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I n t r o d u c t i o n  

Fluid dynamics is concerned with the flow of liquids and 
gases. Fluid flow is everywhere around us: in rivers, in 
the atmosphere, within our bodies, in plants, in engines 
and pumps, around moving bodies like fish, birds, ships, 
airplanes and cars. Thus fluid mechanics is an important 
area of study for engineers and scientists. Bernoulli's 
equation is among the first things, or sometimes the only 
thing, a person learns about fluid mechanics. In this 
article we look at this equation, first given in statement 
form by Daniel Bernoulli in 1738, and in a mathematical 
form by Leonhard Euler only later in 1755. 

A fluid is composed of molecules moving randomly. To 
fix ideas let us consider gases. (Many of the conclusions 
regarding nature of forces hold equally for liquids, even 
though the mechanisms at a molecular level are differ- 
ent in gases and liquids.) A very small volume of gas 
contains a large number of molecules. For example, at 
ordinary conditions of temperature and pressure, air in a 
box one micron in length contains about l0 s molecules. 
The molecules move randomly and rapidly - the average 
molecular speed is about 300 m/s  (about 1000 kmph). 
Thus a gas can be considered to. be a large number of 
rigid balls moving and colliding against each other. The 
random motion and collisions transfer momentum, and 
cause pressure and viscous stresses (friction) in fluids. 

One way to solve fluid mechanics problems is to start 
at the molecular dynamics level. However, the majority 
of flows we are interested in are at scales of a few mil- 
limeters (blood flow in an artery) to maybe a few kilo- 
meters (wind systems in the atmosphere) - much larger 
than the intermolecular spacing. Thus it makes sense to 
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solve the problem at a larger scale than  the molecular 
spacing, bu t  take into account the molecular  motion in 
some way. 

Here we come to an impor tan t  concept of a fluid parti- 
cle. A fluid particle is a very small, imaginary blob of 
fluid. It is big enough tha t  it contains a very large num- 
ber of molecules but  still much smaller than  the scales 
over which changes (for example, in velocity) occur; O. 1 
m m  is a good size to imagine. The velocity at a point 
in the  fluid will be the  velocity of the particle which will 
be the average velocity of all the molecules in the parti- 
cle. Of course, fluid is one continuous medium; only we 
imagine the fluid to contain many many  contiguous fluid 
particles to aid our understanding.  We can also imag- 
ine an isolated fluid particle surrounded by the rest of 
the fluid (Figure A). Looking at the macroscopic picture 
and t reat ing the fluid as continuous instead of discon- 
t inuous, which it is at a molecular level, is called the 
cont inuum hypothesis.  It must  be remembered  tha t  the 
molecular  motion is not neglected - infact the exchange 
of molecules between a fluid particle and its surrounding 
fluid contributes to viscous stresses and heat  conduction.  
In this article most  of the discussion is in terms of the 
mot ion of fluid particles. 

Motion in a fluid is usually set up by motion of some 
solid wall - rota t ing fan blades set up a breeze or walking 
sets the air around you into motion. The motion of the 
wall constrains the fluid next to the wall to move in a 
certain way. Fluid away from the wall in turn  is set into 

Fluid ! ~ p c L r t i c l e  
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Figure A. A fluid particle is 
a verysmallimaginaryblob 
of fluid, here shown sche- 
matically in a glass of wa- 
ter. The dots indicate mol- 
ecules which move in and 
out of the particle. 
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Figure B. Motion of a line of 

five disks due to a force = 

2.5 N applied at one end. 

Each disk has a net force = 

0.5 N. For example, the sec- 

ond disk has a force of 2 N 

on one side and 1.5 N on 

the other side. 

mot ion  t h rough  the  action of pressure  and viscosity. T h e  
na ture  and ex ten t  of the  mo t ion  depends  on the  detai ls  
of the  mot ion.  For example,  f rom exper ience we know 
tha t  a thin  flat p la te  (a knife) in water  moving  in its own 
plane causes very litt le d i s tu rbance  compared  to when  
the  pla te  is moved normal  to its plane.  A pe r t inen t  

quest ion is wha t  causes the  fluid to move. How does ~a 
fluid part icle  get informat ion  tha t  it should move? Like 
rigid body  mot ion  fluid part icle  m o t i o n  is governed by 
Newton 's  second law, F = m a .  Therefore  there  mus t  be 
some force on the  fluid part icle  to make  it move. We 
will see later  wha t  these forces are. 

