v) is a multiplier for H}(B,) with a multiplier norm estimated by some constant

¢ = cul(6.p.r0) > 0. Observe thatby (3.1), |/"()] < Q(1) < [ ]I} Hun ()] 1~ <
¢/t since

i) VT < —= (1(r5)?

-
B

(using the monotonicity of ¢ ). Thus,

Lf"(v) V] < ev™ 1|V,

and the claim follows from Lemma 2.3 and Harnack inequalities for » and 4.
This also shows that f(v) — vf’(v) is a multiplier of H}(B,) with a multiplier
norm less than cv(a) = cu(a) (h(a))~".

4. The next step is to bound the norm of [£ — £1](x) in H~'(B,) (ifd(a) < R-1).
We have

(3.7) (€ = L)) ly-1(8,) < cula)dr(d(a))

(if q is large enough) as the following computation shows. Recall that by a theorem
of Meyers [Mey], there exists ¢ = ¢(cp,6,p,N) > 0 such that || Vu|24..8, < cu(a)
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(see also [Gia], Chap. 5). It follows that for ¢ € H}(B,), we have (using obvious
notation and Harnack, Caccioppoli’s and Sobolev inequalities)

(£ = L1)u, 0)] S/{l((A—AI)Vu,Vw)HI(D—Dl,Vu)<pI+l(D'~ 1, Vo) u|

oy =m)uel }do
<e||Vullase,z I Vell2,8, 114 = Atllg,z,
+[|1D = Dillp,81IVull2,8.1l¢ll2- 5,
+ 1D = Dillp.8. 1 Vell2,8.11ull2- 5,
+ 11y = mllps2.8.llll2- 8.l ll2- 5,
< |lellgya,) distg (£, L1)(a) u(a),

if 2* = 2p/(p - 2) and if ¢ > go Where qq is such that 3 + 1/(2+¢) + /g0 = 1,
whence (3.7).

It also follows from (3.7) that ||(£ — L1)()llz-1(8,) < ch(a)y1(d(a)). Thus, by
the previous paragraph and the definition of S,

(3.8) 1811118,y < cu(a)dr1(d(a))-

5. At least if d(a) > ro/16 = 2r}, (3.4) follows at once from (3.6) and
(3.8) since C increases to +oo as |j¢]); tends to 0. If d(a) < 27rg, observe that
B(a,ro/2) C B(b,ro), and B(a,ro/4) D B(b,ro/8) for any b taken on the sphere
8B(0,2r)) and (3.6)~«3.8) at b imply (3.4) at a. The proof of Proposition 3.1 is
complete.

Remarks 3.2 1. (Added in final version) The proof above is made simpler
if one uses the second term in the r.h.s. of (3.5) to bound £ from below. Ob-
serve that by the Taylor formula f(¢) — t/(t) = fol s Q(ts)f"(ts) ds is larger than
3¢ inf{Q(s);#/2 < s < t}. This argument makes it possible to get rid of Lemma
24,

2. We also need a slightly different version of Proposition 3.1 which follows
easily from the proof above. Here, u is positive £ superharmonic in B(O,R),
continuous and £; harmonic outside a ball B(ao, 7o) C B(O, R) with d(ao, O) > 2ro
and u(0) = 1. Besides (i) and (ii) in Proposition 1.3, it is also assumed that
L = £, on B(a,2r). Then, the conclusions in Proposition 3.1 hold—except that
we now only assert that g is locally of class H-! in B(O,R) \ B(ag,ro)—and
supp(S) C B(O,R — 1)\ B(a,2ry).

Also, it is easily seen that C~! u > —£;(u) in B(a,2r;). Just observe that since
fis concave, w = inf{dju+dih;j > 1} where d; and d; are positive and 1 > d; >
Co = inf{ f'(t); t > 0}. Thus, —£;(w) > inf{—d; L1(u);j > 1} = —Co L1(u) in
B(a,2ry) (since if s = infj») 5, with s; > 0 and L(s;) < 0, then L(s) < 0).
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While Proposition 3.1 is the main ingredient in the proof of Theorem 1, our
proof of Theorem 2 is based upon a (simpler) variant where f is replaced by the
concave function x — +/x (so that now f{(¢) ~ ¢ does not hold).

Proposition 3.3 Let L) € Dy(8,p,0), u, h, v = u/hand wg be as in Proposition
3.1 and set now w = h\/u/h = Vuh. Then for every given § > O there is a number
= &(6, p, 6) > 0 such that if L € Duy(0,p) verifies disti (L1, L) < e uniformly in
M and L = £y on wg, we have

L(w)=S—pu inB(O,R)

where p is a positive measure on B(O,R), p € H,;J,(BR), S € H Y(Bg),
supp(S) C B(O,R — 1) and

ISl -1 (8, (ro/2)) < 6 (Bla,ro/4))

when a € B(O,R — 1/2).

Proof We have now Q(t) = 1/2¢. Computing £{w) as in the preceding proof,
we find

h h
Low) = -5 Vv [0+ V2 (AVY, V)] + VY (A1 (L= La)(h) +u~t (L= L1)(w))].
Let i be the positive measure on B(O, R) defined by the density

g= g\/; [Eo +v? (AVv, Vv)],

and set h
S=Vv L= L)) +u”t (£= L1)(w)].

As in the end of the proof of Proposition 3.1 (parts 3 and 4), it is easily seen that

IS0 1=15ar 23y < € hla) /¥{a) {disti (£, £1)(a)}'"",

if one uses also the inequality || A — Ai|lzz,) < (20)'V9 (A = Al s, 17
Proposition 3.3 follows.

Remark 3.4 The normalization conditions #(O) = #(O) = 1 are now super-
fluous.

Remark 3.5 The proof shows that § < C(M, 8, p) egl ldistg, (L, £1)|oo,p-
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4. Proof of Theorem 2 and Corollary 1.1

4.1. It is enough to show that if £; € Duy(8,p,€0), €0 > 0, and if o > 0 is
sufficiently small depending on M, 6, p, €o, then A1(£) > 0 holds for £ € Dy(6, p)
with disti (L1, £) < o in M. To this end, we shall show that under these conditions
the first eigenvalue A [£, B(O, r)] of £ for the Dirichlet problem in B(O, r) is positive
for r > 1. Observe that from the Harnack convergence theorem (for £) and the
second definition of A\;(£) in paragraph 1.4, it follows that lim, .. A\i(£, Q) =
Al(L)-

Let Qz = B(O,R + 2). Because \{(L, B(0,r)) is a nonincreasing function of r,
it even suffices to show that A\;(L£,Qg) > O under the additional assumption that
L) =Lonwp={x€M;R<d(x)<R+2}, the number R > | being now fixed.

Let £* denote the formal adjoint of £ and let s* € H} () be a positive eigen-
function for £* associated to the first eigenvalue Ao = M (L, Q) = M (L7, Q).

4.2. Since £, € Dy(,p,p), we may choose a continuous positive £;-
superharmonic function u € H}(Qg), the function u being L;-harmonic on
Qz \ Blag, 2ry) for some ap in M with d(ag) = R + 3. We may take for u the
solution of the problem £ (u) = —1g(4,25,) I g, u = 0 on k.

Fix a positive [£; + £o./]-solution & on M and let f : [0, +-c0[— R be a smooth
concave function such that f(f) = vZif ¢ > 2e; and f(t) = &; 2 1if 0 <t < ¢y,
where ¢; is positive and small. Set now w = hf(u/h) and choose ¢; so small that
w=+vhuin B(O,R+1).

Since f is Lipschitz on {0, c0) with f(0) = 0 and (u/h) € H}(Qr), the function
w is in H}(Qg). Moreover, by Proposition 3.3 and the concavity of f, if o is
small enough depending on é > 0, the continuous function w has the following

properties:
Low)=—-v+S, SeH (%), supp(S)CB(O,R),
v being a positive measure in ~'(Qg). Also, for all a € B(O,R + 1)
IS1l-+cataryy < 5v(Bla,75/2))

if 7 = ro/2.

4.3. Now, arguing by contradiction and assuming that Ao < 0, we have
(—L(w),s") = —(w,L7s™) = Ao (w,s™) < 0.

On the other hand, on using a Whitney partition {¢;} corresponding to the radius
r}, (see the definition below), we find also that because supp(S) C B(O,R) and v is
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a positive measure,

(—L(w),s*) = (1,5") = (S,s*) > ) [/s*go,du—<s,<pjs*>].

d(x)<R+4

Here {y;};>1 is a smooth partition of unity in M with F; = supp(y;) C B(x;,rp),
x; € M, p; > ¢~ on B(x;,r}/2) and |Vg;| < ¢ where ¢ = cp(rg). Such a partition is
easily constructed starting with a maximal subset {x;; j > 1} in M with d(x;, x;) >
rq/4 when j # k and with smooth nonnegative functions g; in M such that g; = 1
on B(x;,r/2), and supp(g;) C B(x;,ry). Clearly, n(x) = [{j > 1; x € B(x;,r) },
x € M, is bounded by a constant ¢ = cy(ry) and we may let p; = g;/(3 ;> &)

It now follows from the Harnack and Caccioppoli inequalities that -

(S, 0;5™) < e5() ISNa-1(8xm))

(recall that by Corollary 2.2 there is a bound [Ao| < ¢),(6,p)) and
/ s pidv > ¢ s*(x) v(B(x;,7/2))

for some constant ¢ = cp(6,p,r0) > 0. Taking 6 so small that ¢>6 < 1 we get
(—L(w),s*) > 0, a contradiction. This proves the first claim in Theorem 1. Since
8 < ¢~? was what we wanted above, Remark 3.5 shows that sup,,distg, (£, £1) <
c(M,8,p) e insures A (L) > 0, and the last claim follows.

