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Diffusive-Dispersive Traveling Waves 
and Kinetic Relations III. 

An Hyperbolic Model of Elastodynamics. 

N A B I L  B E D J A O U I  (*)(**) - P H I L I P P E  G. L E F L O C H  (*) 

SUNTO - Questa ~ la terza parte di una serie di lavori dedicati alresistenza, unicit~, mono- 
tonia e proprieth asintotiche delle soluzioni d'onda di propagazione per leggi di con- 
servazione diffusive-dispersive. In questa parte, l'attenzione ~ focalizzata su un mo- 
dello iperbolico non convesso di due leggi di conservazione che sorgono in elastodi- 
namica non lineare, che tengono conto della viscosit~ non lineare e dei termini di ca- 
pillaritY. Da una parte, utilizzando le tecniche precedentemente sviluppate, studia- 
mo le propriet~ delle corrispondenti onde d'urto classiche e non classiche e le loro 
corrispondenti relazioni cinetiche. Diverse nuove proprieth sono state trovate per 
questo modello (iperbolico). Innanzitutto, qui distinguiamo tra una funzione cinetica 
ed una funzione cinetica inversa, quest'ultima essendo sempre definita globalmente 
ma possibilmente non sempre globalmente iinvertibile. In secondo luogo, mostriamo 
che onde d'urto con ampiezza sufficientemente piccola sono sempre classiche, per un 
valore fissato del rapporto tra diffusione e dispersione. In ultimo, determiniamo il 
comportamento asintotico della funzione cinetica per onde d'urto aventi sia ampiezza 
grande sia piccola. 

ABSTRACT - This is the third part of a series devoted to the existence, uniqueness, mono- 
tonicity, and asymptotic properties of the traveling wave solutions of diffusive-dis- 
persive conservation laws. In this part, we focus attention on a nonconvex hyperbolic 
model of two conservation laws arising in nonlinear elastodynamics and including 
nonlinear viscosity and capillarity terms. On one hand, using the techniques devel- 
oped earlier, we study the properties of the corresponding classical and nonclassical 
shock waves and their corresponding kinetic relation. Several new features are 
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found for this (hyperbolic) model: First of all, we distinguish here between a kinetic 
function and an inverse kinetic function; the latter is always globally defined but 
may fail to be globally invertible. Second, we show that shock waves with sufficiently 
small amplitude are always classical, for a fixed ratio of diffusion and dispersion. 
Third, we determine here the asymptotic behavior of the kinetic function for both 
shocks with large and small amplitudes. 

1.  - I n t r o d u c t i o n .  

Consider the following system of two conservation laws in one-space di- 
mension arising, for instance, in nonlinear elastodynamics: 

~t v -  a~u(w) = fla~(b(w) a~v) - 33~(al (w) ~ (a2 (w)  ~ w ) ) ,  
(1.1) 

a t w - a ~ v = O .  

Here v E R and w > - 1 represent the velocity and the deformation gradient of 
some solid material or fluid, respectively. The viscosity function b(w) and the 
capillarity functions al (w)  and a2(w) are assumed to be bounded below by 
some positive constants bo and a0, respectively: 

(1.2) b(w)>~bo>O, a l (w) ,ae (w)>~ao>O for all w >  - 1 .  

The parameters fl, a > 0 measure the relative strengths of the viscosity and 
capillarity terms in the material. Finally, the stress-function a depends on the 
material under consideration. A typical set of assumptions is: 

w ~ " ( w ) > O ,  a ' ( 0 )  > 0 ,  
(1.3) 

lim a(w)  = - ~ , lim a '  (w) = + oo . 
W.. . -~  - -  I W - - - )  + oo 

The partial differential equations (1.1) are hyperbolic, and admit two real and 
distinct wave speeds, - c ( w )  and c(w), where c is the sound speed defined by 

c(w) := V a '  (w) for all w > - 1. 

This paper is the third part of a series (see [3, 4]) devoted to traveling solu- 
tions associated with diffusive-dispersive conservation laws. This activity 
takes its root in pioneering work by Slemrod [13, 14] concerning the effect of 
capillarity in fluids and solids. Our purpose here is to study the traveling 
waves of the system (1.1), that  is the solutions depending only on y := x - ~tt 
for some speed ~ and connecting two constant states at infinity. The equations 
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satisfied by a traveling wave solution y ~ ( v ( y ) ,  w ( y ) )  read 

)~vy + a(w)y  = - f i ( b ( w )  vy)y + a(al(w)(a2(w) Wy)y)y, 
(1.4) 

~wy + vy = 0 ,  

and 

(1.5) 

vy(y), wy(y), wyy(y) - o 0  

v(y )  ---->v_, w ( y )  ---~w_ 

v (y )  ---)v+, w ( y )  ----)w+ 

when [Yl---) oo, 

when y--* - oo, 

when y--* + oo, 

where v_,  w_,  v+, w+ are constants. Set also 

V 0 : ~ V _ ,  W 0 :----W_, 
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(1.7) 

so that 

(1.6) 
,~(v - Vo) + a ( w )  - a ( w  o) = - f i b ( w )  vy + aal (w)(a2(w) Wy)y, 

~.( w - Wo ) + v - Vo = O . 

The aim is solving the system of second-order, ordinary differential equations 
(1.5)-(1.6), under the assumptions (1.2)-(1.3) on the coefficients. 

In view of (1.5)-(1.6), the shock speed )~ is determined by the jump 
condition 

; t ( w  - w0)  + v - Vo = ~ ( v  - Vo) + o ( w )  - a ( w o )  = 0 ,  

{ a(w) - ~(Wo) 
) 2  ~. W - - W  0 

a'(Wo) 
if w ;~ wo, 

i f w = w o .  

Recall also that, from (1.6), one can deduce a second-order differential equa- 
tion in w only: 

(1.8) - )L2(w - Wo) + a ( w )  - a (wo)  = ~.fib(w) wy + a a l ( w ) ( a 2 ( w )  wy)y. 

and let us search for all of the right-hand states (v+, w+ ) attainable by a 
traveling wave leaving from (v0, w0). By integration of (1.4) over the interval 
( - oo, y] and using (1.5), we obtain 
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Finally, setting z = a2(w)wy, we arrive at a first-order system in the plane 
( W ,  Z): 

(1.9) 

where 

a2(w) wy = z,  

b(w) 
aal(w) z~ = -2f l  z + g(w, ;~) - g(wo, ~), 

a2(w) 

g(w, 4) : = a ( w ) - ~ 2 w .  

