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Orthogonal and spin bundles over hyperelliptic curves 

By 

S. RAMANAN* 

1. Introduction 

Let 2: x[ = 0, 2; 21x[ = 0 be two quadrics in the projective space of  dimension 
(2g q- 1). Assume that 2~'s are distinct so that these two quadrics determine a 
generic pencil of quadrios. One cart associate to this pencil, in a natural way, a 
hyperelliptic curve X of  genus g, namely, the double of  the projective line para- 
metrising the pencil with ramification at the points corresponding to the singular 
quadrics. One can easily check that  the variety M~ of  d dimensional vector sub- 
spaces which are isotropic for both the quadrics is nonsingular. M~ is nonempty 
i f  d ~ g and in [1] we gave an interpretation of M o and Mo_l as the Jacobian and 
the moduli space of vector bundles of  rank 2 and fixed determinant of odd degree 
over X respectively. One might naturally ask if one could obtain similar inter- 
pretation for M~ for other d as well. In particular, does M1 ----- the intersection of 
two quadrics have an interpretation as a moduli-space of some sort of bundles 
over X? This paper answers, among other things, this question. In fact, ~'e give 
a solution of  a more general question, namely, the question of interpreting M~ 
modulo IISO (n~), when the 2~'s are allowed to have multiplicities n~. 

The idea of  associating a hyperelliptio curve to a pencil of  quadrics is nothing 
new and goes back, at least to Weil [9], who considered the relationship between 
the intersection of  two quadrics (M1 in our notation) and the curve X from the 
point of  view of  diophantine equations over finite fields. He computed the zeta 
function of  M1 in terms of that of X and verified the Weil conjectures for this 
variety. Incidentally he also raised the specific question of  the geometrig relation- 
ship between M~ and X, which we have investigated here. It must also be men- 
tioned that Gauthier [2] has already noticed the identity of the space M o and the 
Jacobian of  X, although as far as the present author is aware, no proof has been 
published till recently [6, 1]. The author is thankful to A. Weil for bringing to 
his attention these references. 

The method of proof is quite simple and is not basically different from that in 
[1 ]. However, the greater generality leads to conceptual clarity and we have also 
made a few techrtical simplifications. I f  E is a bundle to which the action of i lifts, 
the bundle does not nevertheless go down to a bundle on X/i = 1 m. The obstruc- 
tion to this is the lack of  descent data at the fixed points of  i, namely, the 
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Weierstrass points of X. In o~her words, i may not act as identity on the fibres of  
E at the Weierstrass points. To rectify this, one makes a modification of E at these 
points to obtain a new bundle E '  which does go down. I f  one keeps track of the 
additional structures needed to recover E from this bundle on p1 obtained by 
descent from E' ,  one can hope for a classification of  the bundles started with. 

Another description of the method is as follows. Suppose we wish to classify 
vector bundles of  fixed large degree. Consider pairs (E, 7) where E is such a 
vector bundle and ~ is a trivialisation of  E on a sufficiently large divisor D. q-hen 
the restriction H 0 (X, E) ~ H 0 (D, E) is injective and using the trivialisation of  E 
on D, we associate to E, a point of  a suitable Grassmannian. Thus one could even 
construct the moduli space of  vector bundles by passing to the quotient of the 
Grassmannian in k ~" by I I G L  (d). The special situation in our case then allows 
us to describe the image precisely. 

2. Clifford bundles 

I f  V is a vector space of finite dimension and Q is a non-degenerate quadratic form 
on V, then the Clifford group F (Q) is the subgroup of  the group C (Q)x of units 
in the Clifford algebra C ( Q ) ,  defined by 

r ( Q )  = C(Q)x : x V x  -1 c v} .  

Let F+ (Q) be the group of  even elements in F (Q). The multiplicative group k" 
is clearly contained in F + (Q). It  is actually the centre of  F (Q) if V is of even 
dimension. Then the spinor norm gives a surjective homomorphism N m  : F (Q) ~ k ~' 
whose kernel is called the reduced Clifford group and denoted F0 (Q). Let 
F t (Q) = F0 (Q) t'l F + (Q). By definition, we have a natural (vector) representa- 
tion of  all these groups in the orthogonal group of  Q. The kernel of this repre- 
sentation of  F is k x. We first notice 

Lemma 2.1. I f  E is an O (2n)-bundle on a scheme X, then the obstruction'to its 
liftability to a F0 (2n)-bundle (resp. F (2n)-bundle) is an element of H 2 (X, Z/2) 
(resp. H 2 (X, �9 In particular, any O (2n) bundle on a projective nonsingular 

curve can be lifted to a F(2n)-bundle. Similar statements are valid for the odd 
dimensional case when O is replaced by SO and F is replaced by F +. 

Proof. This is a trivial consequence of  the exact sequences 

1 ~ Z /2  ~ 1"o (2n) ~ 0 (2n) + 1 

(2.1) $ J, II 

1-->k x o F ( 2 n )  --+ O (2n) -+ l,  

and the induced exact sequence of  sheaves 

1 ~ Z / 2 o F 0 ( 2 n ) ~ O ( 2 n ) o  1 

(2.2) ~, $ II 

1 - ~ ) ~  ~ F ( 2 n ) ~ O ( 2 n ) - + l ,  
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in view of  [7]. In fact, the obstruction to the F(2n)-lifting is actually in the image 
of  H ~ (X, Z/2) in H 2 (X, �9 Hence our assertion. 

I f P  is a F(n)-bundle and ~ is a line bundle, then using the action of  k ~ on F(n) ,  
we get a new F(n)-bundle which we will denote ~ o P. From the fact that Nm (2a) 
= 2 8 N m ( A )  for 2 e k  x, A ~ F ( n )  we obtain 

(2.3) Nm (~ o P) = ~2 | Nme.  

