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Signorini Problem in Hencky Plasticity.

FRANCO TOMARELLI (*)

1. — Introduction.

The goal of this note is to prove the existence of a displacement field for
an elasto-plastic body subject to Hencky’s law and the Von Mises yield func-
tion, when a rigid obstacle is present. In a previous note by B. D. Reddy and
F. Tomarelli (see[8]) this problem was solved by taking into account the ob-
stacle through a constraint acting on the whole body. Here we study the rate
problem in the strain when the constraint acts only on a part of the
boundary.

This last formulation seems interesting both for mechanical reasons (the
obstacle plays a role only on the potential contact region) and for mathemati-
cal ones: it is a starting point to study the regularity of the solutions (see for
instance the paper by G. Fichera[4], about the case of linear elasticity).

The problem is faced as a minimization of the energy functional which is
not coercive. For this reason the theory developed by C. Baiocchi, G. Buttaz-
zo, F. Gastaldi and F. Tomarelli in[3] and specialized in[8] is exploited to
find sufficient conditions in term of applied loads. The two main steps
are:

1) proving the closedness of the boundary constraint in a suitable weak
topology,

2) defining a «projection» of functions with bounded deformation into
the space of rigid body motions, such that boundary inequalities (and/or in-
clusions) are preserved.

(*) The author has been partially supported by a National Research Project of
M.P.I. and by I.A.N. of C.N.R.

Indirizzo dell’Autore: Dipartimento di Matematica - Politecnico - Piazza Leonardo
da Vinci 32, 20133 Milano.
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2. — Notation and statement of the result.

Collsider a body, in its undeformed state, which occupies a bounded do-
main Q, where Q is a bounded C! open subset of {x € R®: 23 = 0}; here z =
= {x,, 3,23} denotes the cartesian cohordinates and

v={,(®@), 1 (), v3(x)} for x€Q
denotes any displacement vector field; ¢(v) is the linear strain tensor

_Llfdn  Su) ..
51,]('0)— 9 (axj + axl) ,j=1,2,3;

B, () is the 3-dimensional open disk of radius p and center . M* is the set of
real symmetric 3 X 8 matrices; the deviator «” of any « € M2 is given by

D _ 1
Q5= &= 5 @k %5,

3

henceforth the summation convention is understood unless differently speci-
fied; a A b denotes the cross product of a,b € R3.

A vector field of body forces in Q and a surface traction vector field in 8Q
are given by mean of the potential energy associated to the generic displace-
ment v (see[8)]):

@.1) Lv=[(-v+G: )
o
where l-v=1[v;, G:e=G, ¢ ; and
2.2) le L3Q,R?), GPeC{Q,M3), G, i€ L2(Q).

In the Hencky model for perfect plasticity the deformation energy is
given, for regular v, by

@.3) E@) = f (4> CIOE (divv)z)

o

where ¢: M3— R is defined by
_ |ulsf? if |8l <k/2;
o(s) = 2 .
kls| —k*/4u  if |s|=k/2

and x, u € R, x>0 are given constants.
By relaxation of the functional (2.3) one obtains the finite energy space
(on this subject we refer to the book[9] by R. Temam and the works[1], [2]

2.4)
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by G. Anzellotti and M. Giaquinta):
2.5) P@Q)={veL'(Q,R?:v) is an M?® valued Radon
measure and divv € L*(Q)}

endowed with the norm
(2.6) Iolloi = ol o,y + iV ol + [ 12 @)
Qa

The deformation energy is still denoted with E(v) given by (2.3) for any
v € P(Q), provided | ¢ (c° (v)) is suitable interpreted when & (v) is only a mea-
sure (see[1]). We assume that there is a portion I' of the boundary such
that

2.7 I'cdQn {xz3 =0} is a smooth nonempty 2 dimensional open set.

Then
(28) 3%erl and r>0 s.t.
B,(®)NT'=B,@)n{xs=0}, B,@®nQ=B,(&)n {x3>0}.
We define the convex cone of admissible displacements:
2.9) K ={vePQ):v3(x)=0 a.e. inT}

in (2.9) a.e. means almost everywhere with respect to the 2-dimensional
Lebesgue measure. Moreover, abusing notation, in the above definition (and
whenever this does not create any ambiguity), we denote v and its interior
trace at the boundary by the same symbol. We recall that

p(@)% BD(Q)

where BD(Q) is the usual space of functions with bounded deformation
(see[7], [9]) endowed with the norm

Wl = Wl + [ leco],

and that there is a constant C, depending only on Q, such that
(2.10) Il @0,k < Clllepy » Vv € BD@).

We look for an equilibrium of the body by minimizing the total energy over
the admissible displacement fields.
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THEOREM 1. Assume (2.2), (2.8) and

@.11) fl3dx<0=flldx=jl2dx,
o fol fo]
2.12) fz/\(x—a“c)dx= 0,
Q
(2.13) IGP|L- + C@, Dl o0, r% < k,

where the constant C(Q,I) is defined in Lemma 4.2. Then the functional

| (go (@ @)+ £ (div v)?-) —Lv

o]

achieves a finite minimum over K,. ®

About the meaning of the compatibility (2.11), (2.12) and the safe load
condition (2.13) we refer to[8]. We recall the following statement.