The boundary conditions (1.5) read 

wy(y), zy(y) -->0 

(1.10) w(y)---~w_, z(y)---~O 

w(y)---~w§ z(y)-->O 

when lYl--* ~ ,  

when y --* - ~ ,  

when y---) + or 

Concerning the problem (1.9)-(1.10), recall that the existence of traveling 
wave solutions was established first by Schulze and Shearer [12] in the case of 
the cubic stress-function 

(1.11) a(w) = w(w 2 + 1) for all w 

and for constant viscosity and capillarity al (w) := a2(w) := b(w) := 1 for all w. 
Importantly, it was observed therein that some of the trajectories of the sys- 
tem do not satisfy the standard Lax and Liu entropy conditions, but instead 
are nonclassical undercompressive waves. By definition, the propagating dis- 
continuities associated with such traveling waves have fewer incoming charac- 
teristics than observed with classical compressive waves (generated by zero 
viscosity limits). 

Our objective in this paper is to establish general existence and uniqueness 
results concerning the traveling wave solutions of the problem (1.9)-(1.10) for 
viscosity and capillarity functions and stress-functions satisfying solely (1.2)- 
(1.3). We are also interested in investigating their asymptotic behavior in the 
viscosity dominant and capillarity dominant limits. 

We recall that nonclassical undercompressive shock waves (for hyperbolic 
model such as (1.1)-(1.3)) as well as phase transitions (for hyperbolic-elliptic 
equations) have drawn a lot of attention. For references from material science, 
see for instance [13, 14, 15, 1, 2, 16, 9, 8, 6, 7, 10, 12, 4]. In particular, the impor- 
tance of the so-called kinetic relation in characterizing propagating phase 
transitions was recognized by Abeyaratne and Knowles [1, 2] and Truski- 
novsky [15, 16]. The first mathematical formulation of the kinetic relation is 
due to LeFloch [9]. Hayes and LeFloch [6, 7] have extended the concept of ki- 
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netic relation to strictly hyperbolic systems of conservation laws such as 
(1.1)-(1.3). 

The goal of the present paper is establishing the existence, and studying 
the properties, of the kinetic function associated with the model (1.1)-(1.3). 
The results differ in significant respects from those obtained first for scalar 
conservation laws [3] and for an hyperbolic-elliptic model of phase transitions 
[4]. Precisely, our main results are the following ones: 

(1) The existence of nonclassical traveling waves and of the kinetic 
function are established by relying on the techniques developed in the first 
part [3]. 

(2) The existence and properties of the classical shocks are also 
established. 

(3) The asymptotic behaviors of the kinetic function both in the neigh- 
borhood of zero and in the large are determined, as well as its limits when 
f i ~ 0  or a--*0. 

(4) These results provide a precise description of the shock curve gener- 
ated by the hyperbolic model (1.1)-(1.3). 

Furthermore, some examples will be studied for which some important pa- 
rameters or functions can be determined explicitly. 

We make here the additional remarks: 

(1) It is easier to determine first the ,dnverse- of the kinetic function. 
The issue of inverting this function in order to recover the kinetic function is 
delicate and is discussed below. 

(2) Our analysis demonstrates that there exists a threshold value for the 
shock strength, I w + - w _  I, below which the traveling wave is always 
classical. 

Interestingly, the property (2) above was also satisfied in the case of a cu- 
bic flux studied by Schulze and Shearer [12]. Note also that the case when only 
viscosity is taken into account is covered by the analysis in the present paper, 
simply by setting a = 0. The case fl = 0 correspond to a singular limit for which 
we refer to [3, 4]. 

An outline of this paper follows. In Section 2, we state some preliminary re- 
sults. In Section 3, we show that the results in [3] apply and yield an inverse 
kinetic function which is globally defined on R. Section 4 is devoted to defin- 
ing the kinetic function from its inverse. Finally in Section 5, we treat a few ex- 
amples for which explicit formulas are available. 
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2 .  - N o t a t i o n s .  

By definition, an equilibrium point for the system (1.9) is a pair (w, z) for 
which the vector field in the right-hand side of (1.9) vanishes. Clearly z = 0 for 
such a point and we can focus on the component w. In view of (1.2), a left-hand 
state Wo and a speed 2 being fixed, there is at most three equilibria w (includ- 
ing Wo, itself) satisfying 

(2.1) g(w, ,~ ) = g(wo, )~). 

Assuming for definiteness that 

Wo>0 

and that the speed remains in the range where three equilibria exist (see be- 
low for the precise conditions), we denote them by w2, wl, and Wo with the con- 
vention that 

(2.2) - 1 < w2 ~< wl ~< Wo. 

We want to study the system (1.9)-(1.10) for a fixed left-hand state w0, by 
using the speed 2 or the right-hand states w+ = wi or w+ = w2 as parameters. 
Throughout this paper, for definiteness, we focus attention on waves propa- 
gating to the left, that is 

)~<0.  

We will need some notation concerning the graph of the function o. In view of 
(1.3), for any w ~ 0 there exists a unique line passing through the point of the 
graph with coordinate w and being tangent to the graph at some other point, 
whose coordinate is denoted by ~ ( w )  ~ w. In other words we have 

(2.3) a '  (~ (w) )  = 
a ( w )  - o ( r  

w - c f ~ ( w )  
for all w;~0, w >  - 1 .  

Note that weft(w) < 0 and, by continuity, ~ ( 0 )  = 0. Thanks to (i.3), the map 

~ :  ( -  1, ~ ) - - ) ( -  1, oo ) is monotone decreasing and onto, and so is invert- 
ible. Its inverse function, denoted by ~ -  ~, satisfies 

a ( w )  - o ( c f  - ~ ( w ) )  
(2.4) a'(w) = for all w ~ O ,  w >  - 1 .  

w - ~-~(w) 
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For each Wo > - 1  we also set 

~(Wo) = - ~/~'(r ~-~(Wo) = - ~/a ' (Wo),  

which, for each fLxed Wo, determine an interval comprising all shock speeds ;t 
in (1.7). 

at(w) 
Setting a(w) - al~w)' we can define the function 

w 

(2.5a) H(wo, w) = I (g(s ,  ;t) - g(wo, ~)) a(s) ds ,  
Wo 

with )~ given by 

(2.5b) 

_ ~ a(w) - a(Wo) 

= ~(wo, w) := w - wo 

It  is not difficult to check that: 

w, W o e ( - 1 ,  ~ )  

i f  W ~ Wo, 

if w = Wo. 

LEMMA 2.1. I f  there exists a traveling wave solution of (1.9)-(1.10) con- 
necting w_ = Wo to some w+ = w,  then necessarily 

H(wo, w) <. H(wo, Wo) = O, 

where the inequality is strict i f  w ~ Wo and fl > O. 

