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Abstract. The steady flow in a parallel plate channel rotating with an angular velocity 
i'~ and bounded below by a permeable bed is analysed under the effect of buoyancy 
force. On the porous bed the boundary condition of Beavers and Joseph is applied 
and an exact solution of the governing equations is found. The solution in dimension- 
less form contains four parameters: The permeability parameter cr z, the Grashof 
number G, the rotation parameter K s and a dimensionless constant a. The effects of 
these parameters, specially, r g, G and K s, on the slip velocities and velocity distribu- 
tions are studied. For large K s , there arise thin boundary layers on the walls of the 
channel. 
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1. Introduction 

A number  of  workers have theoretically studied flows through pipes and channels 
rotating with a constant angular  velocity about an axis perpendicular to their length. 
Mention may be made of the work of Barua [1], Benton [2], Benton and Boyer [3] 
for a circular pipe and Vidyanidhi and Nigam [17], Nanda  and Mohanty [13], Gupta  
[11] and Mohan [12] for a channel formed by two parallel plates. 

The problems of  flow over a porous bed involve two regions: the porous bed in 
which the flow is governed by the Darcy's  law and the fluid chamber in which the 
flow is governed by the Navier-Stokes equations. The solutions in two flow regimes 
are to be matched at the interface between the fluid and porous medium. Recently, 
Beavers and Joseph [4] have proposed the slip velocity boundary condition at the 

interface as 

aq,an - VE' (q's-  v,) (1) 

where t denotes the tangential component  and d/dn denotes the normal derivative to 
the porous interface, qts is the slip-velocity and a is a dimensionless constant. The 
existence of this slip-velocity qts is connected with the presence of a very thin boundary  
layer of  stream-wise moving fluid just beneath the surface of  porous material. 

Beavers and Joseph [4], in order to test the validity of  the proposed boundary  
condition (1), made a theoretical and experimental study of  flow in a parallel plate 
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channel. Owing to inadequate apparatus and instruments, the accuracy of experi- 
mental data was not sufficient to permit a conclusive evaluation of the proposed 
analytical model, but the existence of slip-velocity was qualitatively confirmed. 
Beavers et al [5] have undertaken to verify the slip-velocity condition (1) proposed by 
Beavers and Joseph [4] and explored the influence of a porous bounding wall on 
laminar-turbulent transition. Beavers et al [5] have performed the experiment in a 
parallel plate channel, one of whose bounding walls was porous while the other 
bounding wall was impermeable. They have shown that the experimental results for 
the laminar flow regime are in excellent accord with theoretical predictions based on a 
model which admits a slip-velocity at the surface of porous material. 

Beavers and Joseph [4] and, later, Beavers [5] have not discussed a method of 
finding an analytical expression for the boundary layer thickness 8'. To derive an 
analytical expression for 8', we need a momentum equation similar to the boundary 
layer equation in the porous bed which involves both the viscous dissipation term and 
the Darcy's resistance term. This equation in hydrodynamics has been given by 
Brinkman [6] as 

- V p ' + / z V ~  �9 q -  ~, q - 0  

where q, /z are the velocity vector and the coefficient of viscosity of the fluid 
respectively, k' is the permeability of the porous medium and p' is the hydrodynamic 
pressure in the porous medium. 

An exhaustive study of free convection problems for the flow between two vertical 
plates has been made by Gershuni and Zhukhovitskii [7], Poots [14], Yu [18], Singer 
[16] and Yu and Yang [19] Rajasekhara [15] considered the problem of natural 
convection flow between two vertical plates one of them being bounded by a 
permeable bed and obtained an expression for the boundary layer thickness using 
(1) and (2). The effect of buoyancy forces on fully developed flow between two 
horizontal parallel plz.tes was first considered by Gill and Casal [8]. The axia~ 
temperature gradient was taken constant throughout the flow system. Subsequently 
Gupta [10] extended it to magnetohydrodynamics. 