M o t i o n  o f  D i s k s  

First  we t ry  to unde r s t and  the  n a t u r e  of fluid m o t i o n  
wi th  two examples.  Consider  a row of five (the pre- 
cise number  is not  impor tan t )  init ial ly s ta t ionary  car- 
t om coins (disks) each with mass  M = 50 gin, t ouch ing  
each other,  lying on a horizontal  surface and cons t ra ined  
to move in a slot (Figure B). Suppose  we apply  an inline 
force of say F --- 2.5 Newtons  at one end to the  row of 
disks. The  row will move wi th  an accelerat ion = F / 5 M  
= 10 m / s  2 . Each disk in the  row will have this same  

acceleration. Thus  the  force on each disk will be F / 5  = 
0.5 N; F is equally divided among  the  five disks. 

The disk closest to the applied force will have on one 

side the 2.5 N force, and on the other side a force from 

the second disc = 2.0 N and in the opposite direction. 

The second disk will have a force of 2.0 N on one side, 

will use 0.5 N of this force for its own acceleration and 

2.0N ~" 1.5N 
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t ransmit  1.5 N (see Figure B) to the third disk, and so 
on. The  impor tan t  point  is tha t  since the disks are con- 
s t rained to be in contact  all the time, force and motion 
are t ransmi t ted  from one' disk to another.  

Now consider a more complicated siuation. Instead of a 
parallel slot, we have two curved walls on a horizontal 
surface to form a narrowing passage. The passage is 
completely filled with disks (Figure C). The wider end 
can hold, say, nine disks along the edge and the  narrower 
end can hold, say, three  disks along the edge; width of 
the  wider end is three  ~times tha t  of the narrower end. 
Let us say new disks are being pushed into the wider 
end at the ra te  of nine disks per second (Qin). Since the 
passage is packed, some disks which were earlier in the 
passage will have to leave from the narrower end and the 

ra te  of leaving Qout --- Qin, i.e., nine disks per second. 
(Qout cannot  be less than  Qin because then disks will 
accumulate  in the passage which cannot  happen as the 
passage is assumed to be packed; if Qout > Qin, then 
voids 
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Figure C. Motion of disks 
within a passage. Disks are 
being fed at a steady rate 
on the left-hand side and 
leave on the right.hand 
side. Nine disks (dotted) on 
the left-hand side which 
were on the outside (a) en- 
ter the passage at a later 
time (b); during this time 
the same number of disks 
(shaded) leave on the right- 
hand side, but with three 
times the velocity. 
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voids will be created in the passage.) What  about the 
velocity of the exiting disks in comparison with the ve- 
locity of the entering disks? Since the exit is three times 
narrower than the entrance, the velocity at the exit has 
to be three times the velocity at the entrance (FigureC). 

As in the example with a single row of disks, here also 
motion and force at one point is transferred to disks at 
other points: pushing disks in at the wider end causes 
disks to leave at the narrower end and obviously causes 
motion of disks in between as well. The geometry of 
the walls not only determines the motion adjacent to 
the walls (that disks cannot enter a wall but atmost can 
slide along it) but influences motion away from the walls 
as well. 

Continuous feeding of disks means that a disk which is 
at the entrance now will at a later time reach the exit. 
On the way its velocity (magnitude and direction) con- 
tinously changes. These changes in velocity of the disk 
are due to forces from adjacent discs and, if in contact 

with one, f rom a wall. 

If the disks are being fed in at a constant rate and we 
focus on some fixed point in the passage then the veloc- 
ity of disks passing through that point will not change 
with time. When the velocity at any fixed location does 
not change with time it is called steady motion. How- 
ever, if we focus our attention on a particular disk then 
of course as we have seen its velocity, in general, can 
change with time. Thus acceleration takes place even 
in steady motion, because the disk is moving through 
different points in space and the velocity changes with 
location. If the feed rate changes with time then the 
velocity at any point changes with time (and position) 
and we have unsteady motion. 