4.4. Proof of Corollary 1.1 Choose § > 0 such that the condition
dist; (£,,£) £ § in M, L € Dy(8,p), implies that £ € Dy(6,p,e0/2).

If £, verifies (ii) (in Corollary 1.1), the operator £ € Dy(8, p) whose coeficients
coincide with those of £; on K and with those of £; on M\ K is in Dp(8, p, c0/2).
Thus \(£2, M\ K) > €0/2. By assumption (i) the Green’s function in M with
respect to £, exists and it follows from Lemma 21 in [A3] that A\ (£,, M) > 0.

Assume now, instead of (i), that constant functions are £;-harmonic in Af for
Jj=1,2. Set L = p Ly + (1 — )L, where ¢ is a cutoff function with 0 < ¢ < 1,
¢ = 1 in a neighborhood of X, ¢(x) = 0 if d(x,K) > 2 and |Vy| < 1. It is easily
checked that £ may be represented in the form (1.2) such that with respect to this
representation £ € Dy(¢’, p) for some ¢’ depending only on M, 6 and p (not on K)
and dist; (£, £1) < cdisty(L;, L;). Thus by Theorem 2, A (L) > 3eo/4 if § is small.
Also, £(1) = 0. If U is an open neighborhood of supp(¢) the réduite function (ref.
[B] p. 36, [Her]) v = RY (in M and with respect to £) is a L-potential because
Green’s function for £ exists. Hence v being nonconstant is £, superharmonic and
nonharmonic. Thus (i) holds and A;(£;) > 0.
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4.5. Proof of Remark 1.3 Constant will mean a constant depending only
on M, K, 8, p, eo. Assume first that £5(1) = 0 and consider £ € Dy (¢, p, %60) as
above. Let G2, G denote the Green’s functions in M of £, £ respectively, let G,
resp. G/ denote the corresponding Green’s functions in smooth domains U; chosen
such that B(O,j) C U; € B(O,j+1). Fix Py € M with d(O, Py} = 1 and R > 3 such
that K ¢ B(O,R — 1). By Hamack inequalities and by (1.9) for £*, there exists a
constant C > 1 such that

C~' G/(0,P)) < G4(0,P)/G,(O,Py) < CG(O, P)

for P € 9B(0,R) and j large, and hence by the maximum principle, for P €
U; \ B(O,R). It follows (using the Stokes formula and regularizations of £, near
8U;) that the harmonic measures #, (resp. w;) of O in U; with respect to £ (resp.

£) verify C~' y; < [G5(O,Po)]™" 2, whence G5(0,Pg) < C. Letting j — oo and
using Harnack inequalities, this yields G»(P,Q) < C for P, Q in B(O,R + 2),
d(P, Q) = 1, and another C. By the argument in Lemma 5.2 below, it follows that
Cr' G(P,Q) < Go(P,Q) < C1 G(P,Q), forall P, Q in M and a constant C; > 1.

Fix a positive solution s of £(s) + $eo.s = 0in M. Then s = €0 G(s) in M (since
G(s) > C* s by (1.9), s is a potential). Hence w = G,(s) verifies

This means that £, € Duy(0,p,e0/2C).

For general £,, denote A;, D;,... the coefficients of £; in the representations (1.2)
of £y, £5. Write L5 = L' + L£" where £'(s) = div(4;Vs) + (D2 + D5 -~ D}).Vs +
div(sD}) +ms and L"(s) = s[div(D4 — D}) + 72 — m]. By the case already treated,
there is a positive solution s to

(s)+ﬁs-0

and by the assumption L£"(s) < 0, whence A (£;) > €0/2C; and the proof is
complete.

5. Proof of Theorem 1

Fix a class Dy(8, p) and a positive number r; € (0, ro/100) which is a coercivity
radius for Dy (8, p). This means that for some constant ¢ = cy(8,p,71) > 0,

ac(e, ) > C(“‘P”H(;(B(a,n)))z

when a € M, L € Dy(8,p) and ¢ € H}(B(a,r1)). Fix also &9 > 0.
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5.1. We shall need the following simple fact.

Lemma 5.1 Let S € H™'(B(a,r1)) with supp(S) C B(a,»|) where a € M and
0 < ¥ <r. Let L € Dy(B,p,e0), and let Gy denote the Green's kernel of L with
respect to some region U D B(a,r1). Then, forall A > 0

(5.1 o{x € B3 1Gu(S)) 2 4}] < 5 151315,

where B = B(a,r1) and C = Cy(0,p,eo,11,7}) is a positive constant.

Proof Set G = Gy, n = ||S||y-1(5)- There is a positive constant ¢ (depending
onf, p, €q, r1, r; and M) such that for P € 8B(a,r)

|GS)(P) = (S, GR)l = (S, 9 Gp)| < nlle Gl sy < ¢n

if ¢ is a C' cut-off function with ¢ = 1 on B(a,r}), supp(¢) C B(a,r{), r{ =
(ri +r1)/2 and || Ve|lo < 3(ri —r})~'. We have used (1.9), Caccioppoli’s and

Harnack inequalities to estimate || Gp|] H\(8)-

Write G(S) = u + Gg(S) in B = B(a, r{), where u is the £-harmonic function in
B with boundary value u = G(S) on 8B. Since |u| < ¢non 8B, it is easy to see that
{u| < ¢’n on B for another constant ¢’ > 0. (Compare with a positive £ solution in
M using the maximum principle and the local Harnack inequalities.)

By uniform coerciveness of £ in B, we have ||GB(S)||H(1)(B) < ¢”n. Hence, if
A >2¢,

ol{x € B; |G(S)(x)| > 4'n}] < o[{x € B; |Gp(S){x)| > $4'n}]
<4472 072(|Ga(S) 22 5
<4(cPa

If ¢; > Oissuch that (¢;/¢')? > o[B(x,r)] forall x € M, and if ¢» = sup(c”, ¢}),
ol{x € B; IG(S)| 2 A'n}] < 4leaf 4

for all 4’ > 0. The proof is complete.

5.2. With the notations and assumptions of Theorem 1, and under the extra
assumption that £, = £, on some ball B(a,r;) in M with d(a) > r|, we show the
following: if f0+°° W¥(s)ds is small enough depending on § > 0 (6, p, g and M
are regarded as fixed),

(5.2) G*(a,b) < (1 +6) G'(a, b)
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for all b € M such thatd(a,b) > 3.

Proof Let Gy denote the Green’s function in Qz = B(O,R + 1) with respect
to the operator £ which coincides with £, on B(O,R — 1) (i.e. the coefficients
of £ coincide with those of £, on B(O,R — 1)) and with £, on M \ B(O,R — 1).
Observe that dist|(Ly, L) < cu in Dw(e p), so that by Theorem 2 and Remark
12, £ € Dul8,p,eo/2) if [;7°° 9(s)ds is small; thus, we may assume that Le

Du(8,p,€0/2) and consider GR

It suffices to show that if [ ¥ (s)ds is small, then for every large ball Qg,

(5.3) Grla,b) < (1 +6) Gp(a,b)

when b € Qz_, and d(a, b) > 3. In fact, it follows from (5.3) that G3_,(a,b) <
GR(a,b) < (1 4 6) Gp(a, b) (for R large), whence (5.2) with R tending to infinity.
(G}, denotes the Green's function of £; in Qg.)

To derive (5.3), we use the construction of Section 3. We take for u the Martin
kemel (with respect to £) in Q) u = = Gj(.,a)/G{(O0,a) and construct
w = hf(u/h) as in Proposition 3.1, the funcnon h being any fixed posmve solution
of L1h + eoh = 0 with A(O) = 1. If & > 0 is given and 1ff 5)ds is small
enough,

(5.4) (1-6)<f(1) <1

on (0, +00) by (3.1)+3.2), and thus (1 — 6;) ¢ < f(1) < tfor 1 > 0.

The function w is £-superharmonic on Qz and is in H'(Qr \ B(a,p)) with
vanishing boundary value on 9, for all p > 0. Moreover, it follows from
Proposition 3.1 (see Remark 3.2) that L(w) = —v + S where v is a positive measure
on Qg, S € H'(Q), supp(S) € B(O,R ~ 1)\ Ba,r) and

(5.5) HS”H-I(B(.:,'-,/D) <6 V(B(x,r]/4))
forall x € Qg (prov1ded that f ¥(s) ds is small enough). The measure v is

such that v, , 4., € ~1(Qg) for p > 0, and by (5.4), the concavity of /" (see
Remark 3.2)

(5.6) v> (1 -6)[Gh(0,a)] " e
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where ¢, is the Dirac measure at a.