Lemma 2.4. I f  P, P '  are F(2n)-bundles on X, giving rise to isomorphic O (2n)- 
bundles, thert there exists a line bundle ~ such that P' ~ ~ o P. I f  E is an O (2n)- 
bundle and P any lift of  E to a F (2n)-bundle, then NmP is of  even or odd degree 
according as E can or cannot be lifted to a Fo (2n)-bundle. Similar results hold 
for the odd dimensional case with O (n) replaced by SO (n). 

Proof  The first assertion follows from the sequence 2.2 and [7]. From this it is 
clear that (a) the parity of  deg (NmP) is independent o f  the lift P, and (b) if 
deg NmP is even we might, in view of  2.3, as well assume that NmP is trivial by 
replacing P by a suitable ~: o P. I f  NmP is trivial, then P is a Fo (2n)-bundle as 
is seen from the sequence 

Nm 
1 - ,  F0 (2n) --, F (2n) - - ~  �9 _, 1. 

Definition 2.5. An O (2n)-bundle on X is said to be of  even or odd type according 
as it is or is not liftable to a 1"o (2n)-bundle. 

Remark 2.6. An SO (n)-structure on an O (n)-bundle E with trivial determinant 
n I t  

is given by a trivialisation of  AE, such that its square is the trivialisation of  (AE) ~ 
I I  

given by the ' discriminant ', namely, the lift A E  ~ ~kE* of  the given quadratic 

form E ~ E*. Accordingly, even when AE = det E is only an element of  order 2, 
we could still talk of a special orthogonal structure, when we mean an isomorphism 
det E ~ a such that its square (det E)  ~ ~ a 2 = 1, is the trivialisation given by the 
discriminant. Also, if P is a F(n)-bundle, we talk of  a special F(n)-structure when 
the associated O (n)-bundle E comes provided with a special orthogonal structure. 
I f  det E is trivial, this simply means that P is a F (n)+-bundle. 

3. Orthogonal bundles over hyperelliptic curves 

We will make the convention that when we deal with orthogonal bundles of  odd 
rank, we assume that it has trivial determinant. Generally, we will deal with the 
case of  even rank, the odd case being similar. 

Let E be an orthogonal bundle over a hyperelliptic curve with a lift E ~ i*E of  
the involution i. I f  P is a lift of  E to a F-bundle, then we must have P ~ a o i*P 
for some line bundle a by lemma 2.4.  Taking norms on both sides and using 
2.3, we get a s QN mP._ ~  i*NmP and hence (a ~ N m P )  2 ~ hd**N "~'. In parti- 
cular, ~ is of  degree 0. Let us then assume given an isomorphism 

P ~ fl o (NmP) -I oi*P, with f12 = hdn Nmp. 

It  is clear that fl is essentially unique, at least if NmP is fixed. We now recall 

P - - 1 1  
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Lemma 3.1. There is a one-one correspondence between line-bundles ~/of fixed 
even (respectively odd) degree such that ~ 2 ~  h~,7, and the set of partitions 
W = S U T of the set of Weierstrass points into subsets of even (resp. odd) 
cardinality. 

Proof. See ([1] lemma 2.1). 

If an isomorphism i*E ~ E is given, then at every fixed point of i, namely, a 
Weierstrass point, we obtain an involution of E, preserving the quadratic form 
q~ on E~. Let E~ +, E~" be the eigenspaces corresponding to the eigonvalues -t- 1. 
Then E +, Eg" are clearly orthogonal for q,. In particular, qw is nondegenerate on 
both these spaces. 

We now seek to prove that for such an O (2n)-bundle E, the line bundle fl with 
i *P  ~ fl-~ ~ N m P  o P is the unique line bundle with i*fl ~ fl whose associated 
partition of W (lemma 3.1) is determined by the integers r ,  = dim E~ +. Before 
we do this, let us normalise the isomorphism ~ : P  ~ ~ o i * P  given above. We 
will of coarse require that this should induce the given isomorphism E ~ i*E. 
This requirement fixes q~ up to an automorphism of the F (2n)-bundle P inducing 
the identity map on E. This means that ~ is determined u p t o a  nonzero scalar 
factor. We now wish to further specify ~ by requiring that it be an involution in the 
following sense. Firstly, we have an isomorphism Nm~o : N m P  ~ a ~ o i* NmP .  
Writing ~ = fl ~ NmP,  this gives an isomorphism fl-~" ~ N m P  ~ i*NmP.  
On the other hand i*~ gives an isomorphism i*P -~ i*fl ~ i * N m P  o P and hence 
fl | N m P  i* P ~ fl | i* fl | N m P  | i * N m P  o P and using Nmq~ also fl | N m P  o 
i*P ~ fl-~ ~ i*fl o P. Composing this with ~ we get an isomorphism P ~ fl-1 
|  which induces identity on E. We require that the involutive lift 
fl ~ i*fl is so chosen that the above composite is the Identity. We shall call this 
the normalised isomorphism. 

Let then ~ �9 P ~ fl o N m P  o i * P  be a normalised lift of the given involutive 
isomorphism E ~ i*E.  

If  we trivialise ft, at w ~ W, we get a bijection ~, : P .  -~ P .  which ~atisfies 
qJw, (~s) = q~,, (s) (Nms) .s .  Since P ,  is a set on which F(2n) acts simply transitively 
we see that ~,p gives rise to an element g,  of F (2n) which is determined upto 
the equivalence relation 

g ,~ g' if there exists s e F (2n) with sgs -~ .Nms  = g'. 

Moreover g,  gives rise to a reflection in an r,,-dimensional subspace in the vector 
representation, and satisfies in view of our normalisation g~ = E,Nmg,,, where 
~, = :k 1 according as the lift of i to ft, is -~ 1 at w. Thus we have the following 
situation. E~ + is an r.-dimensional subspace of E,  and g,  e F (2n, q.) which repre- 
sents the reflection in Ew + satisfies g,* = ~,, Nmg,,. 