The present paper is devoted to the study of combined free and forced convection 
viscous flow in a parallel plate channel bounded below by a permeable bed and 
rotating with an angular velocity ~ about an axis perpendicular to the length of 
plate. Solutions of the equations of motion and temperature for the flow through 
chamber and porous medium are obtained. Effects of the wall permeability and 
buoyancy force on the slip velocities and velocity profiles in the chamber are 
discussed. 

2. Mathematical formulation 

The hydrodynamic equations of motion, continuity and energy for an incompressible 
fluid, under steady state conditions, in a rotating frame are 

q" V"  qq-2~ xq  = --_1 Vp_q_vV~. q_g{ I_/3(T_T0) }~ r (3) 
p 
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v .  q = 0  (4) 

pc(q. V)T=kV2T+q~ (5) 

and the Darcy's laws describing the flow in the permeable bed, together with the 
equations of continuity and energy, in a rotating frame are 

k - ' [ l v p + 2 ~  V+g{1 /3(T--To)}k ] V ~ - -  • -- 
v kp  

(o3 

v �9 v = o  (7) 

pc(V. V)T=kzV ST+ ~ (V) 2 (8) 
k' 

and the Brinkman's eq. (2) in the same rotating frame is 

V q + 2 ~  •  1 Vp+vV*  �9 q (9) 
k p 

where p, v, c and/3 are, respectively, the density, kinematic coefficient of viscosity, 
specific heat at constant pressure and the expansivity of  the fluid. V is the Darcy's 
velocity (or filtration velocity) of the fluid and $ is a dissipation function, k and 
k z are, respectively, the coefficients of heat conductivity of the fluid for chamber and 
porous medium, g is acceleration due to gravity and p =p'--�89 [ ~ •  [~, r denoting 
the position vector from the axis of rotation. 

Consider the flow of an incompressible fluid in a horizontal rectangular channel 
bounded by a solid wall at the top and a porous bed at the bottom. The channel 
consists of other two side-wails which are solid and perpendicular to the upper and 
lower walls. With reference to a cartesian coordinates system, the upper wall is 
located at z=L and the porous bed at z=--L  and the two side-walls (solid) are placed 
at y=+b.  It is assumed that b~,L. The whole system rotates in a counter clock- 
wise direction about z-axis with an angular velocity ~ .  It is assumed that the flow in 
chamber is governed by the Navier-Stokes equations and the flow in porous medium 
is governed by the Darcy's law and it is also assumed that the flow in chamber and in 
porous bed is driven by the same pressure gradient and the same buoyance force. The 
fluid is assumed to be Boussinesq. If we confine ourselves to the central core region 
far away from the vertical walls and the channel is long enough, fully developed 
conditions can be assumed to exist and in the steady state, the velocity and the tempe- 
rature fields can be taken to depend only on z. Under these approximations, the 
velocity field and the temperature distribution in the chamber and in the porous bed 
must obey, Chamber: 

- -  D X u '  (10) -2v'f =-1 ap + _ _  
p Ox ~z ~ 

8"v' (11) 2u'D, = , , - -  
~gz a 

P. (A)--5 
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o-- 10p_g{l_/3(T_To)} (12) 
p 0z 

O--x Oy ~-O-x~ ~ O-ff l q- c ( ~Oz l ~Oz l ) 

Porous medium: 

U':-- k'__ [I OP --2•V'] (14) 
v Lp ~'X J 

r'=-~(2nv3 (IS) 
V 

o----1 ~ o ~ (163 

,c ( v'~ro~ + v'~ , = h  ~te'r + -iTe'r + ~,r~! + k"-<v" + v,2) <17) 

where q=(u', g, o), V = ( U ' ,  V', 0), ~ = ( 0 ,  O, ~2), and a' is the thermal diffusivity. 
Integrating (12) or (16) with respect to z, we get 

, f -p  = - - g z  + Klx + N ( T -  To)dz (18) 
o 

and we describe the temperature T as 

T = T O + Aix + T'(z) 

with T =  T O , A1 = 0 and T '  = 0 at z = - - L - -  8' 
where A i and K i are constants which must be related to the physics of  the problem. 
A 1 could be determined from a consider~ tion of  heat balance on moving fluid while 
K 1 could be related to the pressure at the ends. 