Now, we may consider G(S) as well as Gz(v) and we have w = —Gg(S) +Gr(v).
If {¢;} is a Whitney partition associated to »; = /4 (see Section 4.3) and J =
{ > 1;d(x) <R},

=Y Gr(e; S)(b)
jeJ

= Y (Gb)eH+ Y GalgS)®).
j€J.d(x,b)>r1/3 jeJ d(x by<ri /3

By Harnack and Caccioppoli’s inequalities and by (5.5) each term | (Gr(b,.), ©; S)
with d(x;,b) > r1/3 is less than ¢; 6, fB(x, ) Gr(b,.)dv. The sum of these terms is
A

hence less than ¢, 6, Gr(v)(d).
If d(x;,b) < r1/3, the set of points b’ € B(b,r;) with

|Gr(g; S)(B")| > V&) Grlg;v)(b)
has measure less than ¢ §; by Lemma 5.1 (since by (1.9),
Grlpv)(b) > cv(B(x;,71/2)) 2 ¢ 6 oSl a-vsipmy )-

It follows that for &, small and s = Gg(v) there is a b’ with d(b, ') < 61/(N+1)

such that |Gg(S)(b")] < V&1 Gr(v)(b) and
(1 = V&) w(b) < s(b') < (1 + V&) w(b

The function s is £ superharmonic and positive. Thus, by (5.6) and the Riesz
decomposition, we find that s > (1 — 6;)[Gk(O,a)]™" Gg(.,a) on Qx (globally).
Hence

(1—61) Gr(b',a) < G4(O,a) s(b') < GL(0,a) (1 + V&) w(b)

Since
G
W< h——e = [Gh(0,a)] ' Gir

because f(t) < t, we have
(1-6)) Gr(b',a) < (1+ V&) Gh(b,a).
Finally, by Harnack inequalities (1.6)

(1= 8)(1 - 5(8;/*V)) Gr(b,a) < (1 + V61) Gk(b,a)



GREEN’S FUNCTIONS 69

where x(¢) tends to zero when ¢ — 0. This proves (5.3) and hence (5.2).
Interchanging £, and £,, we also have under the same assumptions on £}, a, b

that

(5.7) (1+6)"' G'(b,a) < G*(b,a) < (1 +6)G'(b,a).

5.3. We check now that the restriction d(a) > r; may (of course) be dropped
in (5.7). To this end fix O’ € M with d(0,0') = ry = ro/16 and take O’ as
a new origin. If p(a) = dist;(Ll,/.‘z)(a), we have p(a) < y(ry — d(a,0')) if
d(a,0') < ryand p(a) < ¥(d(a, O') ~ rp) otherwise. If 91 (1) = C(rg) Lo2r) (1) +
C(t = 75) 1(21,00) (1), Lemma 2.6 shows that p(a) < ¥(d(a,0')). Clearly, yn
is nonincreasing and [;° v1(s)ds < 2C||¢|l;. Applying the previous step—for
a € M such that d(a,0) < ri—we obtain (5.7) for all a € M, b € M with
d(a,b) > 3ry, L1 = L on B(a,r;), if ||| is small enough.

It is also quite easy to remove in (5.7) the assumption that £; = £, on B(a, ry).
Consider the operator £3 € Dy (8, p) whose coefficients are equal to those of £,
outside B(a,r) and equal to those of £, on B(a,r;). Clearly, L3 € Dy(8,p) and
dist(L), £3) < ¥ forj = 1,2 if dist(£, £2) < ¢ in Dy (8, p). Also, if Jo° w(s)dsis
small L3 € Dy(6,p,e0/2) by Theorem 2 and Remark 1.2. From what has already
been proved,

(5.8) (1+6)7'G'(b,a) < G*(b,a) < (1+6)G'(b,a),

(5.8") (146~ G*(b,a) < G*(b,a) < (1 +6) G*(b,a),

if d(a,b) > 3ry and if f0°° 4 (s) ds is small. (In (5.8) we have applied (5.7) to the
adjoint operators and in (5.8) we have interchanged @ and b in (5.7).) It follows
that (1+6)"2 G'(b,a) < G*(b,a) < (1+6)? G'(b,a) and the last claim of Theorem
1 is established.

5.4. Finally, the first claim in Theorem 1 will be proved by combining the
above and the following simple lemma.

Lemma 5.2 Let £y, L7 in Duy(8,p, €0) be such that £, = L2 on M\ B(O, R) for
some finite R > 0. The corresponding Green’s functions in M verify

(5.9) ¢ G¥(x,y) < G'(x,y) < ¢ G*(x,)

for all x, y in M with d(x,y) > ro and a constant ¢ = cy(8,p, €0, R) > 0.
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Proof Consider x in the ball B(O,R). From the Harnack inequalities and the
local estimates (1.9), we see thatif y € B(O,R + 1), d(x,y) > rq,

(5.10) G (y) 2 ¢ G5 (y)

with ¢ = cy(6,p,e0,R) > 1. Using the maximum principle and the equality of £,
and £, on M\ B(O, R) we thus have G!(y) > ¢ G*(y) forall x € B(O,R), v € M with
d(x,y) > ro. Exchanging £, and £, and considering then the adjoint operators it
follows that ¢=' G2 < G} < ¢G? on B(O,R) if d(y) > R+ 1. By a variant of the
maximum principle ([B], p. 39)

(5.11) Gl >c ' G

on M. Here, we have observed that u = G} — ¢~ G} is £, superharmonic on
M\ B(O, R) (since ¢ > 1), positive and continuous on BB(O,R) and bounded from
below by —¢~! G|.

The lemma follows then from (5.10) and (5.11).

End of proof of Theorem 1. Let £’ be the operator in Dy (8, p) which
coincides with £, on B(O, R) and with £> on M\ B(O, R). If R is chosen sufficiently
large, then £’ € Dp(8,p,c0/2) (Theorem 2), and moreover dist(£,L') < Yg =
inf(y, ¥(R)) in Dy(8, p) so that f0+°° ¥r(s)ds can be made arbitrarily small. The
second part of Theorem 1 which has already been proved shows that if R is fixed
large enough (depending only on 8, p, €, ||¢]1), and if G’ denotes the Green’s
function for £’, then ;—Gl (x,y) < G'(x,y) < 2G'(x,y) for all x and y in M with
d(x,y) > ry. Also, by the previous lemma, ¢~' G?(x,y) < G'(x,y) < ¢ G*(x,) for
some constant ¢ = ¢y (6, p, €0, [|1¥]|1) > 0. (1.10) follows and the proof of Theorem
1 is complete.

6. Comments and first examples. Generalizations to the case \(£) =0

6.1. We first relate Theorem 1 to a known criteria for comparability of Green’s
functions which is specific to zero-order perturbations. Assume that £; € Dp(4, p),
6 > 1, p > N, admits a Green’s function G| = G.,. Following Definition 2.1 of
[Pi3], a measurable function W : M — R is called a small perturbation for £, if for

R — oo,

sup{ G\ (x,z) W(z) Gi(z,y) do(z); d(x) > R, d(y) > R}/Gi(x,y) — 0.
d(z)>R
A simple adaptation of the argument in [Pi3] shows that if W is a small perturbation
for £, andif £ = £,+W admits a Green’s function G, then G| and G are comparable.
A weak converse of this is observed in Remark 2.6 of {Pi3].
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Corollary 6.1 Let v : [0, 00— R be nonincreasing and integrable and assume
that L1 € Dy(0,p,¢) for some e > 0. Then V(x) = ¢¥(d(x)), x € M, is a small
perturbation for L.

Proof Choose & : [0, co[— R positive, nonincreasing integrable and such that
im0 ®(2)/¥(t) = +o00. By Theorems 1 and 2, £; and £; 4+ ®(d(.)) Iaps0,7)(-)
have, for R large enough, comparable Green’s functions. By the resolvant argument
in Remark 2.6 of [Pi3], it followsthat [ G (x,z) ®(d(z)) Gi(z,y) do(z) < CG(x,y)
for some C > 0, whence the corollary. The same argument shows that any zero
order perturbation £ = £, + W of £, allowed by Theorem 1 is a small perturbation

for ﬁ[.

Note that for the case at hand the proof of Theorem 1 reduces considerably.
However, I do not know of a “direct” proof of Corollary 6.1 (except e.g. when M
is hyperbolic and on using the Harnack principle at infinity of [A3]). Note also
that using the methods in Section 9 the corollary implies a version for domains.
Details are left to the reader.

6.2. Let us now consider the case of the Laplacian A in RY, N > 3, and of its
perturbations, a case which is treated in [Pil], [Pi4]. It may seem that Theorem 1
is useless here since A;(A) = 0; moreover, the other requirements in Theorem 1
(with p = oo say) look different from the sharp conditions in [Pi4]. However, after
a simple change of metric, Theorem 1 leads to similar conditions.

Fix a uniformly coercive N x N-matrix A, which is a bounded measurable
function of x € RV and an elliptic operator in R in the form

L =div(AV.) + B.V. +div(B.) + b

with B, B’ locally L7, b locally L7/? in RV for some p > N. Note L; = div(AV.).
Let M denote RY equipped with the metric g(dx) = ¢(r) |dx|> where r = |x], ¢ is
positive and smooth with p(r) = r~2 when r > 1. It is easily seen that M satisfies
our assumptions in Section 1.

Let£, = ¢~ 'L, £ = ¢! L. Simple computations show that £ = divy(AVy.)+
D.+div(D') + v, with D = o~ 'B~(3n— 1) 2 A*(Vy), D' = o7 'B, v =
¢~'b— L(n - 2)p~2 Vp.B' where in the last three equations the gradients and the
scalar products are the standard ones in RV.

Clearly £, € Dy(8, 00) for 8 large enough. Also, £ is weakly coercive in M:
this means that for small ¢ > 0, the operator L| + ¢/(1 + r?) admits a positive
supersolution. This is clear for L; = A (just take s(x) = 1/|x|*, 0 < a < N = 2)
and amounts to the inequality

(6.1) /(1 +r) Nldxe < 7! / (V| dx
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for u € C°(RY). This inequality implies in turn the desired property for general
L.