LEMMA 2.2. There exists a funct ion q~ ~ : ( - 1, ~ ) --> ( - 1, ~ ), strictly 
monotone decreasing and onto such that for all Wo ~ 0 

sgn (wo)q~ - ~(Wo) <- sgn (Wo) ~ % (Wo) < sgn (wo) q~(Wo) 

and 

H(wo, w ) = O  and w ~ w o  i f f  w=~o~(Wo).  

Moreover, for all Wo ~ 0 and all w,  we have 

H(wo, w) <0 i f f  sgn(wo) w < sgn(wo) ~ ( W o )  or sgn(wo) w I> sgn(wo) Wo. 

Geometrically, the function ~o~ corresponds to the ((equal-area)) condition 
(the line connecting Wo to w cuts the graph of a in two equal areas). I t  is also 
associated to the maximal  negative entropy dissipation. Combining the above 
two lemmas, we deduce for instance that, if there exists a traveling wave con- 
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necting Wo > 0 (for definiteness) to w, then 

w<~cf~(Wo) or w~>UJo. 

Among these traveling waves, some correspond to classical shock waves 
which satisfy the standard Liu entropy condition, that is for which the line 
connecting Wo to w does not cut the graph of a (except at the end 
points): 

w<~cf-~(Wo) or w>~wo. 

Then, by definition, nonclassical trajectories satisfy 

w e  [r ~ (Wo)]. 

Based on the function ~ we also define a unique function ~ by the two 
conditions (for Wo ;~ 0) r ~ r and 

O(Wo) - a(cfs (Wo)) o(wo)  - o ( c f ~  (w0)) 

Wo - ~ (Wo) Wo - cf~ (Wo) 

Let us also set ~t ~(0) =0  and, for Wo~0, 

[ 
(~(W o ) (7((p b~ (Wo)) 

~ (Wo) = - ~/ 
Wo - cf ~ (Wo) ' 

which is the maximal admissible speed for the range of right-hand states w 
comprised between cf~ (Wo) and cf~(w0), at least. Recall that )~(Wo) is a lower 
bound for the speeds. 

Modulo some trivial rescaling, the traveling trajectories depend only upon 
the ratio 

5 := V~/~e  [o, ~ ] .  

To state our result, for each left-hand state Wo we define the 1-shock set gener- 
ated by the equation (1.9)-(1.10) by 

SJ(wo) := 

:= {w/there is atraveling wave satisfying (1.9)-(1.10) with w_ = Wo and w+ = w}. 

When searching for traveling wave solutions, one first identifies all of the 
(nonclassical) states w2 (see (2.1)-(2.2)). 
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3. - I n v e r s e  k i n e t i c  f u n c t i o n .  

In this section, we strongly rely on the following observation. The system 
(1.9) reduces to the (scalar) model studied in [3], provided the following trans- 
formation is applied in which the index s refer to the ,,scalar case,,: 

(3.1) w•  = - w ~ _ ,  a ( w )  = - a ~ ( - w ~ ) ,  

a~(w) = a~,s( - w s ) ,  i = l ,  2,  b(w) = b ~ ( - w ~ ) .  

Indeed, using (3.1), the equation (1.8) transforms into 

(3.2) a ~ (w~) - as (w~ +) - 4s ( w ~ -  w~ +) = fl sb~ (ws)(w~)~ + aal,~(w~)(ae,s(ws)(ws)y)y. 

The existence and properties of traveling wave solutions for the equation were 
investigated in [3]. One important difference however is that the description in 
[3] yields the kinetic function ,,after applying (3.1)- as a function of the right- 
hand state, rather than of the left-hand state. We will call this function the in-  

verse k ine t i c  func t ion .  The later is more natural when one is concerned with 
solving the Riemann problem for the hyperbolic system associated with (1.1). 
Another source of difficulty in applying [3] is the fact that the diffusion par- 
ameter fl ~ in (3.2) is actually proportional to the shock speed (fl s = -4fl). Fur- 
thermore, without loss of generality and by a straightforward rescaling of the 
traveling wave, we can assume that 

(3.3) a = 1. 

Define first the function 

W 

(3.4) G(w;  w0, 4) := ~(g(s, 4) - g(wo, 4)) a(s)  d s .  
wo 

Observe that ~wG(w;  Wo, 4) = 0 iff (2.1) holds, i.e. w is an equilibrium point. 
Recall that to each w0 and speed 4 (in some interval) we associate (see (2.1)- 
(2.2)) two other equilibria wl and we. 

LEMMA 3.1. F i x i n g  wo > 0 a n d  4 < 0 in  the in terva l  

4 �9 (4 - ~(wo), 4~(w0)), 

the f u n c t i o n  G(w)  := G(w,  Wo, 4) sat is f ies  

(3.5) 
~' (w) < 0 

~' (w) > O 

f o r  all w < w2 or w �9 (Wl, Wo), 

f o r  all w �9 (w2, Wl) or w > w o. 
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Moreover, i f  it �9 (it | (Wo), it~(wo)), we have 

~(wo) = o < ~(w2) < ~ ( w l i .  

I f  it = it ~ (wo) then 

G(Wo) = ~(w2) = 0 < ~(Wl).  

I f  it �9 (it - ~(Wo), it ~ (Wo)), then 

~(w2) < 0 = G(wo) < ~(w~).  

Observe that the functions G and H are related in the following way: 

(3.6) G(w; Wo, it) = H(wo, w) iff it = it(Wo, w). 

In view of Lemma 2.1, one must  have H(wo, w) <<. 0 for the existence of a trav- 
eling wave connecting Wo to w. Thus, from Lemma 3.1 we conclude that 

(3.7) if there exists a trajectory connecting Wo to w2 then it �9 [it -"(wo), it | 

Fix a propagation speed it < 0 and a left-hand state Wo > 0, and search for tra- 
jectories connecting Wo to the associated equilibrium w2 introduced in Section 
2. According to our earlier discussion, we necessarily have 

(3.8) w2e [ ~ -  ~(Wo), ~ (Wo)], it e [it-~(Wo), it | (wo)], 

conditions are assumed throughout this section. 
The eigenvalues of the system (1.9) are found to be 

1 
it - (- f l i tb(w) +- ~/fl2 it 2 b(w)2 + 4al (w)a2(w)( a'  (w) - it2)). 