Lemma 3.2. If  g ~ F (2n) represents the refle~tion in a nondegenerate subspac~ 
of dimension r, then g ~ = N m g  i f r m l ,  2n and g ~ = - - N m g  if r m 3 ,  
2n -- 2 rood 4. 

Proof. Let e l , . . . ,  e2, be an orthonormal basis for q,, such that el, . . . .  e, is a basis 
for E~. All the elements e~ belong to F (2n) and in particular the element e l , . . ,  e, 
as well. The induced transformation on E u is x t-* (ex,... e , ) x ( e l . . ,  e,)-l=, 
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e l . . . e  r x e t . . . e l  since e, 2 = q , , ( e r ) = l  by choice. I f  x is e o i > r ,  then 
x t ~  (-- 1)' x and i fx i s  e o i 5: r, then x ~ (-- 1) '-1 x. Thus g = e l . . .  er or er+l...een 

/" (2n) represents reflection in E + according as r is odd or even. Now (e~...  er) ~ 
= (-~ 1)' c,-x)/2, while Nm ( e l . . .  er) = 1. I f  r is odd, g2 = ( _  1)'('-l)/z Nmg. 
This proves the assertion. 

We have now proved 

Proposition 3.3. Let E be an orthogonal vector bundle of dimension 2n to which 
the action of  i lifts. I f  P is a Clifford bundle lifting E, then P ~ fl o (NmP) o i 'P ,  
where fl is the unique line bundle of degree : -- degree NmP with i*p ~ fl asso- 
ciated to the part i t ion of  W given by the subset 

S = { w ~ W : r , , - 1 ,  2n rood4} ,  

T = { w e W : r = = 3 ,  2 n - - 2  mod 4}, 

where r ,  is the dimension of the fixed subspace of E ,  under the action of i. In 
particular, if  E is of even (resp. odd) type, then @ S is even (resp. odd). 

Remark 3.4. We call attention to a subtlety regarding special orthogonal struc- 
tures. Suppose ~ is a line bundle with an action of i on it. Let E be an orthogonal 
bundle of odd type with i*E ~ E. Then i*E also comes witk a special orthogonal 
structure whenever E is provided with one. However, we claim that the isomor- 
phism ~ : i*E ~ E cannot preserve this special orthogonal structure. For, if it 
does, we would have a ccmmutat ive  diagram 

(let 
i*det E 

i*~ 1 

i * a  

det E 

[,7 

Restricting to a fibre at w ~ W, we get a commutative diagram 

det ~w 
det Ew ~ det E.  

r ~ - §  r 

Now, det g,, = :k 1 according as dim E ;  is even or odd and since E is of odd 
type, {w : d e t r  = 1} is of  odd cardinality, while {w : ~,D----- 1} is of even 
cardinality (lemma 3.1). 

4: Stability of  orthogonal bnndles 

Definition 4.1. Let E be an orthogonal bundle. We say that E is stable (resp. 
semistable), if every proper isotropic sub-bundle F of E has degree < 0 (resp. ~ 0). 

Proposition 4.2. E is semistablo as an orthogonal bundle if and only if it is semi- 
stable as a vector bundle. 
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Proof. It is obvious that semistability (resp. stability) as a vector bundle implies 
semistability (resp. stability) as an orthogonal bundle. As for the converse, let 
F b e  a sub-bundle of E. Consider the sheaf N = F fq F • where F J- is obtained from 
F by orthocomplementation. Now N may n( t  be a vector sub-bundle of F, but  
let N'  be the sub-bundle generated by it. q-hen ~e have the exact sequence 

O-~ N ' - ~  F @ F J--~ M '  ~ O, 

where M'  is the sub-bundle of E generated by F + FJ.. Obviously, M'  = (N ' ) ' .  
Thus deg (F @ F a-) ----deg N ' +  deg (N')"-----2 deg N', since we have the exact 
sequence 0 ~ (N') • -~ E ~ (iV')* ~ O. Hence deg F = deg N'  < O, since N'  is 
obviously isotropic. 

Remarks 4.3. 

(i) It is easy to see that our definition of stability and semi-stability coincides 
with the general notion introduced by Ramanathan [5], for principal bundles with 
reductive structm'e group. 

(ii) E could be stable as an orthogonal bundle and yet be nonstable as a vector 
bundle. The reason is, with the notation of proposition 4.2, that the bundle F + F "  
could be the whole of E, and N'  = 0. When this happens, the bundle E is a direct 
sum of two orthogonal bundles. Actually, this phenomenon does happen as the 
following example shows. 

Example 4.4. Let E be a vector bundle over X of rank 2. Then ad E, the 
bundle of endomorphisms of trace 0 is a special orthogonal bundle, the Killing 
form giving the orthogonal structure. It is easy to see, using the one-one corres- 
pondence between isotropic sub-bundles of ad E and sub-bundles of E, that E is 
stable if  and only if ad E is stable as an orthogonal bundle. On the other hand, 
if  E ~ ~ | E for some line bundle with a 2 = 1, then ad E contains a as a proper 
nondegenerate sub-bundle. Indeed, one can even construct bundles ~see [4] 
with E ~ a | E and E ~, fl | E for two distinct elements a, fl with a 2 ='fl~ = 1, 
so that  ad E becomes a direct sum a @ fl @ aft. 

Regarding this, we have 

Propos~tion 4.5. (i) E is stable as an orthogonal bundle if and only if E is an 
orthogonal direct sum of  sub-bundles E~, which are mutually nonisomorphic with 
each E~ stable as a vector bundle. 

(ii) I f  Aut E is the bundle of orthogonal automorphisms of a stable bundle E, 
then E is stable as a vector bundle if and only if F (Aut E) = ~ 1. 