It is easily checked that £ € Dy(8,00) for some 8 > 1 if (1 + ) (|1B] + |B])
+(1+7)?|b] < C. Moreover if y is nonincreasing on R, and such that [~ ¢(r) dt <
oo then disteo (£, £) < 1 in Dyy(8, 00) if (1 +7) (|B] + |B]) + (1 +7)2 |b] < ¢(log(r))
(note that dp(0,x) ~ log(|x|) for |x| > 2).

In agreement with the results of [Pi4], it follows that if L is Greenian and
if (1 +7)(|B| + |B']) + (1 + r)?|b| < f(r) with f nonincreasing and such that
[ (f(2)/t)dt < oo, then the Green's functions G and Gy of L and L, (acting in RN
with its usual metric) are comparable. It is well-known that G, is comparable to
G4 [Sta]. Note that (for p = oo) our conditions on B, B’ and b are slightly stronger
than the Kato conditions of [Pi4] (see Lemma 2.3 there) and that an extra uniform
Ch¢ regularity condition is made there on .A. Also, by Theorem 1, if for some
p>N2>3,andallp > 1,

(140) (6™ / 1BI| + 1B1P dx) ' + (1 + p)? (o~ / 1bP/2 dx)
p<|x[L2p p<|x|L2p

<flp)

with f as before, then G, ~ Ga.

For nondivergence-type elliptic operators, using now the results of Section 7,
the argument above yields (again in agreement with [Pi4]) the following. Let
L =Y a;(x) 8;0;+ 3 B; 6;+ b be uniformly elliptic in RV with bounded measurable
coefficients. Assume that ||a;|, gy < 00, |@;(x) — | < Clx|~% for some 6§ > 0,
a > 0and constantsa Suppose further that } -, .,y ]x| |B; ()] + |x|% |b(x)| < f(Ix])
with f satisfying the same Dini condition as above. Then the Green’s function of
L, if it exists, is comparable to Ga.

6.3. We now mention generalizations of Theorem 1 and Theorem 2 for general
M as in Section 1. Let 7 : R, — Ry be a positive nonincreasing function such
that 7(r + 1) > cn(») for all » > 0 and some constant ¢ > 0. We denote by
the same letter = the function m — =(d(0,m)), m € M, and for 8 > 1, p > N,
denote Dy (0, p, ) the set of £L € Dy(6,p) such that there exists a £ + 7 positive
superharmonic function in M. Let now

T(L) = sup{t € R; £ + ¢ has a Green's function} € [—o0, 00).

It is quite straightforward to generalize Theorem 2 and its proof in Section 4 in the
following way.

Theorem 6.2 Let £, € Dy(8,p) with A\T(L1) > —A, A < . There is a constant
¢ =cxm(0,p,A4) > 0 such that |\T(L1) — AT(L2)] < 6 for L2 € Dy(8,p), verifying
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distg, (L1, £2)(m) < cm(d(m)) 6 for m € M. Here qo > 1 is some large constant
depending only on co, 6, and p, in fact the same qo as in the proof of Proposition
3.1

Let now £y € Dy(8,p,7), L2 € Dy(0,p,7), 8 > 1, p > N. Let u (resp. h) be
a positive £y-harmonic (resp. £ + 7-harmonic) function in Bg (resp. M) such
that u(O) = h(O) = 1. The proof of Proposition 3.1 shows the following more
general statement. Let ¢ : [0,00) — Ry be a positive continuous nonincreasing
and integrable function and let f be as in Section 3. Let w = hf(u/h).

Proposition 6.3 We have Ly(w) = S — u where S € Hiy)(Bg), and p is a
positive measure in Bg such that for each a € Bg_,

disty, (L1, £2)(a)

~(d(a) 9(d(a)) “E@0/H)

(6.2) ISI-1 (Barar2yy < € VIIYlh

where ¢ = cy(m,0,p) is a positive constant.
Proposition 6.3 leads to the following extension of Theorem 1.

Theorem 6.4 If disty (L1, L2)(m) < w(m)yi(d(m)), m € M, with i, non-

increasing in [0, 00[ and [,° 11(t)dt < oo, then for some constant ¢ > 1, we have
¢! Gl(x’y) < Gz(x7y) < CGl(x’y)

for all (x,y) € M x M such that d(x,y) > ro and some constant ¢ > 1. In fact,
for a given 6§ > O we may even take c = 1 + 6 if [° 11(¢) dt is sufficiently small
depending on 6.

The extension of the proof in Section 5 requires the following remarks. Firstly,
if in the statement of Lemma 5.1 it is only assumed that £ € Dy(6, p) admits a
Green’s function, then the conclusion holds if one replaces 4 in the Lh.s. of (5.1)
by v(a) A4 where v(a) = sup{G(a,P); P € dB(a,r|)}. The estimates of the terms
with d(x;, b) < r1/3 in the paragraph after (5.6) are then easily extended.

As shown by the examples in 6.1 the above result is far from sharp in the case
of M =RV, N > 3, equipped with the standard euclidean metric, and £ = Ay,
L; = A 4+ D.V say. One of the reasons behind this is that we have used in the
proof of Theorem 1 the Harnack inequalities in their weakest form whereas in
the above example with the Laplacian in RV much better Harnack inequalities are
available. More generally, the next paragraph shows that Theorem 6.4 can be
seriously improved when £; has no lower-order terms and if M has nonnegative
Ricci curvature, or if M is a Lie group with polynomial growth endowed with a
left invariant metric (such M verifies conditions (PI) and (DV) below).
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6.4. Assume now that the complete manifold M verifies : (PI) Uniform Poincaré
inequalities hold for all balls, (DV) the volume doubling condition for balls holds
(for precise definitions see [SC2]), and that moreover with respect to the fixed
point O € M we have Vol(B(0O,s))/Vol(B(O, 7)) > c¢(s/r)? for s > r > 1 and some
o > 2. Here we may drop the assumptions (1.1).

Manifolds M verifying the first two conditions above have been extensively
studied ([SC2], see also account and references there). In particular, uniform
Harnack inequalities in (all) balls for operators in the form £; = div(AV) with A
bounded verifying (1.3) are known as well as the fact that our third assumption
implies that the Green’s function G, for £, exists and is comparable with Ga.

Fix v > 2 such that vol(B(x,r))/Vol(B(x,s)) < C(»/s)” for some C > 1 and all
O<s<r,xeM Putr, =2""1lifm>1landry=0. Let £L = div(AV) +D.V. +
div(D'.) 4+ v be such that

a =(1 +rm>[]§ (ID| + D[ do']/?
"de(x)Sl‘mﬂ

1+ r,,,)2[j{ WP/ do [P < o,

rmi"@‘)ﬁ"m-{-l

forall m > 1 and somep > v . Here §, means 5 [,. We then have the following.

Theorem 6.5 If the Green’s function G for L exists and if am < by, m > 0,
for some nonincreasing and summable sequence {by,}, then G; and G, are
comparable.

The proof follows to some extent the same lines as before. Details will appear
elsewhere.

7. The case of second-order elliptic operators in nondivergence form

7.1. In this section, in addition to (1.1) it is also assumed that in every chart
Y = g, a € M, there is a bound

(7.1) |0x.&31} < co

on B, = B(a,rg), 1 <1i,j, k <N, for the coefficients g;; of the metric of M, and
that a (global) orthonormal moving frame {X],..., Xy} verifying

(7.2) IVx (X))l < co

forjand kin {1,...,N}, is givenin M. For ¢ > 1 and 0 < a < 1, we denote
by Am(8,a) the set of all second-order elliptic operator £ on M with a given
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representation of the form

(1.3) Za,,XJX +Zkak +yu,

ij=1

where the coeflicients a;;, by, v are bounded (borel) functions on M satisfying

(74) 6! Zf <Zal] §1§/<626ka

(7.5) Zlau — ay(x')] < 0 d(x,x')*,
ij=1
N
(7.6) > la)l+ Y 1) + v(x)] < 6,
1<ij<N k=1

when x € M, x’ € M are such that d(x,x') < 1 and £ € RV. The global existence of
the frame {Xj,..., Xy} is assumed for the sake of notational simplicity and what
follows may easily be extended to the class considered in [A3], pp. 512-514.

Let £ € Ap(8, ). A L-solution (or a £ harmonic function) on a region U C M is
a function of class W?># for some (or for all) finite p > N satisfying £(u)(x) = O a.e.
It is well-known that Harnack inequalities (1.5), (1.6) hold for positive £-solutions
(with 3 = 1 in (1.6)) ([Ser]) and that a well-behaved local potential theory may
be attached to £ ([Her]). (Using a local chart, one is left with the standard case
where M = RY and {X,..., Xy} is the (constant) standard frame of R¥.) On
each transient region U ([A4]), there is a well-defined Green’s function GY(x,y)
which is continuous in U x U, £-harmonic with respect to x in U \ {y} and such
that for each compactly supported ¢ € LP(U), G(yp) € W,zof(U) and LG(p) = —yp;
moreover, G(¢) admits no positive £ harmonic minorant in U. Finally, an adjoint
potential theory ([Her]) may be defined: by definition, each function y — GY(x,»)
is L*- harmonic in U\ {x} and adjoint potentials in U are the functions of the
form s = GY(u) = [ GY(x,.)du(x) where 4 is a positive measure in U such that
GY(u) # +oo0. Hamack mequalmes (1.5) hold for the adjoint theory with a constant
¢ = c(8,a,ry) (by the local estimate of the Green’s functions in the case M = RV).
By the invariance of the class Agv (6, ) under dilations, one also gets (1.6) (for
adjoints) in the case M = R" and hence also in the general case.
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If £ € Ap(6,0) and if U C M is open, A\|(£, U) is defined as before by (1.7) and
we set M (L) = M (L, M), Ay(6,a,e0) = {£ € Ay(8,a); \i(L) > £o }. Moreover,
for £ € Ay(0, a,ep), g0 > 0, estimates (1.9) still hold (see [A3]).