2al(w)a2(w) 

Specifically (for fl ~ 0) we set 

( ~ 4 a l ( w ) a 2 ( w ) ( o ' ( w ) - i t 2 )  ) 
flitb(w) - 1  + 1 + fl2it2b(w)2 , ~_(w, it, fl) - 2al(w)a2(w) 

(3.9) 
( ~ 4 a l ( w ) a 2 ( w ) ( a ' ( w ) - i t 2 ) )  flitb(w) - 1 -  1+ 

~(w, it, fl) = 2a l (w)  ae(w) fl2it2b(w)2 " 

LEMMA 3.2 (Equilibrium points). Fix  some w_ and it and let w be an 
equilibrium point of  (1.9). 

I f  o ' ( w ) -  it2> 0 then w is a saddle point having two real eigenvalues: 
~ _ < 0 < ~ .  
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I f  a'  (w) - ~2 < O, then Re(p_) and Re(#) are both negative and w is referred 
to as a stable point. I f  furthermore fl2 2 2 b(w) 2 + 4al(w) a2(w)(a' (w) - ~ 2) > 0 
then w corresponds to a stable node with two real negative eigenvalues 
p__ < # < O. Otherwise, i f  fl~~2b(w)2 + 4al(w) ae(w)(a'(w) - ~2) > O, w is a 
stable spiral with two complex conjugate eigenvalues with negative real 
parts. 

We first have: 

THEOREM 3.3 (Existence of nonclassical trajectories). Given two states 
Wo > 0 and w2 < 0 corresponding to a propagation speed 2 satisfying 

f .[ ,~(w2) - a(Wo) 
. . . .  �9 (;t - ~ (Wo) ,  ~ ~ ( W o ) ]  

W 2 - -  W o 

or equivalently ~e(;t~(w2),2oo(w2)], there is a unique diffusion f l= 
= fl(Wo, w2) >1 0 such that Wo can be connected to w2 by a traveling wave solu- 
tion of (3.2). 

The proof given in the scalar case [3] extends immediately by using the 
transformation (3.1). This transformation exchanges the role of wo and w2 in [3]. 

LEMMA 3.4. Define 

zJ = {(Wo, w2) ~R+ x R_/w2~ (~-~(Wo), ~o~ (Wo)]} 

= {(Wo, w2) eR+ xR_/woe(qo~(w2), q~b (w2)] } 

and consider the function 

A ~ (Wo, w2) ~ ( W o ,  w2) 

which associates the (unique) value fl such that there is a (nonclassical) trav- 
eling wave connecting Wo to w2 (Theorem 3.3). 

Then, for each fixed w2, fl(Wo, w2) is a strictly monotone decreasing func- 
tion of wo, mapping the interval (q~(w2), ~ob(w2)] onto some interval 

[0, fl~(w2)) where the upper bound fl~(w2) is finite. 
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Following the terminology in [3], the value fl~ (we) is called the critical dif- 
fusion at We: Nonclassical trajectories arriving at w2 exist only when 

~ --< ~(w2). 

PROOF. The proof is a direct application of the results in [3] and is based 
on the transformation (3.1). We have 

(3.10) fl~(we, Wo) = - )~(Wo, we) fl(Wo, we). 

Fixing we<0 ,  let Wo and Wo* two reals in (~(we) ,  r with Wo<W~'. 
Then, the obvious extension of Theorem 3.7 in [3] for values we < 0 and Wo > 0 
gives us 

On the other hand, 

Zs(we, Wo) > ~Awe, Wo*). 

0 > ) ~ > 2 "  

and then, using (3.10), we get 

~(Wo, we) > ~(wo*, we). �9 

Observe that we do not recover exactly the same properties as the ones in 
the scalar case to the presence of the shock speed in the transformation 

fls(Wo, we) 
/~(Wo, we) - 

I~(wo, w~)l 

Observe that both fls(Wo, We) and I~(Wo, We)l are decreasing functions with 
respect to we, so that no conclusion can be deduced about the monotonicity of 
we-->fl(wo, we). So at this stage, we can only define the inverse kinetic func- 
tion ~fb = ~fb(w ' fl) by inverting the relation 

w0 e (~(we), ~ (we)]-*8 =/~(Wo, we) �9 [o, ~(we)).  

We obtain 

(3.11a) f ie  [0, fl~(we))-->w0 = ~b(we, fl) e (~(we) ,  ~ (we)], 

extended by continuity, according to the scalar case applied on (3.2), by 

(3.11b) f le  [fl~(we), or --->Wo = ~ ( w e ) .  

Observe that ~ b need not be a monotone function of the variable we. To obtain 
the actual kinetic function ~b, we will need to inverse it; see Section 4. 
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Based on [3], it is immediate to state the following results: 

THEOREM 3.5. (The inverse kinetic function.) 
There exists a Lipschitz continuous inverse kinetic function 

~f~: ( -1 ,  ~ ) - - > ( - 1 ,  ~ ) ,  

which satisfies 

(3.12) sgn(w)q~(w)<sgn(w)~f~(w)<~sgn(w)cp~(w) for  all w ~ 0 , w E ( - 1 ,  ~ ) .  

For each right-hand side w ~ ( -  1, ~ ), there exists a (unique) nonclassical 
traveling wave connecting the left-hand value ~f ~ (w) to w.  

The function ~g is defined from ?~ by 

~(w) - a(~(w)) ~(w) - ~(~ ~(w)) 
= for all w ~ 0 ,  

w - ~ ( w )  w - ~ ( w )  

with the constrain 

sgn (w) ~ ( w )  < sgn (w) ~(w) < sgn (w) ~(w) .  

THEOREM 3.6. (The backward 1-shock set.) 
Setting 

S~' (w2) := {w/There is a traveling wave satisfying (1.9)-(1.10) 

with w_ = w and w+ = w2 } , 

we have 

(3.13) 
s~'(w2) = I {~(w2)} u (~(w2), w2] for w~>~o, 

[ [w2, ~ ( w 2 ) )  t2 {~ (w2)}  for  w2 <- O. 

We now discuss the proof of Theorem 3.6 decomposed in two lemmas be- 
low. Given w2 > 0 and fl > 0, we study the existence of the (classical and non- 
classical) traveling waves of (1.9)-(1.10) connecting w_ = Wl to w§ = w2. The 
shock speed 2 here lies in the interval 2 e  (2-~(w2), ~(w2)).  

Recall that, by Lemma 3.4 and for fl < fl~(w2), there exists a unique non- 
classical traveling wave of (1.9)-(1.10) connecting some point w0 = ~p(w2, fl) to 
w2 and associated with a speed 2 = ~(fl, w2) or equivalently, with the notation 
(3.1), ~ = 2~(fl~, w2). 
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LEMMA 3.7. For each fl <fl~(w2) and each speed ~ satisfying ~-~(w2) < 
<;t<),(fl,w2), there exists a traveling wave connecting w_ =w~ to w+ =w2. 