These equations are supplemented by the equation of state 

9 = P0 [1 - - /3  ( r  - -  To)] (19) 

where P0 is the density at the ambient temperature T O and/3 is the expansivity of  the 
fluid ,defined by 

~ P  (20) 
p p 

2.1. Boundary conditions in the chamber 

We need two boundary conditions for the velocity and the temperature. The first 
boundary condition on the velocity in the chamber is usual no-slip condition at the 
solid wall, that is, 

u ' = 0 ,  v ' = 0 a t z = L  (21) 
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and the second boundary condition on the velocity is the slip-velocity boundary 
condition at the permeable bed as proposed by Beavers and Joseph (4), that is, 

d E '  a 
(Fs --  H ' )  at z = --  L (22) ~/~-, 

dz 

where F ' - - u '  § iv', H ' =  U' + iV' ,  F~=u'B + iv" n and u~ and v~ are the slip-velocities 
at the permeable interface (z=---L) in the directions of  x- and y-axes respectively. 

The two boundary conditions on the temperature will depend on the nature of the 
solid wall and the permeable interface. In the present discussion we consider a 
situation where the upper solid plate is maintained at a constant temperature and the 
permeable interface may be made up of a perfectly insulating material, a perfectly 
conducting material or the material to be such that there is a uniform heat flux at the 
interface. In what follows, we consider only a case when there is a uniform heat 
flux at the interface. 

The condition of uniform heat flux rate at the permeable interface z = - - L  is 
characterised by 

- -  k ( D T ' /  = q' (23) 
k ~z I z=- -L  

where q' is the heat transfer across the bed and is given by 

q' = --  h r �9 Ts (24) 

h r being the heat transfer coefficient and T ' = T ~  at z = - - L .  Therefore, 

OT' _ h r " T~ at z : - -  L. (25) 
Oz k 

This boundary condition is used on the fact that the flow, which is caused by tempe- 
rature differences in the fluid, builds a thin boundary layer just adjacent to the per- 
meable interface in the porous material. Within this thin layer, the temperature 
decreases from the value T B on the permeable interface to the value T--0 just outside 
the layer i.e. outside the heat layer. 

Throughout the analysis, we assume that the boundary layer thickness for velocity 
and temperature is the same, for this will reduce the hard task of numerical computa- 
tions and the results may deviate only moderately from those with unequal boundary 
layer thickness. 

2.2. Boundary conditions in the porous material 

The temperature distribution in the porous bed cannot be derived until the boundary 
conditions are specified. However, the boundary condition (22) has been derived on 
the basis that there will be a thin boundary layer inside the porous bed adjacent to the 
interface. To determine an expression for this boundary layer thickness, eqs (14) and 
(15) are to be modified to include the usual viscous dissipation term of the Navier- 
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Stokes equation in addition to the Darcy's resistance term which is the Brinkman's [61 
model. In this case, the momentum equations (14) and (15) in the bed take the form 

O Z F ' (  v ) F ,  IOP v, - -  + 2 i ~  . . . .  (26) 
Oz z k' p Ox 

To determine the velocity, two boundary conditions are needed and they are 

F'=F~ at z : - - L  (27) 

OF" 
= 0  at z= - -8 ' - -L  (28) 

Oz 

where 3' is the boundary layer thickness from the interface to the point at which the 
velocity is minimum i.e. the velocity tends to a free stream velocity. 

There are two boundary conditions for the temperature and they are 

T ' =  T~ at z = - - L  (29) 

T ' -~  0 at z = - - 8 ' - - L  (30) 