S t r e a m - t u b e s  and  S t r e a m l i n e s  

Fluid flow is somewhat like the motion of the disks. 
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Fluid particles are like the disks, and like them transmit 
motion and forces to different points in the fluid. Pres- 
sure is mainly responsible for this transmission. (As we 
know pressure on a surface is normal force per unit sur- 
face area. In a non-viscous fluid, pressure at a point 
is the same in all directions.) It must be remembered 
that unlike disks, fluid particles can deform, and also 
there is exchange of molecules between contiguous fluid 
particles which is absent in the case of disks. Also as 
mentioned earlier we imagine the existence of fluid par- 
ticles to aid our understanding; in reality it is, forgetting 
the molecules, one continuous medium. 

Fluid flow is usually described in terms of the velocity 
(three components in general) with time at all points 
in space. The velocity at a point corresponds to the 
velocity of a fluid particle positioned at that point at 
that time. Velocity is with respect to some reference 
frame. Unlike in rigid body motion where the velocity 
of a particular body is given as a function of time, in 
fluid mechanics the velocity is given at fixed points as a 
function of time; any given point will see different fluid 
particles pass through it. 

Like the passage through which the disks moved, in fluid 
flow we can imagine a fictitious tube through which the 
fluid moves and across whose walls there is no flow. Such 
a tube is called a stream-tube. We can imagine a fluid 
flow to be composed of a large number of streamtubes, 
touching each other. If we assume the fluid to be in- 
compressible, i.e., density is a constant, then the volume 
flow rate (in litres per minute, for example) entering a 
tube = volume flow rate leaving the tube = Q. At any 
cross-section, Q = (velocity) • (crossectional area of the 
tube); velocity ,,~ 1/crossectional area. 

If we shrink a stream-tube to a line we get a streamline. 
A streamline gives the direction of velocity: the tangent 
to the streamline at any point is the direction of the 
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Figure D. Streamlines, in 
f low over a streamlined car 
model Divergence of stre- 
amlines, as near the front 
of the car, indicates lower 
velocity and higher pres- 
sure. Convergence o f  
streamlines near the top 
indicates higher velocity 
and lower pressure. 

velocity at that point. Fluid flow is often depicted using 
streamlines. Figure D shows streamlines, in flow past 
a stationary car model. Figure E shows streamlines in 
flow past an airfoil. In the pictures the space between 
two adjacent streamlines is a stream-tube. A streamline 
picture gives important information about the flow field. 
Besides the direction of fluid velocity, the magnitude of 
the velocity can also be visualized. 

Narrowing of a stream-tube, or equivalently streamlines 
bunching close together, indicates an increased fluid ve- 
locity as does the widening of a tube indicate reduced 
velocity. We will see later that from the streamline pic- 

Figure E. Streamlines over 
an airfoil. Lift is produced 
by lower pressure (closely 
spaced streamlines) on the 
top and higher pressure 
(widely spaced stream- 
lines) at the bottom. 
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ture we can get an idea of the pressure variation in the 
flOW. 

S t e a d y  and  U n s t e a d y  Flow 

Steady flow is one in which the fluid velocity at any 
given point does not change with time. In unsteady 
flow, fluid velocity is a function of time. Flow around 
a body, say a bus, moving with constant speed in still 
air, gives an interesting example of steady and unsteady 
flow. To a passenger in the bus (reference frame fixed 
to the bus) the flow is nearly steady. If he stuck out his 
hand he would feel a nearly constant wind speed. Were 
he able to see, he would see fluid particles going past him 
(Figure F). To a roadside observer (reference frame fixed 
to the ambient), however, the flow is unsteady. When 
the bus is faraway there is no flow; as it comes near there 
is gust of air. The roadside observer would measure 
a velocity which changes with time. A fluid particle 
(which is stationary initially) is set into motion as the 
bus comes near, gets carried forward some distance, and 
comes to rest again as the bus moves away (Figure G). 
The fluid particle behaves like a piece of paper lying on 
the road. It must be made clear that the flow is exactly 
the same in the two cases. Only the references or points 
of view are different. 

In steady flow the path of fluid particle will be along a 
streamline; and the streamline picture does not change 
with time. In unsteady flow particle paths in general 
a r e  different from streamlines. 

RnOleMtCl I AUg.st 2000 

Figure F. A particle at dif- 
ferent times as observed 
by a passenger in a bus. 
The line is the path taken 
by the fluid particle. 
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Figure G. The motion of a fluid particle as observed by a roadside observer as a bus goes past the 
observer, a) The initially stationary particle moves to the side and front as the bus approaches. The 
arrow indicates only direction of motion, and not the magnitude of velocity, b) The fluid particle is 
moving laterally. Note the particle has moved relative to its original position, which was on the 
dotted line. c) Particle motion is in opposite direction to that of the bus. d) The particle becomes 
stationary again. The loop indicates the path taken by the particle. 