For each fl>~fl~(w2) and each speed ;t-~(w2) < 2  <2~(w2), there exists a 
traveling wave connecting w_ = Wl to w§ = w2. 

PROOF OF LEMMA 3.7. We first treat the case fl <fl~(w2). The region 

-~(w2) <)~ < 2~(w2) corresponds to the region 2,(fl, ,  w2) < 2, < o's(w2). 

On the other hand, the parameter f l ~ = - f l 2 = f l V ~ s  satisfies f l ,>  

> f lV~,(f l , ,  w2)= fiB(w2, ~p(w2, riD. Thus, in view of the monotonicity of the 
function w0 ~f l , (w2,  w0) and Theorem 5.1 in [3] applied to (3.2), there exists a 
connection from w~ to w2. 

Now, if fl>~fl~(w2) then, for all ~(W2)~k s < O's(W2) we have 

Again, in view of the same theorem in [3], there exists a traveling wave of 
(1.9)-(1.10) connecting wl to w2. �9 

LEMMA 3.8. I f  2(fl, W2) < ~ < 2~(W2), then there is no traveling wave con- 
necting w_ = wl to w§ = w2. 

PROOF OF LEMMA 3.8. The proof is similar to the one of the previous lem- 
ma. Suppose that fl < fl~(w2). Then 2(fl, w2) < ). < ).~(w2) corresponds to the 

interval 21(w2) < 4,  < 2,(fl8, w2), and the parameter fl, = flV~-:~ satisfies f18 < 

< fl ~/2,  (fiB, w2) = f18 (w2, ~(w2, fl)) < fl~ (w2, Wo). The proof in the case w2 > 0 
is completed by relying on the monotonicity of the function Wo~fl , (w2,  Wo) 
and on Theorem 5.2 in [3] applied on (3.2). The case w2 < 0 is handled simi- 
larly. �9 

4. - Kinetic funct ion  and asymptot ic  properties.  

This section is devoted to defining the kinetic function from its inverse and 
to deriving several important properties of it. The main result is: 

THEOREM 4.1 (The kinetic function). Consider the traveling wave solu- 
tions of (1.9)-(1.10) under the assumptions (1.2)-(1.3) and that the ratio of 
the dispersion to the diffusion 5 = V~-a/fl belongs to the interval [0, r162 ). Then 
there exist some interval (w~,(5), wm~(5)) containing 0 and a Lipschitz con- 
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tinuous kinetic function 

cf~:(w~(~), w ~ ( ~ ) ) c ( - 1 ,  ~)--*(-1,  ~), 

which is strictly monotone decreasing and satisfies 
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(4.1) sgn (Wo) q~-~(wo) ~< sgn (Wo) cf ~(Wo) < sgn (Wo) ~ (Wo) 

for all wo ~ O, Woe (w~n(6), Wm~x(5)). 

For each Wo �9 ( Wr~ ( 5 ), Wm~x(5)), there exists a (unique) nonclassical travel- 
ing wave connecting Wo on the left-hand side to the right-hand value 
~(Wo). 

In view of Theorem 4.1, a function 

cfl:(w,~n(5), Wm~(5 ) ) c ( -1 ,  : r  :r 

can be uniquely characterized by the conditions 

a(Wo) - a(~l(Wo)) a(Wo) - a(~ ~(Wo)) 
(4.2a) = 

wo - ~(Wo) wo - ~ ~(Wo) 

and 

(4.2b) 

for all 
also 

(4.3) 

sgn (wo) ~(Wo) < sgn (Wo) r < sgn (Wo) Wo, 

Wo~0, Wo�9 Wmax(5)). Observe that (4.1) and (4.2) imply 

sgn(wo) r <sgn(wo) ~(Wo) ~<sgn(wo)wo if wo~0. 

THEOREM 4.2 (The 1-shock set). Under the same assumptions as in The- 
orem 4.1, we have 

(4.4) S I (Wo) = 

= {~ ~ (wo)} u {w �9 ( w ~  (5), Wmax (5))/sgn (W) W/> sgn (w) wo > sgn (w) ~ ;  U(w)}. 

Here ~ ~b is the inverse function of q~ ~, but 

~11 = ~ o~b. 
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THEOREM 4.3 (Asymptotic properties). Under the same assumptions as 
in Theorem 4.1, the shock speed 

;t~(Wo) := ~(Wo, (?~(Wo)) 

is strictly monotone decreasing for Wo ~ (0, Wm~x(5)) and strictly monotone 
increasing for Wo~ (Wmin(5), 0). 

There exists a Lipschitz continuous function x ~: ( - 1, ~ )  --> [0, oo), 

Wo~Xq(wo) such that x~(O)= 0 and 

cf~(Wo)--*~(w0) as  6---) ~ ,  
(4.5) 

q)~(Wo) = cf-~(wo) provided 6K~(Wo) <~ 1. 

Furthermore, the bounds of the interval (0, Wmax((~)) satisfy 

( 4 . 6 )  Wmin(6)--) --1,  Wreak((5) "--) + ~ when 6-->0. 

Other asymptotic properties will be stated later in this Section (Theorem 4.4). 
The function ~ ,  called the kinetic function associated with the model 

(1.1), completely characterizes the dynamics of the nonclassical shock waves of 
the underlying hyperbolic conservation law. Observe that the monotonicity 
conditions derived in Theorem 2.3 ensure the existence and uniqueness of a 
solution of the corresponding Riemann problem. As will become clear below, 
this monotonicity property could be violated in the large, and this is the main 
reason why the kinetic function is only defined on some possibly finite interval 
(Wm~(5), Wma~(6)). More precisely, as we have shown in Section 3, the Lips- 
chitz continuous inverse kinetic function ~p is well-defined globally: 

w2e ( - 1 ,  + ~ ) ~ ~p(w2, fl) = Wo, 

where w0 denotes the right-hand state of the nonclassical trajectory if 
fl<fl~(w2) and, otherwise, F is defined by 

~(w2, 8) = ~ ( w ~ )  

On the other hand, we have set 

for all fl >I fl~(w2). 