Proof. (1) We have proved above that if E is not stable as a vector bundle, then 
E is the orthogonal direct sum of  sub-bundles E~, E2 of  E. Now clearly Ex, E~ 
are stable orthogonal so that by induction on rank E, we see that E ~ L'E~, where 
E~ are stable as vector bundles. I f  such a direct sum has repeated summands, 
say E~ = E~, then the imbedding X I---, (X, iX) of E~ in E~ �9 E~ gives an isotropic 
sub-bundle of degree zero, contradicting the stability of E. Thus all the Ec's are 
mutually nonisomorpkic. Conversely, if E = 27E,, E~ stable as vector bundles 
and E~ -[,, Ej, then any sub-bundle 4 : 0  of degree 0 must be a sum of some of the 
E~ and hence cannot be isotropic. 



Orthogonal and spin bundles over hyperelliptic curves 157 

(2) I f  E is stable as a vector b:mdle, then F ( A u t  E) C k* and hence must be 
1. The converse is a consequence of  (1). 

Proposition 4.6. I f  E is an orthogonal bundle over a curve with an involution 
i which lifts to E, then E is semistable as an orthogonal bundle if and only if for 
every i-invariant, isotropic sub-bundle F of  E, we have deg F ~ 0. 

Proof. I f  F is any sub-bundle of  E, then a,: in proposit ion 4.2, we have the 
sequence 

0 --, N' - .  F @ i * F - ~  M' --* O, 

where N', M' are sub-bundles generated by F N  i * F a n d  F +  i*F respectively. 
Now deg N '  < 0 by assumption, while the fact that deg 34' ~ 0, follo~vs from 
proposition 4.2. Since deg F : deg i 'F, this proves our claim. 

Let X be a hyperelliptic curve with rational involution i. Let E be a vcctor 
bundle on X with a lift of i. For  every w ~ W, the set of Weier~trass points of  X, 
denote by r ,  the dimension of the space of fixed points of  i on the fibre Ew. Cor si- 
der the exact sequence 

(4.7) O - ~ E ' ~ E ~  S E~|  ~ 0 ,  
wcW' 

where E;" is the eigenspaoe for iw corresponding to tile eigenvalue -- 1. The maps 
E - ~  Eg" | �9 are given by the natural projections Ew ~ E~'. The kernel E'  is 
clearly locally free. Moreover, the involution i acts on E'. 

Lemma 4.8. For every w ~ W, the involution i acts as Identity on E~. 

Proof. We have only to show that i acts as Identity on the kernel E~ ~ Ew since 

it does so on the image which is E~ +. Now this kernel is T o h  (E~ | �9 �9 

= E~" | Yoh�9  (~)w, 0w). From the resolution 

0 ~ L~ "1 -~ �9 - ,  �9 --' 0, 

we conclude that Torx0,  (�9 ~)w) is canonically isomorphic to the fibre (LaT), 
= K,,, the space of  differentials at w. Since i acts as -- Identity on Ku, it follows 

that i acts as Identity on E~ = E~" | Kw. 

From lemma 4.8, the bundle E '  descends to a vector bundle E on X/, ~ PX. 
Let us now make the assumption on E : 

(A) E satisfies H ~ 1 7 4  and H x ( X , E ) = 0 .  Then we have 
H ~ 1 7 4  - ~  ~ 1 7 4  by (A) and hence in particular 

H 0 (P~, E ' |  h -a) = 0. Consequently, E ' |  h -~ is a direct sum of  line bundles, 

each of  which is of degree < 0. This implies t ha t /~  | h -(g-~) is a direct sum of  
line bundles of  degree ~ 0 and hence contained in a trivial bundle. Cononically 

speaking, we have E |  -(~ C Ha(E |  On the other hand, we 

have the isomorphism H ~ (pa, ~ | h-Co+a)) _ H a (X, E ' ) t  in view of  

Lemma 4 . 9 .  For any vector bundle V on P~, we have the isomorphism H a (p a  V) 

H ~ (X, n*V | h-~~ *. 
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Proof. The left dde is dual to H ~ (p1, F ,  | h-~) ~ H o (X, z ' V *  | h-2)~ while 
the right side is dual to H~247174  But the isomorphism 
h -t~247 | Kx  ~ h -2 commutes with i only upto sign. This proves the assertion. 

Thus E |  H I ( X , E ' ) p  x canonically. From the exact sequence 4.7, 

we obtain the exact sequence 

0 ~ H o (X, E)* ~ SE~ -+ H 1 (X, E')  $ "-~ O. 

To check the injectivity H ~ (X, E)* -~ Z E~', we note that its kernel is contained 
in the kernel H ~ (X, E) -~ X E .  which is H ~ (X, E | L7 ~) = H ~ (X, E ~ h -~o+l)) C 
H ~ (E | h-e) = 0 by assumption (A). As for the surjectivity ,,~E~ ~ H 1 (X, E') $, 
this follows from the fact that H 1 (X, E)$ C H a (X, E) : 0 by (A). 

Let us return to orthogonal bundles. I f  F is a semistable orthogonal bundle, then 
E ---- F ~ a for some i-invariant line bundle a of degree j = 2g -- 1 satisfies 
(A). Thus we can associate to such a bundle the subspace H ~ (X, E)* of XEg'. 
The orthogonal structure on F gives rise to nondegenerate quadratic forms on F~ + 
and F~" (see w 3), and hence an a~-values quadratic form on Eg'. This fits in the 
following diagram 

(4.10) 

H ~ (X, E)* ~ 2: Eg': 

I q  [q~ 

H ~ (2, a~) :~: ~ H ~ (p1, ~/j) .-4 ~Y' a~ = ~ 

Now consider the exact sequence (on p1) 

0 ~ l~J-~~ ~ hS -> M I �9 -~ 0. 

Then we get a linear map 2: h~ --* H 1 (I ~I, hJ-Czg+2)). Clearly, dim H 1 (pl, 
hf-t2g+~}) = 1 or 2 according as j ----- 2g or 2g -- 1. 