Bernou l l i ' s  E q u a t i o n  

Figure H. S is the coordi- 
nate along the streamline. 
Velocity U of a fluid particle 
is tangential to the stream- 
line at that point. 

5 

Bernoulli's equation or theorem can be derived by either 
applying Newton's second law to a fluid particle or by 
using the equation of energy (First law of thermodynam- 
ics). Bernoulli's equation is derived assuming ideal flow, 
i.e., viscous forces are neglected. To obtain Bernoulli's 
equation we need expressions for acceleration and forces 
on a fluid particle. These are derived next. 

Acce l e r a t i on  of a F lu id  Pa r t i c l e  

Consider a fluid particle moving with velocity U along 
a streamline. Distance measured along the streamline is 
S (Figure H). A fluid particle which is at some location 
can accelerate due to two reasons. One is if fluid velocity 
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at that  location is changing with time (unsteady flow) 
(Figure I b).Call this acceleration at. This acceleration 
is like the acceleration of the disks in our first example 
or in the second example if the feed rate was changing 
with time. 

The second way a fluid particle can accelerate is when it 
goes from a location where the velocity is one value to 
another location where the velocity is different; velocity 
changes along the length of the tube through which the 
particle is moving (Figure I a). Call this acceleration as. 
If the stream-tube is narrowing at some point, then the 
fluid particle will accelerate at that point; if the tube 
is widening then the fluid particle will decelerate. This 
acceleration is like the acceleration of the disks moving 
in the narrowing passage. 

In general, acceleration will contain both terms at and 
as. The expression for acceleration along the flow direc- 
tion is (see Box 1 for derivation): 

ou ou ou o(u2/2) 
a = a + + a + -  ot + u o - ~ -  0--7 + os  (1) 

Figure L Change in velocity ( A U) of a fluid particle as it moves from point I to point 2. The graphs 
below each figure indicate the variation of fluid velocity in the stream-tube, a) Velocity at a point 
does not change with time, but velocity varies along the stream-tube. ~ U  = A U  s . b) Velocity is 
constant along the stream-tube, butvaries with time. A U=A U t . c) Velocityvaries in space and time. 

A u  = b u  s + A u , .  

~20-"~ t§ . : ~  

} " ,  
A| e A (D@ B A (D~ e 

(ct) (b) (c) 
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B o x  1. A c c e l e r a t i o n  o f  a F l u i d  P a r t i c l e  

We derive the acceleration along the flow direction of a fluid particle moving 
in a thin s t ream tube.  Coordinate along the s t ream-tube  is S. Consider three 
cases: 1) Steady flow in a s t ream-tube whose cross-sectional area varies along the 
tube;  fluid velocity changes along the tube  but  not with time. 2) Constant  area 
s t ream-tube;  velocity changes with time but  is constant  along the s t ream-tube.  
3) Fluid velocity changes both  along the tube  and with time. 

Case 1 is shown Figure Ia. The s t ream-tube extends from point A to point B, and 
the cross-sectional area continuously reduces from A to B. So the fluid velocity, 
shown schematically in the figure, increases from A to B. Now consider a fluid 
particle which at t ime -- t is at point 1 and its velocity is U ; a short time, 
t-bAt, later the the  fluid particle moves a distance A S  ---- U At  to point 2 in the 
tube.  We come to a most important  point: since the particle has moved to a new 
position, its velocity changes to a value, (U q- AUs ), corresponding to the new 
posit ion 2 (see Figure Ia). (Subscript s denotes case when changes are due to 
change in particle position.) In the example we are considering the s t ream-tube  
narrows and velocity increases (AUs > 0 ); if the s t ream-tube were to widen then 
AUs < 0. Acceleration in the flow direction is given by as ~- AUs / At .  Writing 
A t  ~_ AS~U,  we get as = U A U s /  AS. In the limit At -~ 0 , we get 

OU 0U2/2 

as = U OS -- OS 

In Case 2 (Figure Ib ) fluid velocity changes with time but  not along the stream- 
tube.  Consider again the motion of a fluid particle from point 1 to point 2 in 
t ime At. At the initial t ime all the fluid particles in the s t ream-tube  have the 
same :velocity = U, and at the later time all the fluid particles have velocity ---- 
U + AUt (see Figure I b). (Subscript t denotes case when changes are due to 
changes in time.) Acceleration is thus given by at ~- A U t /  A t  , and in the limit 
At  ~ 0 we get 