For £; € Au{0,a),j=1,2,q9 > 1 and a € M we now set

dist, (L1, L2)(a) = Z lla; — aillLos,) + Z 18] = BE 1,y + I =Vl s,
i

where the a,,, bk, ~* are the (given) coefficients of £;. The choice ¢ =
is certainly the most natural, but the method works as well for ¢ > 1. For
¥ : (0,400) — Ry and £; € Ay(8,¢),j = 1,2, the notation dist;(ﬁl,ﬁg) < in
An(8, o) means that dist, (L1, £2)(a) < ¢(p) whena € M and p = d(a).

7.2. To establish the analogues of Theorems 1 and 2 in this setting we follow
the same lines as above for divergence-form operators and in some respect the
proof is much simpler now. We start with the following (obvious) version of 2.5.

Lemma 7.2 Let u and h be two continuous positive functions of class W,zmp in
the region Q of M and let v = u/h. Let also f : (0,+00) — (0,+00) be of class C*
on (0,+00). Then, for each L € Ap(0, ),

L(RF() = hf" (%) ac(Vv, V) + /() [£() = v L)) +.1(v) £(h)

holds a.e. in Q. Here ac(Vv,Vv) =3, ay Xi(v) Xj(v) if L is in the form (7.3).
Proof Straightforward computation.

We also have the following obvious substitute to Corollary 2.2. If £ € Ay(6, o)
then L — (¢ + 0)I € Ay(0,a,¢). Finally, we have to replace the last argument is
§5.3. This is the content of the next lemma.

Lemma 7.3 Let £i, k = 1,2 be two elements in Ay(8,a,e0), 0 > 0, such
that L) = L, in M \ B(a,r,) for some a € M, and denote by G; the corresponding
Green'’s functions. For each given § > 0, there is a positive ¢ such that when
dist) (L1, L2)(a) < €

(7.8) (14 6)~"' Ga(b,a) < Gi(b,a) < (1 +6) Ga(b,a)

for all b € M such that d(a,b) > 2ry. (See also Remark 7.4 below.)

Proof We may as well assume that dist, (L1,£2)(a) < e. By Hamack
inequalities (1.6) for adjoint harmonic functions with respect to £;,

(7.9) (1+6/4)7 Gi(.,a) < Gi(p) < (1 +6/4)G)(.,a)
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in M\ B(a,n0) if ¢ = ¢, 1g(a), ¢, = [0(B(a,p)]" and if p is sufficiently small
(depending on M, 8, o and 6, but not on ). Next we note the formula

(7.10) Gap) = Gi(p) + Ga((£2 = £1)[Gi(#)))

where v = (L2 — L1)[Gi(¢)] is in LP(M), p < oo, with supp(¥) C B(a,ry). To
prove the formula observe that by the basic properties of the Green’s functions,
the r.h.s. is a W,zof (M) function w such that Low = —¢ and, in particular, w is
L>-superharmonic. Also, because £ = £; on M \ B(a,rp) the function |w| is
dominated by C G?(.,a) where C is a large constant (by the maximum principle,
[B] p- 39). It follows that w is a potential ([B]) and hence that w = G»(¢p), which

proves the formula.

Observe now that [|¢|[,sy — O when ¢ — 0. In fact, by the interior wap

estimates, ||G1(#)llw2ra,) < clll@llomn + 1G1(#)lloo,B(a2ry)] < ¢ since by (1.9)
G () is bounded in B(a,2rg) by a constant which depends on 6. Thus

[ller < ce D IXXKG1 (@)l + D 167 = bl I VG (@)l s
i i

+ 1 = @ 1G1(#) o2
< c{ellellay + 7P}

By Harnack’s inequalities for £*-harmonic functions,
Ga(|4])(b) < ¢ Ga(b, a) ||¢]|

for b € M such that d(b,a) > 2ry. Thus, if ¢ is sufficiently small G(|¢]) <
(6/4) Go(yp) on M\ B(a,2rg) and formula (7.10) yields G1(p) < G2{p)(1 + §/4).
Combining this with (7.9) we obtain (7.8).

Remark 7.4 The restriction d(a,b) > 2r; may be removed. Note that the
proof above extends to the case where this condition is replaced by d(b,a) > ry, for
any fixed ) in (0, 79). On the other hand, by the known local behavior of Green’s
function, for each given § > 0 there is a number r; such that (7.8) hold for all
b € B(a,r) provided r; is small enough.

7.3. It is easy to adapt the key construction in Section 3 and Proposition 3.5.
Fix £) € Am(8,a,¢9), €0 > 0. Let u be positive £, harmonic in B(0,R) and let A
be a positive £; + ol solution in M with u(0) = A(0) = 1. As in Section 3, we
may construct a function w in the form w = Af(u/h) in B(0,R) where f is given
by (3.1)«3.2) and depends on the choice of the auxiliary nonincreasing function

Y1 :[0,+00) - R,
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Proposition 7.4 Fix g > 1 and let £ € Ay(6, o) be such that

DL=Liinwg={xeM;R- 1 <d(0 x)<R}and

(i1) disty (L1, £) < ¥ with fo (s)ds <m.

Then, for each given § > 0, there is a number n(6) = nu(0, e, q,€0,6) > 0, such
that if n < n(6) we may write L{w) = S — u in B(0,R), where u is positive and in
L), (Bg), S € L'(Bg), supp(S) C B(0,R — 1) and for every a € B(O,R — 1/2)

(7.8) 18112162y < 6 /B( , M)

Observe that n(é) is independent of R and can be taken in the form n(é) =
C(M, Co,é,a,q)aal& The proof is similar to the proof of Proposition 3.1, using
Remark 3.2.1 and the norms ||.||y- being replaced by L' norms. The required
bounds on [|[£ — Li](u)ll1s,) and [[[£ = £1](h)|l11(s,) (compare (3.7)—3.8)) are
now straightforward (and are the reason for the assumption g # 1). The content of
Remark 3.2 and Proposition 3.3 extend in the obvious way to the present setting.
We omit further details and rather state now the analogues of Theorem 1 and
Theorem 2.

Theorem 1’ Fix g > 1. Let £y and L3 be two element in Ay (0, o, e0) (with 0 <
a < 1 and ¢g > 0) and denote G' and G* the corresponding Green's functions in
M. If1 is nonincreasing in [0, 0o} with f P(s)ds < +o0 and lfdlst (L1,L2) = ¢
in Ay(8,a),

(1.9) ¢ GPx,y) < G (x,y) < e GPx,p)

Sfor all x,y € M and some constant ¢ > 0. Moreover for every & > O there is a
number n = n(M,8, a,&9,8) > 0 such that sz s)ds <npwemayletc=1+56
in (7.9).

Theorem 2’ Let§ > 0, a € (0, 1] be fixed. For each 6§ > 0 there is a positive
real m such that when Ly, L2 € Ay(6, ) and disty’(L£y, L) <non M,

(7.10) [A1(L1) = Mi(L2)] < 6.

Infact, )\, is Lipschitz continuous in Ay(6, o) with respect to the distance d(L, L") =
supy, dist, (L, L') for each q > 1.

7.4. Proof of Theorem 2’ To extend the proof in Section 4, we use the
following fact which holds for every £ € Ap(6, ) and every bounded region
in M such that Ay = X(£,Q) > 0: if G is the Green’s function for £ in © and if
G*(x,y) = G(y,x) for x and y in Q, there is a positive continuous function o* on Q
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suchthat o* = Ao G*(0*). This is well-known at least under some extra smoothness
assumptions. See 7.5 below.

The proof in Section 4 may then be repeated, with Qg = Q. Now, S is a negative
measure with compact support C B(0, R — 1), and the integration-by- parts formula
v—"S0") =Wl a*) holds since by Fubini’s theorem

(v = S,0%) = (v = 8,2 G*(¢”)) = (G(v = §), ho0™).

The other parts of the proof are unchanged.

7.5. The existence of o*. We sketch a proof for the existence of ¢* in 7.4,
Replacing £ by £ — X1, A2 = [[£(1)]lo, We may assume that £(1) < O thanks
to the resolvant equation. In this case, and since 2 is bounded, there is a bound
G(x,y) < Chn(d(x,y)) where kn(r) = r*~V if N > 3 and ka(r) = 1 + log, (1/r).
By Harnack property (1.6) it follows that G defines a compact operator in LA(Q).
Fredholm’s theorem shows then that Green’s function for £ + Ag 7 fails to exist, so
that up to scalar multiples there is a unique £* + Ao/ positive supersolution ¢ in Q
and o* is £* 4+ Aol harmonic (see e.g. [A4], Chap. 1 and 3). Finally, in the Riesz
decomposition o* = Ao G*(¢*) + h with & > 0, it is easily checked that u = G*(0™)
is £* + Mol superharmonic and thus 6* = Ao G*(c*).

7.6. Proof of Theorem 2 Using now Proposition 7.3 instead of Proposition
3.1, the proof in Section 5 may be repeated, the only changes being as follows.