(4.7) fl ~(W2) -- fl ~(W2) 
~a ' (~ (W~))  
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already derived the following local behavior of the kinetic 

(4.8) 
- c l w e l  

/5 (we) = o(we) 

if o ' (0)  > 0,  

if o~"(0) = 0,  

where c is a constant defined by 

C = 

al(0) oe(0) o"(0) 

4 V~b(0) 

This is equivalent to saying 

fl~(w2)--c' [w21 if o"(0) > 0 ,  
(4.9) 

= o(w2) if o" (0)  = 0 ,  

with the constant c'= c/a~/-~). 
We deduce from (4.3) that, for each f'Lxed /5 > 0, we have/5 >/5~(w2) in a 

neighborhood of w2 = 0 at least. So ,f(w2,/5) = ~ (w2)  for all sufficiently small 
I w2[. It follows that the inverse kinetic function ~ is strictly monotone de- 
creasing in some interval of the form (w,~n(5), Wm~x(5)) where Wmm(5) < 0 < 

< Wmax(5). 
More precisely, since ~p < cf ~ for w2 > 0, and yJ > ~ ~ for w2 < 0, and thanks 

to the monotonicity property of ~ ,  we can choose w~n(5) and Wreak(5) such 
that for all w0 e ~p((Wr~n(5), Wmax(5))), the set ~- l ({w0})  contains exactly one 
element. The kinetic function ~ then is well-defined in the interval 
(Wmin(5), Wm~(5)) = (~0(Wmax(5)), ~f(Wmi~(5)). The proof of Theorem 4.1 is 
completed. 

Note that, if /5<sup{/5~(w2),w2e(-1, +oo)}, we can always choose 
W,~n(5) and Wmax(5) such that the interval (Wren(5), Wm~x(5)) contains a ,,truly 
nonclassical, region in both intervals (w,~.(5), 0) and (0, W~a~((~)). This 
means that for some w2 we indeed have ~(we) ;~ ~(we) .  Further properties on 
the asymptotic behavior of/5~(w2) when we---) - 1  and we--~ + oo are derived in 
Theorem 4.4 below. 

Finally observe that Theorem 4.2 is just a restatement of Theorem 3.6, ob- 
tained by exchanging the roles played by the states w_ and w+. 

This completes the discussion of the proofs of Theorems 4.1 to 4.3. 
To conclude this section we establish a lower bound for the critical 
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threshold diffusion fib. This result provides some further information on 
the kinetic function in the large, not stated in Seetion 3. 

Now, setting 

b(w) 
d(w) - - -  

al(w) ' 

we have 

THEOREM 4.4. (1) For  all w2 < 0 the following lower bound on the criti- 
cal diffusion holds 

(4.10) fl~(w2) >- T(w2) := - -  
1 S/G(q~(w2)) - G(w2)) 

V2 12~(w2) I (D (~ (w2 ) )  - D(w2)) ' 

where D '(w) = d(w). 
(2) In  particular, suppose that a ' (w )  - A w  a as w--> + oo and d(w) <~ dM, 

and a(w) >-aM, where A ,  a,  aM, and dM are positive constants. Then we 
have 

lim inffl~(w2) I> 
w2 - ~  - 1  2dM(a + 1) 

PROOF. We will rely on the equation (1.9) written in the phase plane 
(w, z): 

dz  
(4.11) z(w) -~w (w) = 

= 12~(w2)Ifl~(w2) d(w) z(w) + a(w)(g(w,  ~ (w2 ) )  - g ( w 2 ,  2~(w2))). 

Fix some values w2 < 0 and fl = fl~(w2) and consider the trajectory z = z(w) 

connecting Wo = ~ ( w 2 )  to w2. The maximal negative value of the function w--~ 
-->z(w) is achieved at some point w* ~ (w2, Wo). So we have z* := z (w*)  = - 
- m a x  Iz(w) l. Integrating the equation (4.5) over the interval [w*, w0], we 
get w 

(4.12) 

z 2. wo 

- --2 + I~(w2)Ifl~(w2) I Iz(w)Id(w) dw = G(wo) - G ( w , ) .  
W, 
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Since G(wo) - G(w  . )  >I 0 we deduce that 

2 
Z ,  

(4.13) 
- -  ~< 12~(w2)Ifl~(w2)Iz, I ( D ( w o ) -  D ( w , ) )  
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(4.15) 

(4.14) I z ,  I<  2 12~(w2)Ifl~(w2)(D(wo) - D ( w 2 ) ) .  

Next, we integrate (4.11) again, but now on the interval [w2, Wo]: 

Wo 

0 <~ G(wo) - G(w2) = 12~(w2)lfl~(w2) ~ I z ( w ) I d ( w )  dw  
W2 

~< I)~(w2)]fl~(w2)]z* I(D(wo) - D ( w 2 ) ) .  

Combining (4.14) and (4.15) we conclude that 

~(wz)/> T(w2), 

which establishes the first item of the theorem. 
To prove the second claim, we observe that 

wo 

aM 
| ((~(w) - a(wo)  - a '  (Wo)(W - wo) ) d w  . (4.16) 2T(w2) 2 t> a'(Wo) d~(wo - w~)2J2 

On the other hand, w2 and Wo = ~o~(Wo) by definition are related by 

(4.17) a(w2) - a(Wo) - a '  (Wo)(W2 - wo) = O . 

Note that when w2 --~ - 1, then we also have Wo = r ~ (Wo) -~ + ~ .  Clearly, if wo 
were bounded, then (4.17) would imply that a(w2) remains bounded which 
is false. Therefore, for sufficiently large w, since a ' ( w ) - A w  a then 
a ( x )  - A x " + l / ( a  + 1) and for all Wo large enough, we deduce from (4.17) 

A a  
(4.18) l a(w2) I - - -  w~ + 1 

( a +  1) 

<~ I;~(w2) Ifl~(w2) I z ,  I (D(wo) - D(w2)  ).  

In other words, we have the following upper bound for the maximal value 
Z , :  
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(4.19) 

We now estimate the right-hand side of (4.16): 

wo wo 

f (o (w) - 0 (w2) - o '(Wo)(w - Wo)) d w  >t I ( o  (w )  - 0 (w2) - a '(Wo)(W - Wo)) d w  

W2 0 

W3 

I> I (o (0) - o (w2) - e'(w0)(w - w0)) d w  

0 

1 
>I - w~a'(wo) 

2 

where ws is characterized by 

(4.20) O(Wo)- ~ ( 0 ) -  o'(Wo)(Wo- w3)= O. 

The latter is equivalent to 

W 3 ~-~ W 0 - -  

For  w0 large enough, we have 

(4.21) w3 N 

o(%)-  o(0) 

a'(w0) 

(% 

W 0 .  
a + l  

The second claim of the theorem is now a consequence of (4.10), (4.16), (4.19) 
and (4.21). �9 

5. - E x a m p l e s  o f  k i n e t i c  funct ions .  

This section focuses on some polynomial stress-functions. On one hand, in 
Theorem 5.1, to illustrate our results and based on the work by Schulze and 
Shearer [12], we describe the properties of the classical and nonclassical tra- 
jectories of (1.1) in the case of the cubic flux-function (1.11) (when also aa (w) = 
= a z ( w )  = b ( w )  := 1). Schulze and Shearer's results are reformulated in a conve- 
nient form by following the proposed framework in Section 2. For  this model 
example, the kinetic function and the 1-shock set are known explicitly. 