OU 
a t  

Ot 

In general fluid velocity can change both  along the tube  and with t ime (Case 
3). The fluid velocity is shown schematically in Figure Ic. AUs and AUt are 
non-zero. Fluid acceleration is the sum of at and as and is 

OU OU OU 0U2/2 
a ~- at -b as = q - U - -  - -  - -  - t -  ~ 

Ot OS Ot OS 
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The term a8 is called convective acceleration. Note that 
it is the product of how fast the particle is moving (U) 
and how fast the velocity is changing in space ov (~-~). It 
is something like when climbing a hill, the rate at which 
you gain altitude depends on how fast you walk and how 
steep the slope is. The above acceleration is along the 
stream-tube or flow direction. When a fluid particle is 
moving along a curved path there is also a component 
of acceleration component normal to the flow direction 
- the centripetal acceleration. The acceleration along 
the stream-tube is due to change in magnitude of the 
velocity of the fluid particle. Centripetal acceleration is 
due to change in direction of the velocity. For Bernoulli's 
equation we are concerned only with acceleration along 
the flow direction. 

F o r c e s  o n  a F l u i d  P a r t i c l e  

Usually three types of forces are present. One is the 
weight of the fluid particle. The other two are pres- 
sure and viscous forces, both molecular in origin. Again 
considering the case of a gas, pressure is caused by 'bom- 
barding' of the molecules on a surface. In analogy with 
the motion of disks we considered earlier, pressure is like 
the normal force between discs. Viscous force is like the 
friction force between adjacent disks. However, unlike in 
the disks case where friction can exist even when there is 
no motion, in a fluid viscous force is present only when 
there is relative motion between adjacent particles and 
is proportional to how fast these particle slide past each 
other. Bernoulli's equation is derived considering only 
the forces due to pressure and gravity. 

Consider a small fluid particle of length AS, cross-sec- 
tional area A, and density p (Figure J). Its mass m = 
pAAS .  Z direction points upwards, and flow direction 
makes an angle t~ with the horizontal plane. The force 
on a fluid particle in the flow direction due to its weight 
is (see Box 2). 
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Figure J. Forces on a fluid 
particle: weight (W) and 
force due to pressure dif- 
ference Ap. 

Side B 

~ + .aP 

,p 

A dZ F c =  - m g s i n O = - p g  A S  ds .  (2) 

Pressures  on the  two sides of, t he  par t ic le  a re  different  

b y  A p  (Figure J).  T he  force in t he  flow di rec t ion  d u e  

to  this  p ressure  difference is (see Box 2). 

B o x  2. F o r c e  o n  a Fluid Part ic le  

Consider a very small (inflnitesmal) fluid particle, length = AS,  tha t  is within a 
s t ream- tube  (Figure J). The flow direction makes an angle 0 with the horizontal 
plane. Side A of the fluid particle has area A and on it the pressure is P ;  side 
B has area A + AA and on it the pressure is P + A p .  The length of the fluid 

dZ particle is AS,  and the elevation from A to B changes by AZ.  -~- =sinO.  

The volume of the fluid particle _~ A AS, and its weight is pgA AS, where p 
is fluid density and g is acceleration due to gravity. Thus the component  of the 
weight acting in the flow direction S is 

FG ~-- -pgAASsinO = -pgAAZ.  

The force in the flow direction on the fluid particle due to pressure is 

Fp = - ( P  + A P ) ( A  + AA) + PA + force due to pressure on side wall. 

For small A S  it can be shown force due to pressure on side wall -- - P A A .  
Therefore 

F p = - A A P = - A A S  OP. 
OS 

Neglecting viscous forces, the total  force on the fluid particle = F p  q- F G  . 
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9 p  
Fp = - A A P  = - A A S - "  . (3) 

OS 

Pressure increasing with S tries to slow the particle 
down, and pressure decreasing with S tries to accelerate 
the particle. 