In either case, we have 

Proposition 4.11. The quadratic form on E~" with values in h~ gives rise to a 
form on XEg" or a quadratic map with values in a 2-dimensional space according 
as j ----- 2g or 2g -- 1. In any case, the subspace H ~ (X, E) C XEg" is totally iso- 
tropic for the quadratic maps involved. 

Proof. This is a simple consequence of the commutativity of 4.10, and the exact- 
ness of  

n o (]~1, hi)  ---4" ,~h~ "--> H I ( p I ,  h/-(2o-t-21). 

Let us further analyse the situation. I f  j = 2g, a simple computation using 
([1], proposition 2.2) shows that H ~ (X, E)* has dimension �89 (2: dim E~'). In 
other words, it is a maximal isotropic space for the quadratic form. I f j  = 2g -- 1, 
H ~ E)* has dimension = � 8 9  ( Z ' d i m E ~ - - r k E ) .  For any t ~ P 1 - -  IV, we 

Io 
get a linear map H 1 (p1, h-Z) ... H 1 (p~, h-2) and hence a nondegenerate quadratic 
form on XE~'. It is easy to determine the ortkocomplement of H ~ (X, E)* for this 
form. Indeed, it is H ~ (X, E | h)* where the latter space is imbedded by evalua- 
tion in 2: Eg" | h,, and h~, is trivialised by means of  the section of h vanishing at 
the point of  X lying over t. To see this, we have only to show that the bilinear 
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product of an element in H ~ (X, E) and an element in H ~ (X, E | h)* goes to zero 
in H I Op1, h-2). From the diagram 

H ~ (X, h 2*-1) ~ Xh~ "-~ --* H ~ (X, h -z) 
$ $ $ 

H ~ (X, h TM) ~ Xh~ g ~ n 1 (X, h- 0 

this is equivalent to showing that q, maps it in the image of H ~ (X, h 2a) in 2: l~ ~. 
But this is obvious from the diagram 

H ~ (X, E)* (9 H ~ (~', E | h). -* SE;" 
$ $ 

H o (X, ~ | h)# = H 0 Opt, h,9 Sh,d-1 
"~ x' 

2:hp 

In other words, we have shown 

Proposition 4.12. The ortho complement of V =  H ~ (X,E)ICSEg" is 
H ~ (X, E | h)t for the quadratic form at t e P~ and H ~ (X, E @ h)*/H ~ (X, E)* 

is canonically the fibre of / ~ |  -1~ at t. 
In other words, if the quadratic map 2:Eg" ~ H ~ OP t, h -2) is regarded as a bundle 

with an h-valued quadratic form on the trivial bundle 2:Eg" over pt, then V-t/V "~ 

| h-(~ 

Proof. We have only to trace the isomorphisms 

H ~ (X, E | h)*/H ~ (X, E)* ~ ker ZEZ/H ~ (X, E)* ~XE; ' /H ~ (X, E | h) 

_ ker H 1 ( i ,  E') -* H 1 (X, E'  | h) 

ker H ~ Opt, ~ |  h-(,+~)) ~ H ~ Opt,/~| h-0 

this map being given by the section of h vanishing at t. From the exact sequence 
(on e~ x I~) 

0 ~ p~* (~: | h -~'+a~) ~ P~ (~ | h-t*+a0 | LA ~ p~ (E | h-t~ 

| Lzx | 0zx --, 0, 

where A is the diagonal divisor in p1 x p1. On the other hand La[zx ~ K ~  
where K. is the canonical line bundle. Taking direct images on P~, we get 

E | h -~~ | h 2 ~ the kernel required. 

5. Classification of binvariant orthogonal bundles 

Theorem 1. Let X be a hyperelliptic curve of genus > 2. Then the space U of 
semistable orthogonal bundles of rank r with an/-action is isomorphic to flhe 
following space. Let X$~, be an orthogonal direct sum of spaces ~ with non- 
degenerate quadratic forms Q~. Let 2:Qw and 2;)I,~Q,, be two quadratic forms, where 
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2,, are mutually distinct scalars determined by X. Then the group IIO (Q,) acts 
on the variety M of  subspaces of  dimension �89 (27 dim r --  r) isotropic for both 
these forms. The quotient (in the sense of geometric invariant theory) is isomor- 
phic to U. 

Proof. Let us for convenience reinterpret the pencil of  quadrics on Xsc,. First 
of  all, we will assume the standard quadratic forms Q~ to have values, not in the 
field, but  in the one-dimensional space L~ u-1. Then the quadratic map 2;r w 
X~5~ a-1 gives, on composition with the boundary homomorphism 2 " h ~ - ~  
H 0(Pt ,h-3)  of  the sequence 

0 ~ h -3 - ,  h ~ ~ h '~~ Q �9 -~ 0, 

a pencil of  qaadrics as required. 
Fix a line bundle a of degree 2g -- 1 with art /-action on it, once for all. Then 

we have seen in w 4, that we have a natural inclusion H 0 (X, E) C XE~', where 
E ---- F | a, F an orthogonal bundle with an /-action satisfying condition (A) in 
4.8. Choosing quadratic isomorphisms E~" ~ ~:~, we associate to E, a subspace 
of  L:~6 of dim = d i m H  ~ (X, E)* --- �89 ~:~ - n), where r k E ~ n .  By pro- 
position 4.11, we see that this subspace is isotropic for the given pencil on 27~:,. 
Moreover, the intersection of this space with ~:, is the kernel of  