3. Solutions 

By introducing the following substitutions 

z u'L v'L _ gflLaT ' 
~--- U ~ - ~ ,  W ~  , 0 

,7 L ' i, v 

g~LST~ u U'L v V'L L 
0 . -  " , ," 

eqs (10), (I1), (13), (14), (15), (17), (21), (22) and (25) to (30) can be placed in the 
dimensionless form to give 
Chamber: 

d~F 
- - - -  2 i l C  a F =  G~ + R (31) 
d~ ~ 

Gu fi, d--- 2 --  [~d~/ ~ (32) 

with the boundary conditions 

F = 0, 0 = 00 (say) at '7 = 1 (33) 
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dF 
- -  = ,~ ,r(F n - -  H )  at ~ /=  --1 (34) 
d~ 

dO 
- -N , , .  0 n at ~ = - - 1  (35) 

d~ 

where F = u + iv, F B = u n + iv n and t t  = U + iV, G -~ gilA t L l /v  ~ is the Gra- 
shof number, E =- (g[3L/c) is the Eckert number, R : (L3Kl)/pv 9", K S = ~LZ/v  is the 
rotation parameter, P,  : izc/k is the Prandtl number and N u : (h r" L ) / k  is the 
Nusselt number. 
Porous medium: 

H -  ( c ~ + R )  (30 
§ 2 iK  2 

1 dzO 
G U -  -:-= + oaE(U ~ + V ~) (37) 

1,,, a~ ~ 

a~F-- (o~ + 2~K ~) F = O~ + R (38) 
d~72 

where 

P , ' =  t~e/kt is the Prandtl number in the porous medium. At the interf~zce 
P, = P, '  because of  k -= k t. The corresponding boundary conditions are 

F - :  F B and 0 : 0 B at 71 = --1 (39) 

where 

dF 
~ = 0 ,  G = 0  and 0 = 0  at ~ = - - 1 - - 5  (40) 
d~7 

5 p 

5 - -  
L 

3.1. Solution for  the velocity f ie ld  

3.1.1. Solution in chamber 

Keeping in view that the two boundary conditions (34) and (39) match at the inter- 
face ~7 = --1, the eq. (31) can be solved by using (33), (34) and (39) to gi3te 

+ iv = __R lcosh (1 + i )  K~7 u 

2iK ~ L cosh (1 + i )  K 

__G_.G [sinh_(1 + i )  K~7 v/] 
- -  --  1] + 2ilt~ [ sinh (1+i)  K 

+ F8 Fcosh ( l + i ) K  2 s i n h  (1 + i )  K~/] 
-2L cosh (1+ i )  K s - i n h ~ ) K ' J  

(41) 

P. (A)--6 
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where 

F~= u. + ir'~ 

(a14 -- a24) G + (b14 -- b~4) 
u.  = (4 '  + 4')  K' (4 '  + 4')  K' R 

= _ (a14 q- a'4) G + (b~4 q- b~4) R 
( 4 '  + d,,) K, ( 4  ~ + 4 ~-)/~, 

= [ K sinh 2K I act ~ ~ = 2K')]  

ax teost~ 2-2-=-- 2-os 2 .~--  ~.-- ~ + 4K 4 .1 

K sin 2K 1 a~ K ~" (o ~ -k 2K ~) ] 
a~ = cosh 2K --  cos 2K ~ --  ~4-~-4-~i- j 

_[ =2K')] sin 2K ~_ 
bl --~ cosh 2K § cos 2K a 4 q- 4K 4 J 

b, = [ sinh _2K a(r K (+ + 2K ~) ] 
[cosh 2K § cos 2K ~- ~ ~ 4-K ~ J 

= [ 2K sinh 2K cosh 2K ] 
dl I_cosh' 2 K -  cos' 2K + act 

= [ 2K sin 2K cos 2K a~]. 
d2 Lco---s~ ~ l~_  ~os~ -fK + 

3.1.2. Solution in the porous medium 

From eq. (36), solutions for U and V are 

- '  (Gv + R) 
U -- (42) 

~a § 4K 4 

V = 2K~ (Gv + R) (43) 
a4 q- 4K 4 

Here we note that, for G ~> 0 and R < 0, the filtration velocity U is always in the 
positive direction of x-axis while Vis in the negative direction of Y-axis. 

We know that the boundary condition (34) is based on the postulate that there 
exists a thin boundary layer adjacent to the interface. To obtain an expression for 
this boundary layer thickness 3, we solve eq. (38) using the boundary conditions (34), 
(39) and (40) and get 

[ 1 tanh_ a a(r 1 
3 = Real part of V,a~ " + 2i K ~ v/a S -~-2i K 2 --  1. (44) 
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From (44), it is obvious that the rotation has pronounced effects on the boundary 
layer thickness. 