On the other hand, in Theorem 5.2, the critical diffusion introduced in our 
analysis in Section 3 is determined explicitly for a class of stress-func- 
tions. 

The condition 

lim a ( w )  = - 
w---~ - 1  
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no longer holds and, in the rest  of this section it is more convenient to consider 
the problem (1.9)-(1.10) on the whole real line, that  is w ~ R. The equations 
(1.9) can be written in the form 

(5.1) awy'y + ~ w ~  = a ( w )  - a(Wo) - ;~2(w - Wo).  

From the definitions in Section 2, it is easily checked that  

and 

r  w - - - ,  cp-~(w)=-2w,  2~(w)=3w2+1, -  2 - ~ ( w ) = 3 w 2 + l ,  
2 4 

~ ( w )  = - w ,  ~U~(w) = 0 ,  2 ~ (w )  = w 2 +  1.  

For  2 < 0 such that  1 + wo 2 ~< ;t 2 < 3Wo 2 + 1 and w0 > 0, there exist exactly 
two solutions wl < w2 (plus w0) of the cubic equation 

o ( w )  - o ( w o )  = w 2  + w o w  + Wo 2 + 1 

w - w o 
(5.2) )2 = 

given explicitly by 

(5.3a) 

and 

(5.3b) 

1 + ~/4)~ 2 3wo~ _ 4 ) Wl---- ~ ( - - W  0 

(5.4a) 

(5.4b) 

with of course 

1 
w2 = - ~ (w0 + ~/422 - 3w02 - 4). 

Setting z = uy and using the fact that  the right-hand side of (5.1) vanishes ex- 
actly at the points Wo, wl and w2, the equation (5.1) is found to be equivalent to 

W y ~ Z ,  

O~Zy : -- ~ Z  -~ ( W  -- W o ) ( W  -- W i ) ( W  --  W2)  , 

lim w(y) = w• lim z(y) = O. 
y--)_+ ~ y--~ _+ oo 

We are going to derive explicit formulas for the nonclassical shocks and 
the kinetic function in this case. From the analysis in Section 2, we know that  
the solutions w ( y )  of (5.4) connecting wo to w2 are strictly monotone functions 
of the variable y.  Combining the equations (5.4a) and (5.4b), in the phase plan 
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(w, z) we can write 

(5.5) 
dz 

a z ( w )  ~ (w)  + ~ 4 z ( w )  = ( w  - Wo)(W - w l ) ( w  - w 2 ) .  

For  simplicity in the notation, we take a = 1. Following [12], we search a trav- 
cling wave solution of (5.5) in the special (parabolic) form 

(5.6) z ( w )  = k ( w  - Wo)(W - w2) .  

Plugging (5.6) in (5.5), after some simplification we see that  necessarily 

1 
(5.7a) k - 

and 

(5.7b) 

f14 = k(wo + w2) Wl 
k (1) 

~- -- k--I- ~-  Wl--~ - -  v ~ W l .  

Then, from (5.3) and (5.7b) we get a relation between the diffusion, the left- 
hand state, and the shock speed, indeed: 

3 
(5.8) ~ = ~(Wo, 4) := - -  

2h/-2~ 
(Wo-~v/442 - 3 w ~ - 4 )  

which is defined as long as 4 < 0 and 1 + Wo 2 ~< 4 2 < 3Wo 2 + 1. One can also ex- 
press 4 in term of the left- and right-hand states, that  is using (5.2) in (5.8) we 
have equivalently 

(5.9) fl = fl(Wo, w2) " -  
3 ~/4w~ + 4 Wo w2 + w0 2 - 4 - Wo 

2 V ~ ~v/wo 2 + Wo w2 + w2 2 - 1 

The formula (5.9) provides the diffusion for which two given states can be con- 
nected by a nonclassical traveling waves. 

To describe the kinetic function, we now fix some value of diffusion (recall 
that  the capillarity has been normalized to be one) and we distinguish between 
two regimes. 

Firs t  of all, considering the equation (5.8), the range of fl, for which a non- 
classical traveling wave exists, is determined by letting the speed 4 varies in 
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the  r e l evan t  in terva l  1 + Wo 2 ~< 4 2 < 3Wo 2 + 1. Precise ly  we  find t ha t  

(5.10) 0 ~<8 < 3wo =: fl_~(Wo). 
~r w~ + 1 ) 

On the  o the r  hand,  for  8 fixed in the  above interval  we can inverse  the re la t ion 
(2.19) and obtain  the  quadra t ic  equat ion  

(9 - 2fl 2) 2 2 + 3 V~flWo2 - 9(Wo ~ + 1) = 0 

and so, since ), < 0, 

(5.11) 2 = 9.( 8 ,  Wo) = 
3 f lWo+~/(18-3f l  2 )Wo 2 + 1 8 - 4 f l  2 

V~  9 - 2fl 2 

Us ing  Wo + Wl -{- W2 ---- 0 and (5.7b) we obtain also 

w2 = - Wo - wl = - Wo + ~ 8,t �9 

Final ly  the  kinetic relat ion is found to be 

(5.12) cfb(Wo, fl) = 

wo(9 - fl 2) + fl~r - 3fl 2) w~ + 18 - 4fl 2 3Wo 
= w h e n  fl ~< 

282 - 9 ~V/2(3Wo 2 + 1) 

Second, for  , , large ,  value of the  diffusion p a r a m e t e r ,  t ha t  is if (5.10) does  

not  hold, t he r e  is actual ly  a connect ion be tween  Wo and w2 = wl = -Wo/2 (see 
[12] and the  discussion on classical t ra jec tor ies  in Sect ion 4). In  this case, the  

kinetic function is trivial: 

(5.13) ~b(wo,  8)  = - 2wo when  fl/> 
3wo 

~r e + 1) 

Obse rve  t ha t  the  kinetic function (5.12)-(5.13) is def ined on the  whole real  
line and is globally monotone  dec reas ing  in Wo, for  each ft. F u r t h e r m o r e ,  since 
a = 1 we  have  fl = 1/5 and we can check direct ly  t ha t  

(5.14) r = Cb(Wo, 8)--* 

1 
cp-~(wo) = - 2wo when  fl = - -  --> r 

5 

cf~(wo)  = - w o  when  fl = _1 - -~0 .  
5 
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As in Section 2, we denote by r 2b the inverse function of ~ b, and 

Define also 

X = (q)5 I)-1 = ~ b  o (q)16)-1. 