(i) Given L1, £3 in Ay(6,a) and a closed set F C M, in general there is no
L € Ay(6,a) which agree with £, on F and with £, on M \ F. However, using a
smooth cutoff function ¢ we may define in the obvious way £ € A (46, a) equal
to Ly on Fandto £y on {x € M; d(x,F) > 1}.

(ii) In the formula after (5.6), S is in the form S = f o with fjg, € LY(B,),f <0
and (7.8). It follows that the terms corresponding to j € J with d(x;,6) < r1/3 in
the Lh.s. may now be estimated using the Holder inequality and the standard local
estimate of G by d(x,y)>~" (resp. —log|x — y| if N = 2):

(7.11) IGr(©S)IL 8y < € ISTLi B>

so that a{x € B(b, r1) ) IGR((,OJS)(X)! > t“‘PjSHL‘(B(xJ,n)) } < ¢! .
(iii) At the end of the proof (see Section 5.3) the argument is replaced by
Lemma 7.3.

8. Some applications of Theorem 1 to manifolds

8.1. A version of Theorem I localized at one point at infinity. In this paragraph
we assume that M, besides the assumptions in Section 1, is also hyperbolic in the
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sense of Gromov (e.g. M is a Cartan—Hadamard manifold with pinched negative
sectional curvatures). We refer to [A4], [A3] for definitions, notations and potential
theoretic results. Let I = 0¢ be a geodesic (minimizing) ray in M, { € S,(M), and
let @ be a positive function on [0, +00). Set

Us(¢) = {x € M; d(x,T") < ®(d(0,x)) }.

Theorem 3 Assume that log(t) = o(®(t)) when t — +oco. Let L; € Dy(0,p,¢),
Jj=1,2and e > 0 be such that dist,, (L, L2)(x) < ¢(d(x)) for x € Us(() where
Y is a nonincreasing and integrable function on (0, +00). Then the corresponding
Green's functions verify

C™'G'(x,y) < G*(x,y) < CG'(x,y)

for x and y on the ray T = 0¢ and some C = Cy(®,8,p,v,c) > 0. Moreover, the
ratio G'(x,0)/G*(x,0) has a limit whenx — {,x € T

Here ¢y = go(M,0,p) is as in Theorem 1. Simple changes in the proof show
that the similar statement with £; € Ay(6, o, ¢) and dist (L, £2) < ¢(d(x)) for
x € Ug(¢) holds as well.

Proof It suffices to show that the conclusions of the theorem hold if we keep
the assumptions on the operators L£; but take ®(¢) = ®4(r) = Alog(2 + ¢) with
a constant 4 > O sufficiently large (depending on M, 6, p and ). This will
follow from Theorem 1 and the following properties. Fix £ € Duy(6,p,¢), set
U=U,={xeM;dxT,) < ®4(d(a,,x))} where a, is the origin of the ray
', =T\ B(0,p). Let G (resp. g) denote the Green’s function of £ in M (resp. in
U). We then have

(1) glx,y) < G(x,y) < Cg(x,y) forxandyon T,

(ii) the limit £ = limeer x—¢ g(x,0)/G(x,0) exists and £ > 0.

Assuming for the moment that (i) and (ii) hold, let us see how Theorem 3
follows, using Theorem 1. Introduce the operator £ having the same coefficients
as Ly (resp. £2)in U (resp. in F' = M\ U). By Theorem 2, if p is chosen sufficiently
large £ € Du(8,p,e/2), so that £ and £, satisfy the assumptions of Theorem 1 and
thus have Green’s functions of similar size. By (i) above, it follows that G2, G, g
and G' are also equivalent in size on I' (because g is also the Green’s function for
L in U). The first claim in the theorem follows. By Proposition 8.4 below the
second claim follows similarly from (ii).

Let us now prove (i) and (ii) following closely the method in [AS], §VII (see
also [A4]). We assume as we may that p = 0 and a, = O. Denote R? the réduite
of s over B C M with respect to £ (ref. [B]).
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Lemma 8.1 Forxe M, R > land Vp = M\ B(x,R),
(8.1) R (x) < g1 e PR

with 3 = fu(8,p,e) > 0.
Proof Fix t with0 < ¢ < ¢ and let G’ be the Green’s function for L+¢/. By [A4],

Prop. 10, there is a constant 8 = (8, p.€) > 0 such that G,(y) < 87! e PRGL(y)
for d(x,y) > R. Hence, setting w = RZJ,‘ (the réduite is taken with respect to £),

Rg“ (x) < B e PRw(x) < Ce PR,

since w(z) < G.(z), by the L-superharmonicity of G% and the definition of the
réduite and because G.(z) < ¢ on 8B(x, 1). This proves (8.1).

Lemma 8.2 Assume that A is sufficiently large and let K, = G,/ G(O,x). Then
(@) forxandyinT, Rf;r () < e(x,y) G(x,y) where limy_¢ ¢ €(x,y) =0,
(b) we have lim,_¢ «er R (0) = R _(0) and R (0) < 1.

Recall F = M\ U. The second part of (b) means that F is minimally thin at
¢ and is observed in [A4] under a symmetry assumption which is removed here
using Lemma 8.1.

Proof It suffices to prove (a) for x = z; and y = z, where z; € T, d(0,z;) =/,
j>2.

Assume that k < £ and let F; = {m € F;d(m,) = d(m,[zj-1,zi+1]) }, Bx =
{m € F;d(m,z,¢]) = dim,z¢) }, Co = {m € F; d(m,[0,2z,]) = d(m,z) }. Note
that R; = d(z;, F;) verifies R; > (4/2) log(j + 1) for sufficiently large .

Using the Harnack principle at infinity ([A4]) several times, the hyperbolicity
of M and Lemma 8.1, we get, for k < j < ¢,

RG,() < ¢ Gz, x) RE () < ¢ Glz,%) G,5) RE, (2)
< cl/ G(y,x)Rg}:/(Zj) < C” Gx())) e_.BRj < cll (/_+_ 1)——A' Gx(y)

where A’ = $4/2. 1t is shown similarly that R'g!‘r ) < "(1+ k)~ G(y,x) and
RE() <"1+~ G(y,x).
Summing up, we find that

REG <REM+RGE + Y REM < "[Y 1+/)*1GW,x),

‘

k<j<t k<j<e

which proves (a) when k < £if 4 > 23! . The case £ < k is treated similarly.
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To prove (b), we first observe that K; < ¢K, outside B(x, 1), x € . In fact,
G. < c[K¢(x)]"' K, on M\ B(x, 1) since this holds on 8B(x,1) and G is a L
potential. Thus K, < ¢(G(0,x) K¢(x)]~" K¢ outside B(x, 1). But from the Harnack
inequality at infinity K¢ (x) Gx(0) > ¢ when x € " ([A4], p. 99) and the observation
follows.

Since Ky — K; when x — (, x € T ([A4]), R (v) — RE (y) forall y € U by
dominated convergence (recall that R,Fﬂ(y) = [K.(z)du(z) if u is the harmonic
measure of y in U).

By the proof of (a), for x and y on I" with d(x) > d(y), we have Rﬁr(y) <
¢ (1 +d(»)'~* K.(y). Letting d(x) go to infinity and using the above we get

RE () < ¢ (14+d() ™ K¢ ().

Thus, K, — R?c is positive harmonic in U and > % aty € I'if d(y) is sufficiently
large. It follows from Harnack inequalities that RZC (0) < (1 —6) for some 6 =
ém(0,p,€) > 0. The proof is complete.

We may now prove properties (i) and (ii) after Theorem 3. From the formula
gy, x)y = Ge(y) - Ré‘ (v) and Lemma 8.2, it follows that g(y,x) > 1/2 G(y,x) for x
and y on T and sufficiently far from O. Using Harnack inequalities this yields (i).
Also g,(0)/G(0) =1 - RZ(O), whence (ii) by (b) in the lemma.

8.2. Dirichlet problem and harmonic measures for manifolds. In this subsection
and the next, we consider again a general manifold M (with a given reference point
0 € M) that verifies only the assumptions of Section 1. Note that if M is hyperbolic
then the £-Martin compactification coincides with the compactification with the
sphere at infinity, for all £ € Dy(8,p,€),0 > 1,p > N, ¢ > 0 (ref. [A3], [A4]).

Proposition 8.3 Assume that the hypothesis of Theorem 1 holds and let
M = M| 8M be a compactification of M such that M contains at least two points
and such that the Dirichlet problem £\(u) = 0 in M and u = f in OM is solvable
for f € C(BM;R) withu € C(M; R). The similar Dirichlet problem for L, is then
also solvable and the corresponding harmonic measures i, x € M, j = 1,2 verify
eyl <p? <cul wherec=c(L),L2) > 0.

Remarks 1. If #is a £;-solution with boundary value 1, inf,cp A(x) > O by the
available minimum principle. Uniqueness for the Dirichlet problem with respect
to £, follows.

2. If the existence of a function € C(M;R) harmonic with respect to £; and
> 1in M is assumed from the start, Proposition 8.3 follows from Theorem 1 along
familiar barrier arguments.

Proof of Proposition 8.3 Observe first that if C~! G'(x,y) < G*(x,y) <
C G'(x,y) when d(x,y) > 1, then for each nonnegative £,-harmonic function u in
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M there is a £>-harmonic function v with C™'u < v < Cu. To see this, consider
the reduite p, = R (x) (with respect to L) where B, = B(0.p). This function
is the G'-potential of a positive measure 1, on 8B(0, p) and v, = Gy, verifies
C'p,<v,<Cp,inB(0,p—1). Since p, = u on B(0, p), any cluster value v of
v, when p — oo has the desired property.