H o (X, E)* --. Z, E,~,, 

and is hence isomorphic to H ~ (X, E | L~,~) * C H ~ (X, E | L~,~) C H ~ (X, E 
h -s) = 0 by (A). Thus the subspace V associated to F satisfies (A') V is a subspace 

of  X~:. which is isotropic for the pencil of quadrics and V N {:~ = 0 for every w z IV. 
Conversely, if V is a subspace o f X ~  satis~'ing (A'), then the ortho complement 

of  V with respect to any quadric of  the pencil is of the same dimension. Indeed 
this needs to be checked only for quadrics corresponding to points w e W C P~. 
The nullity of  this quadric is ~:., and V 13 ~:w = 0 implies that V" is of the cgmple- 
mentary dimension containing ~:~. This proves that V-~/V is a vector bunale on 
p t  which comes with a subspace of the fibre ( V ' / V ) w ,  namely, the isomorphic 
image of  ~.. Using this, we can construct a bundle E (on X) 

O ~ V " / V | h l'- : "-+ E ~ c3 ~ 0 , 

in which c3" is a torsion sheaf concentrated on W with length (c3") ---- dim ~:,~, and 
the kernel ( V - t / V | 1 7 6  ~ E,, is ~:~,~h~ ~. Then E - - - - F ~ a  with F an i-in- 
variant orthogonal bundle. It is then easy to see that H ~ (E | h -s) = 0, so that 
we have 

Proposit ion 5.1. Let a be a line bundle on X of  degree 2g -- 1, invariant under i. 
There is then a bijection between the set of  orthogonal bundles F of  rank n 
together with (a) an / -ac t ion  and (b) orthogonal isomorphisms % (Fw | %)- - .  ~:,, 
satisfying H z (X, F | a) = 0, and the space of  subspaces V of  X ~:,, of  dimension 
�89 (Z' dim ~:~ --  n) which are isotropic for the pencil of  quadrics Z'Q~ = 0, 
27 2B Q,  = 0, and satisfy V fl ~,, = 0 for all w. 

Clearly, this bijection is compatible with the action of 170 (Q~) on both the sets. 
The action on (F, ~7,) is simply (F, g~ o ~7~) by g = (gw). On the other hand, clearly, 
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the group I I 0  (Q,,) acts on ~r~: and leaves the pencil invariant and hence also 
acts on the set of isotropic subspaces in question. 

To complete the proof of theorem 1, we have to investigate the correspondence 
between stable (resp. semistable) bundles and stable (resp. semistable) points 
under the action of  I-IO(Q,,). 

We recall 

Definition 5.2. Let G be a reductive group acting linearly on a vector space and 
hence also on the projective space. I f  M is a projective variety invariant under G, 
a point m ~ M is said to be semistable (resp. properly stable) for the action of G, 
if it satisfies the following equivalent conditions. 

(1) There exists a G-invariant hypersurface not passing through m (resp. and 
in addition, the isotropy group at m is finite and the orbit of rn in the comple- 
ment of this hypersurface is closed). 

(2) For any one parameter group t I~  2 (t) of G, consider lim 2 (t) m ~ M. This 
t-q,0 

point is represented by a line in V on which the one parameter group acts as a 
character t I~ t ~ for some sm ~ Z.  Then s~ ~ 0 (resp. s,~ > 0). 

The equivalence of  these two conditions is proved in ([3], Chapter 2). 
For the action o f  r iO (Q~) on the space of isotropic subspaces, we have 

Proposition 5.3. A subspace V of Z'~:~ is semistable (resp. properly stable) if and 
only if for every proper family (N~) of isotropic subspaces of (~, we have 

dim (S N~) f'l V q- dim (XNXw) fl V-~. (resp. -< ) dim V. 

Proof. We will use the equivalent condition (2) in definition 5.2 to prove this. 
Any one-parameter group t t--, 2t of r i o  (Q,) can be described as follows. There 
exist isotropic subspaces iV, of  Z'se~, compatible with this orthogonal decomposi- 
tion with 

0 = N ,  C N1 C . . .  C N,  C N t  C N,a-x C . . .  C N~ C A~" =,'Yf~ = ~r 

2 t leaves all N~ invariant and induces the character t I~  tar on N~/N~_I, i := 1 , . . . ,  r 
.I. J- with a ~  a2~ . . .  ~< a, ~< 0. The action on N~/N~ is trivial, while on Ni_x/Ni 

it acts as t I~ t-~ Now if V is any isotropic subspace of Z'G, then lira ),t (V) is a 
t->0 

space on which 2 acts as on the associated graded space for the above filtration 
(N~). In other words, we have 

Sv -~ N~_~ N V q- ,~-~ ( ~  at) dim ~-N?N V 

= (dim X,  V -  dim lV,_  n 

( w w) 
q- 1 ( -  a,) dim Im V in ~ -- dim Im V in Ni-i~_a 

,..* (a~--a,+a) dim N , N  V - - d i m  Ira V i n  W 
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where we make the convention that a,+~ = 0. Since a ~ -  a~+~ are arbitrary 
negative integers, we must have 

dim N~ n v - d i m  Ira V in 

= d i m  (g~A V ) + d i m  (N~A V) -- dim V > 0, 

in order that we may have sv < 0. This proves our assertion. 
We will now investigate the equivalence among semistable points which gives 

the geometric invariant theoretic quotient. According to [31, two semistable 
points are equivalent if their orbits have a common limit point. We claim 

Proposition 5.4. Two semistable subspaces 111, V~ C Z'~,~ represent the same point 
in the quotient if and only if there exist isotropic flags (N~), (N~) C 2;~,, compatible 
with the decomposition such that the associated graded spaces V[, V~ are in the 
same G-orbit. Moreover, any semistable subspace V is equivalent to a space 
(~ V~ where each V~ is stable in ~rV~ n ~:~. 

Proof. If V is not stable, then there exists an isotropic sub-bundle N C 2 ~ ,  com- 
patible with the decomposition such that 

dim V N N + d i m  V A N  •  

Now using induction and replacing V by V n NJ-/V n N C NX/N, we can prove 
the last part of the statement. From the analysis of the stability condition, we 
see that the closure of an orbit of V under a suitable one-parameter group contains 
the associated graded of V. Finally, it remains to prove that if V~, V~ have 
different stable series, they map on distinct points in the quotient. This is clear, 
if V1 is stable since then, the orbit is closed. In general, we use induction on the 
length of the stable series and semicontinuity of rank in a family of linear trans- 
formations. 