3.2. Solution for the temperature distribution 

3.2.1. Solution in chamber 

For simplicity, we assume that the viscous dissipation in the chamber is very much 
small in comparison to that in the porous bed. Hence we neglect the viscous dissipa- 
tion term in the energy eq. (32) and the solution of (32) with the use of  (33), (35) and 
(39) comes out to be 

where, 

_ PrG ( ~  ) (FXI + FX2) 
4K 2 --  vn (cosh 2K + cos2K) 

PrG (~_ _ v ~ (FX1--  FX2) 
- -  4 - ~  B ] (co-~ 2-K--  ~ 2K)  

__ u n [ FY1 + FY2 _ FYI_--___FY2 ] 
4K ~ t c o ~  2--K ~- ~ ~2K cosh 2K --  cos 2K] + C~ , /+  C O 

(45) 

P, = P , '  = P a t  ~ ---~ --  1 and 

FX1 = cosh K(l+~7) cos K (1--~/) 

FX2 = cosh K (1--~/) cos K( l+ 7 / )  

FY1 = sinh K(l+~7)  sin K(1--~)  

F I/2 = sinh K (1-- 7) sin K (1 + ~) 

~ ) + (  ) q ={(Oo--On) +(Pr" --8K aP) -~--vn +(P, 8K aP)G ~--G vn 

( ) ~176 ) Co = �89 0B) + ( e , + e )  R (V,--V) 
8 K  - - m - Y -  ~ - -  vn + 8 K  S ~ - i - - v n  

0 n = ( l _ 2 N . ) +  g 2 - - v B  4K2(l__2N.)  + g~ n]4K2(1--2N.)  

) 
- -  KZ -- vn 2K (1--2Nu) (cosh 2K + cos 2K) 

( G ) (sinh 2K + sin 2K) PG 
-+ ~ -- vB 2K (1--2Nu) (cosh 2K -- cos 2K) 
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3.2.2. Solution in the porous medium 

Using the boundary conditions (39) and (40) eq. (37) can be solved to give 

0 - -  a~,/4 + a,~ a + a ~  2 + a1.7 + ao (46) 
t , , '  

where, 

cr ~EG 2 
a 4 ~ - -  12(,0+4 ) 

o~G(2RE + G) 
a s = - -  6(oZ+4K z) 

o2 R( RE + GO 
a s = 2(o2+4K 2) 

((1 +8) ' - -1  } {(1 +8)s- -1}  a3 
a x - -  a 4 - -  + 3 

{(1+8)3--1 } as + 0--~n 
8 P8 

ao - -  (1~3)  [{(1-}-8) '--1)a,--  {(1+8)2--1 ) a s+Sas+  -~]  

4. The Ekman-layer 

When K2~, 1, the highest order terms in (41) are multiplied by a small parameter: 
1/K s. Hence we can expect a boundary layer type flow at the two plates .7 = 4- 1. 

For the boundary layer at the upper plate ~7 = 1, we write 1 - -  *7 = ~71, and obtain 

(R + G0 e xp u = (--  K.71) sin K.71 (47) 
2K a 

(R+63 (exp 1) O o = ~--~ (--K.71) cos K~/1 - -  - - ~ - ~  '71 (48) 

This is the well known Ekman layer of  the thickness of  O(1/K). It is interesting 
to note that it remains unaffected by the presence of permeable bed. 

For the boundary layer at the lower plate .7 ----- --1, we write 1 -q- .7 = .7~ and 
obtain 

(R+G0ex  p u = ~ (--K.72) sin K~72 

+ exp (--K~7~) {up cos K.72 + vp sin K*7~) (49) 
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G (R+G0 {exp (--K~/2) cos K% - -  1~- - -  ~ ~7~ 
v =  2IO 

where 

+ exp (--K*/2) {v ,  cos K~2 -- u~, sin K~= ~- 

O+~)(G+R) 
u p  ~ - -  2K ~ 

(50) 

(1 +a~)  (G " v p - -  ~ . , , - -~ ) .  