Bernoulli's Equation 

Neglecting viscous forces (ideal flow) we have pressure 
force and weight producing the acceleration of the fluid 
particle: at + as= (FG+Fp)/m. Substituting for the 
terms using (1),(2) and (3) and taking the limit of the 
particle size going to zero, we get the differential equa- 
tion of motion along a streamline 

OV 0(U2)/2 1 OF dZ 

Ot + OS p OS + g d S  

Assuming density is a constant and integrating between 
two points 1 and 2 along a streamline we get the Berncralli 
equation for unsteady, incompressible flow: 

~ 2 0 U d s  U2 2 P2 U12 P1 
+ - T  + - -  + gZ2 = + - -  + gZ1.  

p 2 p 

U1, P1, and Z1 are respectively the velocity, pressure 
and elevation at point 1 on the streamline, and U2, P2, 
and Z2 are respectively the velocity, pressure and ele- 
vation at point 2 on the streamline. The first term on 
the left hand side is related to change of velocity with 
time of all the fluid particles lying in the stream-tube. 
The velocity terms (0"2 2 and U12) are related to change 
in velocity along the streamtube. These two velocity 
changes are caused by pressure and gravitational forces. 
By integrating we are summing the F = ma equation 
over the string of particles in the streamtube (Figure K) 
(as we did in the case of the row of disks) and the result 
is Bernoulli's equation. 
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Figure K. Bernoulli's equa- 
tion is obtained by sum- 
ming of Newton's second 
law along the string of fluid 
particles between points 1 
and 2 in a stream-tube. 

2 

i~ Streamline ! 

For steady flow the first term on the left hand side is zero 
and we get the familiar and elegant Bernoulli equation: 

U2 2 + P2 § Z2 = v12 -~- P1 .~_ Z1" 
2g pg 2g pg 

Writ ten this way all the terms have dimension of length.  
The three terms on either side of the equat ion are veloc- 
ity head, pressure head and gravity head. Another  form, 
frequently used, is obtained by mult iplying the equat ion 
through by pg; then all the terms will have dimensions 
of pressure. 

Points 1 and 2 can be anywhere on the  streamline. Thus  
along the s t reamline we have in s teady flow 

U 2 P P0 
+ - -  -I- Z = constant  = H = - -  (4) 

2g pg pg 

H is called the  Bernoulli head and is a constant  along 
any streamline. Po is the s tagnat ion pressure. The  val- 
ues of H and Po can be different for different streamlines.  
In a type of flow which is frequently encountered,  called 
irrotat ional  flow, the  Bernoulli head is the same for all 
streamlines. Then  we can apply the above equat ion be- 
tween any two points in the flow; the two points need 
not lie on the  same streamline. 

The Bernoulli equation can also be viewed in terms of 
energy: work done = change in energy, we assume there  
is no heat transfer. We look at the case when the fluid 
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density can change, fluid is compressible. The rate at 
which work is done on a fluid particle is net force in the 
flow direction on the fluid particle multiplied by its ve- 
locity. In the absence of viscous forces, only forces due to 
pressure can do work. This work not only changes the 
kinetic energy and gravitational potential energy, but 
also the internal energy (proportional to temperature) 
of the particle. The internal energy changes through 
P d V  (pressure times change in volume) type of work: 
the contraction or expansion of a particle is caused by 
change in pressure as the particle moves from one loca- 
tion to another. The energy equation or the Bernoulli 
equation for steady compressible flow (see Box 3) is 

U2 2 + P2 + gZ2 + e2 = U12 + P1 + gZ1 + el, 
2 #2 2 Pl 

where e is the internal energy and points 1 and 2 lie on 
the same streamline. 

The compressible version of Bernoulli's equation is used 
for flow of gases at high speeds (speeds greater than 
about 0.3 times the speed of sound in that gas). Under 
these conditions the gravitational term is negligible and 
also it is usual to write the equation in terms of enthalpy, 
h = e+p/p .  Then the 'compressible' Bernoulli equation 
becomes 

h +  
U 2 

2 
-- constant along a streamline -- h0, 

which for a perfect gas can be written as 

U 2 
CpT + T = CpTo, 

where Cp is the specific heat at constant pressure, h0 and 
To are stagnation enthalpy and stagnation temperature 
respectively, values which would be obtained at a point 
where the velocity is zero. 
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Figure K. A fluid mass at 
time t is in A and B. At time 
(HAt) the fluid mass has 
moved and is in C and D. 

The change in energy of 

the fluid mass in the time 

interval A t is equal to the 
work done during this time. 