Let u be continuous > 0 in M, £;-harmonic in M. Let L, € Du(8,p) be such
that £/, = £y in B(0, p) and L, = L3 on M\ B(0,p). If 6§ € (0,1), by Theorem 1
and the above observation, there exists a £/-harmonic function w = w, in M with
(14+6)"'u <w< (1+86)uin Mif pis large. By a standard extension result ([Her],
Lemme 13.1) there is a £;-superharmonic function 0| in M and a positive measure
p with compact support in M such that g —w = G*(p) in M\ B(0, p + 2). Since
card{(dM) > 2, the assumptions on £, imply that there is a barrier with respect to
L, at each ¢ € M. Thus G'(x) and hence also G?(u) vanishes at infinity in M.
In particular (1 + 26)~' oy < u < (1 + 26) o1 near infinity and the upper envelope
v given by the Perron method for £> and the boundary value f* = u,,, verifies
¥ < (1 + 26) u near infinity. Hence lim,_, ¥(x) < f(¢) for ¢ € OM and there is a
similar lower bound for the Perron lower function. The corollary follows.

8.3. The Martin boundary. We denote by M the Martin compactification of M
with respect to £ € Dy(8,p,€0) (p > N,6 > landeg > 0)and welet Ap = M\ M.
The minimal part of A is denoted Al (see [A4] for definitions and references).
When £ is submarkovian (i.e. when £(1) < 0), the £ harmonic measure uy of
x € M is defined as follows. If u is the largest harmonic minorant of 1 in M and if v
is the unique positive borel measure on Af suchthatu = K, := [ K¢(.) dv(() where
K is the £-Martin kernel with normalization at O, then duf(¢) = K¢(x) dv(().

Proposition 8.4 Under the assumptions of Theorem 1, the Martin compacti-
fications of M with respect to L1 and L, coincide, i.e. there is a homeomorphism
& : My, — Mg, inducing the identity on M. Also, for x, y in M, the ratio
Gi(x,.)/G2(y,.) of the adjoint Green’s functions admits a continuous extension to
M o \ {x WY }

Remark 8.5 If both operators are submarkovian, the corresponding harmonic
measures verify ¢! u! < u2 < cp! forx € M and some constant ¢ = ¢(Ly, £2) > 0.
Moreover, there is a continuous density f(x,£) on M x Ag, such that dui(§) =
f(x,8) dp (8).

We need the following simple complement to Lemma 5.2 (see [T], [Pi2] for the
first claim).

Lemma 8.5 Under the assumptions of Lemma 5.2, the identity map in M

extends to a homeomorphism M, — Mgz. If¢ € A%}, and if x € M tends to ( in
M_;,, the ratios G*(a,x)/G'(b,x), (a,b) € M x M, converge to a finite positive and
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continuous function Ug(a,b) on M x M.

Proof Let V be a component of U = M \ B(0, R) with a fixed reference point
Q € V and let g denote the £;-Green’s function in V. Fora € V,

gi(a) Gila)— R (a) Glg)  Kila)-Ry(a)

— X

2@~ GUO) GUQ)-RL(©) ~  1-RL(Q)

where R} is the réduite with respect to £; of the function « over B(0, R) and K is
the £-Martin kernel in M with Q as reference point. When x € ¥ converges in M,
to ¢ € Az, (M),

& k= M

g0 T T-RL(Q)

If k¢ = k¢ for some ¢’ € Ag, (M) NV, the uniqueness property of the Riesz
decomposition shows that ¢ = ¢’. It follows that a sequence {x;} in J with
d(x;, 0) — +oo converges in Mc, if and only if g, / g(Q x;) converges in V. Inter-
changing £ and £, it is seen that {x;} converges in Mc, iff it converges in Mc,,
which proves the first claim of the lemma. For & € M, x € V and using the same
notations as before

g(0.x) GO -RL(Q)

G'(b,x) Gl(b)
_G@Q) -RG(Q)  GYQ)
TTGHO) T Gip)

= [KI(B)] 7' [1 = Ry (Q)]-

Hence for each compact K C M,

g0x) R
Glbx) Kb when x = ¢,

uniformly with respect to b € K . Using the similar properties for G* and g, it
follows that uniformly with respect to (b,5') € K x K

G\(b, x) 1 _R,2<§(Q) Kcl(b)
lim x .
e T T-RL©) K

Proof of Proposition 8.4 Let R be a (large) positive real and let £ denote
the operator in Dy(6, p) which coincide with £; on B(0,R) and with £; on U =
M\ B(0,R). For each given § > 0, Theorem 1 and Theorem 2 imply that if R is
large the Green’s function G for £ exists and (14 6)~! < G(x,a)/G" (x,a) < (1 +6)
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if d(x,a) > 1. Using Lemma 8.5, it follows that if K is compact in M and if
x, y belong to a small neighborhood (in ML,) of ( € Az, then (1 +26)~! <
[G*(a,x)/G'(a,x)] : [G*a,y)/G'(a,y)] < (1 +26) for a € K. This means that
G?*(.,x)/G'(.,x) converges uniformly in K when x — (.

In particular, K2 converges when x — ¢ in le and the identity extends contin-
uously to & : Mc, — 1\7152. Interchanging £, and £, Proposition 8.4 follows.

9. Applications to elliptic operators in euclidean domains

To simplify the exposition, we have discussed above (§6) the case of RV itself and
we shall restrict here to bounded domains. Note, however, that the results below
in 9.4 for divergence type operators are valid without the boundedness assumption
on Q.

9.1. Let 2 be a bounded domain in RY and for 8 > 1, 0 < a < 1, let Aq(8,a)
denote the class of elliptic operators L in © of the form

(9.1) L{u)(x) = Z a(x) ui(x) + Z bj(x (x) u(x)

where the coefficients satisfy the following conditions. For x € 2 and ¢ € RV,

(9:2) 07 e < Y apx) &g, Y lag(x) <6,
(9.3) 3 Jagx) —ag() <6~ ('16(%)1')“ if y € Q and d(x,y) < § 6(x),
(94) Y 1bix) < 66(x)~", () < 88(x)72

where 6(x) = d(x, 80¢). If § is a standard regularization of §, if M is the Riemannian
manifold (€, g) where g(x,dx) = §~2|dx|? (Example 1.2.2), equipped with the
frame X; = é(x)e;, 1 <j < N, where (ey,...,ey) is the standard basis of R, the
operator

L=8L=Y ay(x) XX + Y [8(x)bi — > ay(x)§(x)] X +8(x)*v(x)
i j

is in Ap(8',a) for some ¢ > 1 (see definitions in Section 7). Moreover, £ €
Ap(0',a,€) iff L + ¢ §(x)~? admits a positive supersolution. We let Aq(8, o, &) =
{L € Aq(8,0a); L € Am(8,,€) }.
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Recall from [A3] §8 that L € Aq(6, ) isin Aq(f,a,¢) for some e > O ifthereisa
Green’s function for L in Q, if 6(x) (Y, [bi(x)]) +8(x)> v (x) = o(1) when §(x) — 0
and if one of the following conditions is also satisfied

(1) the region € is uniformly regular (in the sense of [A2]) and the coefficients
a;; are (globally) Holder continuous in {2,

(i) there is a constant ¢ > 1 such that for x € Q2 and r > 0 there exists y € Q¢
with [y — x| < crand B(y,c™' r) C Q°.

If L{1) < O the Green’s function existence condition is implied by the others
([A3]). Also, in this case £ is Dirichlet regular with respect to L. (See [A2]
Theorem 4 and its proof.)

9.2. John domains of Hélder type. Let 0 < § < 1. We say that §2 is a John
domain of Holder type 73, if there is a point O €  and a constant ¢y = ¢p(2) > 0
such that each point a € Q can be joined to O by a rectifiable path I'(¢),0 <7< 1,
with T'(0) = a, (1) = O,T C Q and

(9.5) 8(T(£))P > co ()

where £(¢) is the length of I'([0, #]). For 8 = 1 we recover the John domains (ref.
[NV]). For general 3, the simplest examples are provided by the Holder domains

of exponent 3.
For such domains we have the following (compare [HS], [Al]).

Theorem 9.1 Assume that Q is a John domain Q of Holder type 3 > 0. Let L,
L) belong to a class Ao(8, a,€), € > 0, and let G; denote the Green’s function of L;
in Q. Suppose that for some bounded nondecreasing function ® : (0,+00) — R,
and all x € Q,

() 2y laf(x) —aj(x)|+6(x) (3, B} (x) =b}x)[) +6(x)? Im () —72(x)| < @(8(x)),

(1) @ satisfies the Dini condition

e
/0‘ [—2“—ﬂ dt < +OO

where we have used obvious notations for the coefficients of L;. Then, for x and y
inQ,

(9.6) c ' Gi(x,y) < Ga(x,y) < c Gi(x,y),

where ¢ = ¢(Q,Ly,Ly) > 0. If Q is Dirichlet regular with respect to L, it is also
Ly-Dirichlet regular and i, x € §, the corresponding harmonic measures in )

verify

(9.7) el < <epy
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Remarks 9.2 1. The theorem still holds if in condition (i), [b} (x) - b}(x){
is replaced by the mean 6é(x fB(X 50/2) b} (¥) — b (»)|dy and similarly for
i () = 2 )l-

2. Let § > 0. Using Theorem 1’, we see that if f; ! 24 dt is sufficiently small
depending on {, 3, 6, o, then we may take c < 1 + 6.