This may be identified as the modified Ekman layer as affected by the permeable 
bed. From (47) - (50) it can be seen that, for R < 0 and G < 0, in a certain core 
given by %, ~Tx>~(1/K) about the axis of  the channel the velocity in the direction of 
pressure gradient vanishes and the fluid will be moving in a direction transverse to 
the p r e s s u r e -  a result in keeping with the Taylor-Proudman theorem which states 
that all steady slow motions in a rotating inviscid fluid are necessarily two-dimen- 
sional. 

5. Results 

We have examined the effects of  slip-velocities on the flow in chamber under the 
action of buoyancy force and permeability parameter. The profiles for slip-velo- 
cities U s and V~ versus K have been displayed in figures 1 and 2 for different values 
of  G and cr i.e. G = 0, 2, 6 and cr = 5, 10 and in all the calculations, R and e have 
been given a fixed value i.e. R = --1 and o~ = 0.01. 

Consider first the profiles for the slip-velocity U s in the vicinity of the porous bed. 
Figure 1 shows that the buoyancy force G has pronounced effects on U s. When 

! 
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Figure 1. Profiles for us. 
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G'--O, o'=5.-,-. 7 e = 0.01 
= �9 = 

-4o 

+ -20 

-60 

40 

Figure 2. Profiles for o a. 

o-=15, e =0.01 

0 t .0-0-8 ;~6 ~ 0 , . , , . . - . ~ 3 T 2  0.4 r/O 6 0_8-,"~.( 

-3  

- 4  

- 5  

Figure 3. Velocity profiles. 

o is fixed and G = 0 (forced convection) the slip-velocity U B decreases as the rota- 
tion K increases and when the rotation K is suificiently large, the slip-velocity U B, in 
the vicinity of the porous bed, is almost negligible. As G increases, U B also increases 
abruptly producing humps but falls down to a constant value when the rotation 
becomes large. This reveals that U s remains almost unaffected by G at large 
rotations and apart from this, the effect of G causes U B to shift in the opposite direc- 
tion at the initial rotation. When ~ increases (i.e. the permeability decreases) U n 
also decreases appreciably. 

Now, consider the profiles for V B in the y-direction as displayed in figure 2. It is 
found that the effect of  G causes V B to shift in the opposite direction but V B remains 
almost unaffected by G at large rotations and Vn decreases as o increases. 

The velocity profiles u and v in chamber have been displayed in figures 3 and 4 
for K =  0.5,1;  G = 0, 2,10 and o _ 1 5 .  
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5 

Figure 4. 

G : 1 0 .  KZ=O.25 

G : O  , K~'=I ' 

G : 2  , K2=1 

C = 1 5  , e=O-01 

G =O. K 2= 

G=2,KZ:O.25 

O 02 04 0 . 6 0 . 8  -0.8 -~'~.--'-'" . . . .  

/ 
. - . - . 2 5  

= 1 0 .  KZ= I 

V e l o c i t y  p r o f i l e s .  

Consider next the velocity profiles u for the primary flow in figure 3. It is seen 
that G has a significant effect on the flow. u decreases as G increases but, for a 
sufliciently large value of G, the fluid flows in the opposite direction. As we increase 
K and keep G = 0 (forced convection), the flow produces a hump near the solid wall 
and the fluid in the vicinity of the solid wall will be moving fastly. In fact, the 
velocity imparted to the fluid by the porous bed is quickly damped out and the fluid 
velocity in the central core in the primary flow direction almost becomes negligible. 
At a fixed rotation, the effect of G causes u to shift in the opposite direction. It is 
also found that the effect of rotation is also to decrease the velocity. 

Now, consider the velocity profiles v for the secondary flow in figure 4. For small 
K, the fluid is moving partly in the positive and negative directions both when G = 0. 
As G increases the flow also increases in the positive direction. As we increase K, 
the effect of G causes the fluid to flow in the negative direction. On further increase 
of K, a hump is formed for G ---- 0 near the solid wall just like in the primary flow 
case. 
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