Lemma 5.5. I f  a point V C 2 ~  is semistable for the action of HO (Q~), then 
V n ~m ----- 0 for all w. 

Proof. Indeed, take N~. ---- V A  ~,,0, and N.  = 0 for w #  w0 in proposition 5.3. 
Then semstability of V implies that 

dim (V f'l ~.,) + dim (V N (N~, + ~ ~,)) < dim V. 
W~WO 

Since V is isotropie, any v = 27~ ~ Vshould satisfy t~, 4 N~,. Hence V C N~, + 
27 r This leads to a contradiction if N~,# 0. 

In view of lemma 5.5, we claim we have a natural morphism from the open 

set of semistable points into M, where ~r is the variety over the moduli space 
M consisting of i-invariant orthogonal bundles E, together with. isomorphisms 
E~ ~ ~,, as in proposition 5. l. To see this, we need only check. 

Proposition 5.6. A semistable (resp. stable) point V corresponds to a semistable 
(resp. stable) bundle. 



Orthogonal and spin bundles over hyperelliptic curves 163 

Proof. In fact, if F is such that H I (X, F ~ a) = 0, and if H ~ (F | a)~ C Z'~:w 
is a semistable point, then we have to show that F is semistable. Let  L C F be 
any i-invariant isotropic sub-bundle. Then H ~ (X, L | a) $ C H ~ (X, F | a)* 
is a subspace contained in H ~ (X, F | a)$ A (27 (L | a)~). Taking Nw = (L ~ a)~ 
in the definition of  stable points (proposition 5.3), we get 

dim H o (X, L ~ a) $ -~- dim H o (X, L "  | a)* <~ dim H ~ (X, F r a) 1. 

This implies that 

dim H o (X, L (~ a): -- dim H 1 (X', L ~) a) :I: q- dim H ~ (X, L • '~) a)* 

- -  dim H a (X, L x (~ a)$ <~ dim H ~ ( F |  a)$. 

Using ([1], proposition 2.2), we get (setting dim ( L |  a., r k L = r )  

r -}- �89 (deg L -+- (2g -- 1) r -- 27 (r -- aw)) 

-}- n -- r -}- �89 L -t -+- (2g -- 1)(n -- r) --27(n -- r -- r~ + a+) ~< �89 w -- n) .  

i.e., n q- �89 (deg L -k- deg L • -+- (2g -- 1) n -- (2g -+- 2) n -k- Xrw) <~ �89 (27r, o a+ -- n). 

This means that  deg L -}- deg L • ~< 0, proving our assertion. 
We have thus obtained a morphism from the open subset of  semistable points 

into the required moduli ~pace. It is obvious that this morphism is IIO(Q,,)-  
invariant and hence goes down to a morphism of  the quotient variety. Moreover, 
proposition 5.1 implies that  this is an isomorphism of  the open set in the quotient 
corresponding to points representing closed orbits in the set of  semistable points 
(namely stable points), onto an open subset. Hence it follows that there is a sttr- 
jective, birational morphism of  this quotient into the moduli variety. 

Now since the moduli variety in question is a component of  the action of  i on 
the moduli of orthogonal bundles and since zhe latter is normal [5], it follows 
that the former is also normal. Finally to prove the theorem we have only to 
check that the morphism is injective. Any point in the quotient cart be repre- 
sented by ZV+ where V+ is stable in 27V~ t'l ~w. Thus 27V+is mapped on the bundle 
Z~0+ (V+), where ~o, are similar maps defined on 27V~ f'l ~,,. If  ~o (V) is S-equivalent 
to ~o (V') then it is necessary that  after a permutation of  the factors, we must have 
Co+ (V+) ,~ C01 (V~). But this implies that V+ and V+ are in the same orbit, under 
the group IIO (V+ 17 +,,). This proves that q is injective and hence that it is an 
isomorphism by Zariski's main theorem. 

6. Spin structures and low dimensional cases 

If  E is an orthogonal bundle of  odd type, then any lift P of E to a / '-bundle has 
norm of odd degree. Now the lift of/-action to E gives rise to a line bundle fl as 
in w 3, determined by the behaviour of i at w. For each such lift P of E with 
fixed norm, we obtain a lift t o / "  (q~,) of a reflection in the subspace E + with respect 
to the quadratic form qw induced from the quadratic structure on E. As we have 
seen in proposition 3.3, th.is induces an orientation on each E~, and hence we 
have analogously the 
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Theorem 2. The moduli of F+-bundles P of fixed norm of odd degree with iso- 
morphisms i*P ~ c~oP of F-bundles is isomorphic to the quotient of the 
variety of  isotropic spaces for the pencil 

XQ~, = 0, X,~w Q~, = 0, 

where Q, is a nondegerterate form on a space ~:~, by the group FISO (Q,). 

Proof. What we have to show is only that the space of  i-invariant F+-bundles 
are in (1, l)-correspondence with i-invariant orthogonal bundles modulo the group 
IISO (ET). Now the group IISO (ET)/I-IO (E,,) is isomorphic to (Z/2) w and acts 
on the set cf  F+-bundles of fixed norm with a fixed associated orthogonal bundle 
E as follows. An element of (Z/2) w can be identified (lemma 3.1) with line bundles 
whose square is 1 or h d'~rr Now if a"- = 1, it acts on a F+-bundle P by sending 
P t o  ~ o P .  I f ~ 2 " N ,  wesend  P r o  ~ l o N o i . P .  It is easy to see that  this 
action is simply transitive. Indeed, ~he subgroup (a : a 2 ---. 1} clearly acts on the 
set of  F~--bundles with a fixed associated special orthogonal lzundle E. Any element 
in the otl~er coset twists P into another F+-bundle whose associated special ortho- 
gonal bundle is not isomorphic to P (remark 3.4). This proves our assertion. 
Finally, to check that the morphism from the moduli of/ '+-bundles to the variety 
of isotropic spaces is actually an isomorphism (instead of being just bijective), we 
have to show that the inverse map is an isomorphism. But we know that the 
composite of the inverse map with the morphism into the moduli of orthogonal 
bundles is a morphism. Now this follows from the fact that, given any orthogonal 
bundle in T • X and T ~ T, there exists an etale neighbourhood U ~ T of t such 
that the induced bundle on U x X can be lifted to a F+-bundle. 