On the other hand, since ~ t ( W o ) = - W o - ~ b ( w o ,  fl), and using (5.12) and 
(5.13) we have 

~(Wo) = [ 

~2Wo +~S/i18-3/~2) Wo 2 + 18 - 4fl 2 
9 - 2 f l  2 

when fl ~< 

Wo when fl I> 

3Wo 

X/2(3Wo 2 + 1) 

3Wo 

~v/2(3Wo 2 + 1) 

Now, inverting the previous relation we obtain 

w o 1 
- - -  + - - V ( l S - a f i 2 ) w ~ - 4 f l  z whenfl~< 

2 2fl 
(q91)-I (W0) = 

Wo when fl~> 

3 w o 

~V/2(3Wo2 + 1) 

3Wo 

V2(3 wo ~ + 1 ) 

Finally, using that X(Wo) + Wo + (~l)-l(wo) = 0 we obtain 

Wo 

T 
Z(Wo) = 

- 2Wo 

1. V(18 - 3z ~) wo ~ - 4z ~ 
2fl 

when fi ~< 

when fi I> 

3Wo 

~ / 2 ( 3 W o  2 + 1 )  

3Wo 

~/2(3Wo 2 + 1) 

THEOREM 5.1. The 1-shock curve issuing from the point Wo is given by 

(5.15) S~(wo)=I ( -~ 'x (w~176176  + ~ )  if  w~ 

t ( -  :r Wo] U {~(wo)}  U (Z(Wo), + :r if  wo<O,  

PROOF. We restrict attention again to the case wo > 0, since the case 
wo < 0 is entirely similar. Any right-hand state w > 0 is associated with the 
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nonclassical left-hand state ~ :=of S b ( w ) <  0. But (5.7b) reads in this case 

3 3 

which implies ~ $ ~(w) < 0 and then ~ $ ~(w) < Wo. 

Now, if w ~< 0 the proof is not so direct, since ~ > 0. First,  we note that, for 
all fl > 0 fixed, there  exists a unique 2 '  < 0 such that  

3 
(5.16) f12' = - - -  Wo. 

Consider first the case that fl < 3 _ _ w ~  . Then 2 '  must  satisfy 

(5.17) A '2 > a '  (Wo) = 1 + 3Wo 2. 

We deduce that  there  exists a unique Wo' > 0 such that  there  exists a non-clas- 
sical connection from wo' to w2' < 0 with wl' = ~](Wo') = Wo. 

Now, if fl t> 3__ wo , there  is no A' < 0 satisfying (5.16) and (5.17). 
V~ V3wo~ + 1 

But, setting wg=wo and w2'=cp~(wo), we can write w{=cf](wg)= 
= ~ ~ n(w2') = Wo' = Wo. 

Finally, in all of the cases, we have 

(5.18) cf$ ~(w) = - w  - ~$b(w)  -- - w  - ~ .  

Now, by differentiating the above equation, we obtain 

1 - 1  
(5.19) ~ ~ ~' (w) = - 1 - - -  (1 + ~ ~' (~)) .  

By a straightforward calculation based on (5.12) and (5.13), we obtain that, 

for all fl > 0, 

(5.20) q9 ~' (~) + 1 = 

f -1 
2 f l 2 - 9  

i f f l ~ > - -  

f l ~ ( 1 8 - 3 f l  2) 
+ i f p < - -  

( 2 f l 2 - 9 )  ~v/(18-3fl  2) ~ + 1 8 - 4 f l  2 

Then, it is clear that, in all of the cases, 

3 

V3 +I 
3 

V ~ ~/3 ~ +  1 

(5.21) ~ ~' + 1 < 0 ,  
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which also implies 

(5.22) ~f $ ~' (w) < 0 .  

Finally, thanks to the last property, we deduce that ~o ~ ~(w) > Wo = ~ ~ W(w2' ) 

iff w < w2' = X(w0). �9 

Case of the functions in the form: ak, . (w)  = san(w) Iwl" + kw,  a > 1 and 
k I> 0. Functions a and b are taken in the simple form a(w) = b(w) = 1 This 
sor t  of functions defined on the whole real line seems to be very  interesting, 
since 

(5.23) ao, a ( t W )  = t" ao, a(W), 

This property leads us to the main resul t  

THEOREM 5.2. 

(5.24) 

t > O  

The critical diffusion fl~, ~(w2) is given by 

(a - I) 
[ w o l  ' 

~ ' a (W2)  = Ca V a  Wo ] -  ] - - a  1 k + 

where wo = q)~(w2) and Ca is a positive constant that only depends on a. 
Therefore, for any fl > Ca, the model does not admit nonclassical traveling 

waves. 

PROOF. Given the function ak, a and w2 < 0 (the case w2 > 0 being t reated 
similarly), one can easily see that w0 = ~ ( w 2 )  is independent of k i> O. So, we 
can rewrite the equation (1.8) in the form 

(5.25) - a ~ ,  a(Wo)(W-Wo) + a k, ~ ( w ) - a  ~, .(wo) =~ ~, .(w2) fl~, .(w2) wy + awyy. 

Fixing a > 1, we set 

= - ~  

We can rewrite (5.25) in the form 

(5.26) -a'k, .(Wo)(W - Wo) + ak, a(w) - ak, .(wo) = -fl~, kwy + awyy. 

Now, since for w �9 R 

-a'k, .(Wo)(W - Wo) + a k, a(w) - ak, .(Wo) = 

= -a'o, .(Wo)(W - Wo) + ao, ~(w) - ao, a(Wo), 
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we obtain that  
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(5.27) fl~,k = fl~,0. 

Consider now the transformation 

W ---- ~ ) W  0 . 

By setting a = a o , , ,  we have 

The equation (5.26) becomes 

= Wo" 

(5.28) - a '  (1)(~ - 1) + a(~)  - a (1 )  = Wo 1 - " (  -fl~, kWy + a~yy) .  

By the transformation y ~ yw(o a-  1)/2, the last equation becomes 

(5.29) - a '  (1)(~ - 1 )  + a (~)  - a (1 )  = _atp, s, kVJ0""(1-a)/2gT,e,~y + a~%y. 

On the other  hand, the parameter  ~ = w-A is a negative constant indepen- 
W0 

dent of w2 with Wo = ~o~(w2), and is the unique negative solution of 

(5 .30)  I x l  a - 1 _ a .  
I x l + l  

We deduce that  

( 5 . 3 1 )  fl~, k = Ca  w ( a  - 1)/2 

where, Ca > 0 is a constant independent of Wo. Finally, using (5.27), (5.31) and 
the expression of a~, a(WO) we obtain (5.24). 
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