Ulbt 2 

{~~ z~. ~ t 

,U2bt 
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Box 3. Energy Equat ion  

Consider s teady frictionless flow in a s t ream-tube lying between points 1 and 2 
(Figure L). Fluid density is allowed to change. We apply the energy conservation 
equation ( first law of thermodynamics)  to a fluid volume (system). At the initial 
t ime t the fluid system is divided into two parts, A and B. Par t  A is outside the 
s t ream-tube,  and B completely fills the stream-tube.  At a small t ime At later fluid 
A has entered the s t ream-tube and fluid D which was inside the tube  (and part  of 
B) has come out; at this time we divide the system into C and D, with C filling 
the tube.  The work done in time At  on the system is entirely due to pressure at 
the two ends of the s tream-tube,  and is 

( P I A 1 ) U 1 A t -  (P2A2)U2At, (i) 

w h e r e  P 1 ,  A1 and U1 are respectively pressure, cross-sectional area and velocity 
at end 1 of the s treamtube,  and P2, A2 and U2 are respectively pressure, cross- 
sectional area and velocity at end 2. In the case of s teady flow the mass entering 
the s t reamtube  = mass leaving the s treamtube,  i.e., mass in A ( m A )  = mass in D 

(rnD), or 
plA1U1At  = p2A2U2At, (2) 

where pl and p2 are respectively densities at ends 1 and 2 of the s t reamtube.  Can- 
celling At  on the two sides we get the mass conservation equation for s teady flow, 
plA1U1 = p2A2U2, which for incompressible flow (pl = p2) becomes A1U1 = A2U2 
(velocity times cross-sectional area is constant).  Using (2) the work done (1) can 
be  wri t ten as rnA(P1/pl  -- P2/P2). The work done is equal to the energy gained 
by the system in time At, i .e . , (Ec + E D  -- E A  -- E B ) ,  where E is energy and the 
subscripts  refer to different parts A, B, etc. The s teady state assumption implies 
E C = E B  . Energy consists of kinetic energy, gravitational potential  energy and in- 
ternal energy. Thus EA = mm(1 /2U12+gZl+e l )  and ED = mD(1/2U22+gZ2H-e2), 
where e is the internal energy per unit mass. Equating work done to energy change 
gives 

P1 P2 = 1/2U22 _ 1/2U12 + g(Z2 - Z 1 )  + e2 - e l .  (3) 
P l  P2 

Since points 1 and 2 can be  anywhere on the streamline we can write 

P / p  + 1/2U 2 + gZ + e = constant on a streamline, (4) 

which is the energy equation for s teady frictionless compressible flow or the Bernoulli 
equation for compressible flow. The above equation has been derived by applying 
the energy equation to a fluid volume in the stream-tube.  The same equation can 
be derived by applying the energy equation to a fluid particle as it moves from 
points 1 to 2. 
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When  a fluid is incompressible then the volume of the 
element  cannot  change, there is no change in internal  en- 
ergy (in the absence of viscous stresses), the work done 
by pressure changes only the kinetic and potential  ener- 
gies and we recover the earlier Bernoulli equation (4). 

In any use of Bernoulli 's  equation the main assumption 
- negligible viscous forces - should be kept in mind. 

C o n c l u s i o n  

In a forthcoming article we will look at some examples 
of the application of Bernoulli 's equation. From this 
article I hope the reader  has developed a feel for some 
aspects of fluid motion: the concept of a fluid particle, 
the two types of fluid acceleration and how motion in 
one par t  of the fluid causes motion in other parts  of the 
fluid. Bernoulli 's equat ion can be viewed in two ways. 
One as Newton's  second law applied to a line of fluid 
particles in a s t ream-tube.  The second as a s ta tement  
of energy conservation: the change in gravitat ional  po- 
tential  energy plus the change in kinetic energy is equal 
to the  work done by the pressure forces. 

Finally, one can observe fluid motion in small streams, 
or on a roadside after rain, aided by small leaves or other 
floating debris which are carried by the flow and act as 
tracers. A leaf accelerates when a passage through which 
the water  is flowing narrows; or it 'senses' and changes 
direct ion when it approaches an obstacle like a small 
stone. Sometimes one sees a thin layer of oil on top of 
the  water  and then the  relative motion or distortion of 
the  flowing fluid can be observed. These tracers simply 
show what  the fluid particles below them are doing. 
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