By using lemma 2.1 and the Kunneth decomposition, we cart pass to such a 
neighbourhood U that the induced bundle on U • X has the obstruction to /'e- 
lifting in H ~ (X, Z/2). But its image in H ~ (X, ~)*) is zero and hence the obstruc- 
tion to F-liftability of  the induced bundle is also zero, since it is in the image of  
H ~ (X, 0" )  ~ H 2 (U • X, 0") .  This proves theorem 2. t 

We will now make a few remarks on the dimensions of ~:~, although these ~tre 
implicit. 

Remark 6.1. When we deal with orthogonal bundles F of even rank, then the 
corresponding integers (dim F~) have the property: (w :dim F~ is odd} is of  
even cardinality. Thus we see that F has even or odd rank according as ~ dim ~:~, 
is even or odd. This also follows from ([1], proposition 2.2) since 
� 89  an integer, where E = F @ c ~ ,  deg~-----2g--1 
By construction, ~:~ is isomorphic to ET. 

We shall now consider special cases. The simplest is when all the spaces ~:, 
are one-dimensional or 0. In that case, there are no proper isotropic subspaces con- 
tained in ~:~. Moreover, the group IIO (Q,) is a finite group. If  we deal with 
F(n)-structures is such a case, then the moduli space is actually isomorphic to the 
variety of isotropic spaces. In other words, we have 

Theorem 3. The moduli space of i-invariant orthogonal bundles E of  rank 2n 
with F+-structures such that dim ((E | ct)7) = 1 for all w, where a is an i-invariant 
line bundle of  degree 2g -- 1, is isomorphic to the variety of (g + 1 -- n)-dimension 
subspaces of  k ~+2 which are isotropic to the quadrics 
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Zxg = 0 ,  27a, x ~  = 0.  

In particular, the intersection of the above two quadrics is itself a moduli space of 
F + (2n)-bundles of  the above type. 

6.2. Case of  rank 2. Let us further specialise to the case rank = 2. In this 
case, i-invariance of orthogonal bundles of determinant 1 is automatic. Thus 
we get: The Jacobian of  X is isomorphic to the variety of  g-dimensional subspaces of  
k *m+2, isotropie for ZX]  = 0 and Z21X ~ = 0. See [1, 2 and 6]. 

6.3. Case of rank 4. In this case, F + (4) is isomorphic to the subgroup of GL (2) 
X GL(2) consisting of elements (A,B) with det A.det  B =  1. The homomor- 
phism into SO(4) is given by ( A , B ) l ~  A |  On the other hand, F(4)  is the 
split extension of Z/(2) by F + (4) given by the action (.4, B) -~ (B, A), by the non- 
trivial element of Z/(2). Thus a/ '+(4)-bundle is essentially a pair of  bundles M, N 
with det M | det N-----trivial bundle. But a F(4)-bundle does not distinguish 
between M and iV. Firstly, we have: The moduli space of vector bundles of  rank 2 
andJ~ed determinant of odd degree is isomorphic to the variety of (g -- 1)-dimen- 
sional subspaces of k ~u+~", isotropic for ~y,X~ = 0 and Z2~ X~ = 0. The group of 
even changes of sign in the coordinates correspond to tensorisation by line bundles 
of  order 2. 

6.4. Case of rank 6. I f  R is a four-dimensional vector space, AR is a six-dimen- 

sional space equipped with. a AR-valued quadratic form. Thus we get a homomor- 
phism of the subgroup G = {(2, g) : 22 = det g} of k x • GL (R) into SO (6) by 

$ 

sending (2, g) to 2 -x o Ag. It is easy to see that G = F + (6). Thus a F+(6)-bundle is 
the same as the data consisting of a line bundle ~ and a vector bundle V of rank 4 
with ~2 ~ det V. Also Nm (7/, V) = ~ so that (~7, V) is of odd type if  and only 
i f  V has degree = 2 (rood 4). I f  a is any line bundle, a o (v, V) --= (~2 19 7, a | V). 
Two F+(6)-bundles (~7, V), (~/, V') are isomorphic as T'(6)-bundles if and only if 
~7=7 '  and V =  V' or V ' = ~ - i  and V' - -=~-a |  Hence an isomorphism 
(~1, V) ~ i* (7, IT) o Nm (7, V) o fl-1 for some fl with f12 = h.-deg Vyield s V ~ i ' V |  

19fl-1, or V ~  i 'V* 19fl-L Thus we deduce: Consider stable vector bundles 
of  rank 4 and fixed determinant of degree 2. Assume given an isomorphism i*V 

V* | fl-1 with f12 = h. The moduli of such objects can thus be described as 
the variety of subspaces isotropic for a pencil of quadrics. 

Remark 6.5. The constructions involved in the proof of the main theorems seem 
to be of a very general nature. For one thing, one can obtain results similar to 
[1, Theorem 3] for spin bundles with an/-action.  Furthermore, it is also possible 
to get results for symplectic bundles, etc. However one ought to be able to under- 
stand these results in a group scheme theoretic set-up. In other words, given a 
bundle with art/-action, we modify the bundle at the Weierstrass points so that 
it goes down to p1. By keeping track of  the additional structures on the quotient 
bundle, one would expect to classify bundles on X with /-action. 
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