Proof Let M = (Q,672|dx|?) be the Riemannian manifold attached to Q as
above, and let d(x) = dy(O,x). If'is a path T : [0, 1] — © connecting a € Q to
O with (9.5), we obviously have §(T'(£))? > ¢ (8(a)? + £(t)) with ¢ = ¢1{co, B).

Therefore, 1 |
de(t) / de(e)
da) < —_ < —_—
@se [ swey << |, @apr @
I 6 , _
and d(a) < =5 57 Siff<1, andd()<clog<())1fﬁ 1.
On the other hand, it is ea511y checked that (i) implies that (in M) the operators
L; = §2L; are such that dist, (L1, L2)(a) < ®(cé(a)) (away from O) and hence,
since ® is nondecreasing,

C

dist, (01, £2)(a) < @ gz

) = ¥(d(a))

if 3 # 1. Thus, with the notation of Section 6 and for 8 < 1, dist,,(£;,£>) < ¥
in Ap(0', @) (away from O, for some large ¢'). But (ii) means that ¥ is integrable
over (0, +00), so that we may apply Theorem 1’ (Section 7), and since the Green’s
function G; in M of L; is related to G; by the formula G;(x,y) = 6(»)" 2 Gy(x,»),
(9.6) follows. The case 3 = 1 is handled similarly. The claim on the harmonic
measures follows from the “nondivergence” version of Proposition 8.3.

9.3. Localization. Assume that Q is such that 0 € 9Q and Q" B(0,p) =
{x € B(0,p); xn > f(x1,...,xy_1)} for some Lipschitz function f : R"~! — R
with f(0) = 0 and p > 0. Let

Us={x€B(0,p) NQ; [l{x1,....xn-1)I| < 6(x)g(6(x))}

where g is decreasing on (0, p) and such that log(1/s) = o(g(s)*) when s — 0 for
each ¢ > 0. If the assumptions of Theorem 9.1 hold with § = 1 and (i) restricted
to x € U then (9.6) holds forx and y in S = {(0,...,0,?), 0 < t < p/2}. This may
be deduced from the nondivergence variant of Theorem 3 (Section 8).

9.4. Operators in divergence form. Similar results hold for operators in
divergence form. We briefly describe what is obtained in this case. Set Dy =
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{y € Q; |x =yl < 36(x)} for x € Q2. For p > N and # > 1, denote Dq(#,p) the class
of operators L in the form

(9.8) = 3 a@gw)+ Y, bidu+ Y. 8(bu) +u,

1<ij<N 1</<N 1<<N

the coefficients being measurable functions on §2, with (9.2) and for x € 2,

(9.9) 25 )M (16l o0 + 1B ll00) + 6Pl 2, < 6.

Set Da(8,p,€) = {L € Da(8,p); L + £62. admits a > 0 supersolution in 2}.

As before, if L € Dq(4,p), then £ = 6 L has a natural representation in some
class Dy (#',p) where M = (2,g), g = 6(x)2|dx|?, and L € Dq(8,p,c) iff L €
Dy (8, p,€). Straightforward calculations show that for LV € Dq(8,p),j = 1, 2,
the function dist,(£!"), £)(x) related to M and the corresponding operators £V
(and a small radius #y) is estimated by a constant times the expression
(9.10)

Z lal = aPlzapy +8' N7 D (1B = 6P lwog + 18" = 0 o)

J
+ 620Ny — Y2ller2(y)s
where ||.[|z¢(p,, is the L7 norm with respect to the normalized measure u, =
8(x)~N dx.

IfL € Do(8,p) has by = b/ =0for 1 <j<Nandy < OandifQis uniformly
regular, then L € Dq(6,p,¢). This follows immediately from the validity of a
version of Hardy’s inequality for . (See [A2].) Thus by Remark 1.3 we have the
following statement.

Proposition 9.2 Assume that Q is uniformly regular and that L € Dq(0,p)
is in the form (9.8) with L(1) < 0 and Y,6(x)" "7 (I[bllr 0,y + I8}llr(00) +
8(x)* NPyl prapy < f(8(x)) for x € Q and a function f in (0,00) such that
lim,_of(¢) = 0.

Then, L € Dqo(8,p,¢) for some € > 0 depending only on Q, 6, p and f.

The next statement is the variant of Theorem 9.1 for divergence-type operators.

Theorem 9.1’ Suppose that Q is a uniformly regular John domain of Holder
type B8, 0 < B < 1, and let LV, L@ be members of a class Da(0,p,c), (p > N,
8 > 1, € > 0). Assume further that when x € ,

—- i 2 1 2
Z 1850 (x) — aP @) + 38 NP (15 = B ppy + 18D - 8 po,y)
7

+ 8NP g — 4Dy < (6(x))
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where § = §(x), @ is nondecreasing with fo‘ §P72 o(s)ds < 400 and where we have
used obvious notations for the coefficients of LV. Then, the Green’s functions GU)
of these operators —with respect to Q— satisfy

Cc™' 6N (x,y) < GP(x,y) < CGV(x,y)

with C = Ca(8,p,€,¢) > 0.

Similar inequalities hold for the Li-harmonic measures in Q. Also, in the
condition above one may replace the terms involving the a(") by the sum
3 ||ai,.” - i/‘ || Lopy) With g sufficiently large depending on p and 6. Observe
that by Proposition 9.2, Corollary 1.2 follows from the particular case where § = 1
and the L” norms in the condition above are bounded.

9.5. An application to Green's functions and harmonic measures with respect
to nondivergence-type elliptic operators. Suppose that Q is a uniformly regular
John domain of Holder type 8,0 < 8 < 1, and let L € Aq(6, &) be in the form (9.1)
verifying (9.2), a;j = a;, v < 0and §(x) 5, 1b | + 8(x)2 |y(x)| < ¢(6) where ¢ is an
increasing function on (0, +oc0) such that fo 572 p(s)ds < +o0o. Assume further
that for x € © (recall 6(x) = d(x, ))

OI)  lay) - eyl < pl600) (E31) whenly - ¥/ < (o).

Denote G and G the Green’s functions of Land L = ¥ J di(a;0;(.)), respectively.
Theorem 9.3 Under the above conditions there is a constant ¢ > 1 such that

¢! G(x,y) < G(x,y) < ¢ G(x,)

for all x and y in Q. In particular, (i) G is quasi-symmetric in the sense that
G(x,y) < 2G(y,x), and (ii) ¢ fix < px < ¢fix if ux (resp. fix) denotes the
harmonic measure of x in QL with respect to L (resp. L).

Proof We assume as we may that b; = 0,y = 0 (Theorem 9.1) and we construct
functions a by regularising a;; in the usual way, usmg a fixed Whitney partition
of Q (ref. [Ste]). Standard arguments show that a,_] satisfy the uniform ellipticity
condition (9.2), and that

(9.12) IVad(x)] < ' 6() 7 p(8(x)),  lafx) - ay(x)| < (6(x)).

In particular, the operator L® = Y- 8i(al8;() = X a)d:9,(.) + X dila
belongs to (or rather has a representation m) a class Ag(()’, o) and by Theorem
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9.1 has a Green’s function comparable to G. At the same time, it is a formally
self-adjoint operator of divergence type with a representation in Dq(6”,p, ) for
some 6", any fixed p > N, ¢ > 0 small. By Theorem 9.1/, L% and L have Green’s
functions equivalent in size. The same reasoning applies to harmonic measures,
and the theorem follows.

As a consequence we finally show the following.

Theorem 9.4 Suppose that QL is a Lipschitz domain. Let L be an elliptic operator
inSYin the form (9.1) and such that (9.2)and }; 6(x) [bj|+6*(x)|v(x)] < @(6(x)) hold
Jfor some nondecreasing function ¢ verifying the Dini condition fol o) dt <
+00. Assume moreover that the a;; are globaily Holder continuous in ). Then, the
L-harmonic measures uy in Q, x € §), are absolutely continuous with respect to the
area measure o on 3 and p, = f;.0 with f; € L*(0).

Proof By Theorem 9.3 we may assume that by = --- = by = =0, a; = aj;,
and then replace L by Ly = 3, ; 9;(a;9,(.)). By the main result in [FKJ] (or [D])
we are done.

We may also use an argument based on Theorem 9.1, which we may sketch as
follows. If L; is in the form L, = Eij d;(a;0;) with a;; = a;;, and if P € 89 is such
that the a;; are constant along a direction transverse to 92 in a neighborhood V" of
P, it is known that the required property holds in the neighborhood of P. This is
observed in [FKJ] and follows easily from the Rellich formula ([N], p. 244).

Pick P € 89, a transverse direction v to 80 around P and a small ball B(P,r).
Let Lp = 3, &(a36,-(.)) be the (divergence-type) operator whose coefficients
are constant along the parallel to v in B(P,r) and coincide with those of L on
U B(P,r)". Clearly, |a;(x) — al(x)| < 6(x)* in 2. Using Theorem 9.1’ again it
is seen that the harmonic measures with respect to L and Lp are uniformly compa-
rable on 9Q. The result then follows from Theorem 9.1’ and a standard covering
argument.

Notes added in proof

1. Analogues of our main results for discrete potential theoretic settings, as
well as extensions of Section 7 to more general second-order elliptic operators in
nondivergence form will be discussed elsewhere.

2. After the revised version of this paper was sent to the Editors with a new
Section 6 inserted, we learned from a letter of Prof. Minoru Murata that he also
remarked that (a domain version of) Corollary 6.1 follows from Theorem 1.
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