THEOREM 2. Let Y be the dual of a separable Banach space; T c Y a se-
quentially w* closed convex cone and A:Y—> Ry {+x} a convex seq. w*
l.s.c. map(}). If 0 e TndomA and

2.14)  |yuly— 0 V sequence {y,},s.t. Yo—2>0 and  A(y,)—> A0),
(2.15) A(y)=0 VyeT,

2.16) Tnker A is a subspace;

where A” is the recession functional of A (see[3]) and

domA = {v € P(Q2): A(v) < +x},
kerA® = {v e P(Q)s.t. A" (v) = 0},

then A achieves a finite minimim over 7. R
PROOF. See[3],[8]. =

OUTLINE OF THE PROOF OF THEOREM 1. We check the assumptions of
Theorem 2, with the choices Y = P(Q) (which is the dual of a separable Ba-
nach space (see the paper[10] by R. Teman and G. Strang), T = K that is a

(!) From now, on seq. and lLs.c. stand respectively for sequentially and lower
semicontinuous.
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convex cone, and

@17 {A(v) =E@w)-Lv Vvek,,

Av) = +> Vv e PQ)\K,.

The compactness (2.14) is fulfilled. Assume to know that

2.18) 3>0:4"0) =3[ |P@)|  Wwekr,
]

then checking the necessary condition (2.15) is trivial and the compatibility
(2.16) can be deduced by (2.11), (2.12) with the same argument used in Theo-
rem 4 of [8].

So the only nontrivial assumptions to prove are: the inequality (2.18) and
the fact that K is seq. w* closed in P(Q2). This two points are shown in the
following sections (see I.emma 3.1 and Lemma 4.3). =

3. = Closedness of the set of admissible deformations.

In P(Q), which is a nonreflexive space the strongly closed convex sets are
weakly closed but not necessarily closed. Hence a Signorini (or Dirichlet)
boundary condition cannot be preserved in general by w* convergence of se-
quences. An idea to overcome this difficulty could be to relax the constraint,
say, trying to minimize

E@w)—Lv+ j %)™ da, da,
r

where (v3)” = max (0, —v;). In fact this procedure has been widely used when
minimizing functionals with linear growth at infinity: for instance, G. Anzel-
lotti and M. Giaquinta (when dealing with a Dirichlet condition in a similar
context (see Th. 2.3 of[1])) introduced a relaxation of the tangential compo-
nent of the datum but proved that the normal component can be prescribed
without relaxing it. Since in our case v; on I' is exactly the normal component
(up to the sign) of v, we can hope to impose the obstacle without any relax-
ation: and actually this works, due to the fact that the divergence lies in
L%(Q).

LEMMA 3.1. K, is sequentially w* P closed.
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PrOOF. Consider the Banach space (endowed with the natural
norm)

LY2@ = {v e L¥*(Q,R?): divv e L¥2(Q)},
”v“Li/vz ) IMI.LW(Q,RS) + ||d1v v"L“/’(o)
then
3.1) Pc {v eL3/2 (Q,Rs): dive e LZ(Q)} c Lgl/vz @)

It is well known (about the notation and results for Sobolev functions we re-
fer to[6]) that there is a (unique) trace operator y defining the normal compo-
nent along the boundary, such that, denoting by v the ouward normal to
oq,

y: Lg;/vz Q) — W-&/3,6/2) (39),
3.2) YV ="y, Vve C™(@Q,R?)
ac: ”)’vnw-a/a).(s/z)(ao) = C||v|h342 @ > Vv e Lé”,/vz Q).

Since the restriction maps W~®®@/2(3Q) into W@/ () we get
that

(o)l e WD), vye LY Q).

Coming back to our problem, abusing notation, we write simply v; instead of
—(y)|r. So
[osllw-em.omqy < C'lollgeiar < Clvllpy

where C’,C” depend only on Q,I.

Consider now a sequence v" in K., w* P(Q) converging to some v. The Ba-
nach-Steinhaus Theorem together with (3.1) give that both [v*{pq, and
Jo"||Lg2 o) are bounded uniformly in #. Since L? (Q) is reflexive, we get, up to
subsequences,

8.3) v*—>v  weakly in LY?@).
Set now
¥r={veL¥@Q):v;=0in® (I}.

%r is obviously convex, and (due to (3.2)) strongly closed in L$/?(Q). Hence
XKy is also weakly closed in L}/?(Q). From (3.1) we get

3.4) v"eX, Vn
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(3.3) and (3.4) give
3.5) vE X,

But we already know that ve P(Q). Then ve K,. ®

REMARK 3.2. Since P(Q) too is endowed with a linear and strongly con-
tinuous trace operator 7: P(Q) —» L' (32, R®) (see Theorem 1.5i of [5]), which
is uniquely determined by the following

w=vl, WVveC~@,R?,

3.6 | [Cw:p+vdive=[@®):g
o 30

Vv e BD(Q,M?),VYp e C'(Q,M?) nC°@Q,M?),

in the argument of the proof of Lemma 3.1 we used implicitely (referring to
(3.2), (3.6)), the following identity

3.7 ro=(w)v VvePQ)

and denoted by —wv; their restriction to I

The validity of (3.7) follows from the following argument. y is unique due
to (3.2) and the density of C*(Q,R®). On the other hand C* (@, R®) is not
dense in P(Q) with respect to the strong topology. Nevertheless the space
C”(Q,R?) n P(Q) n LD(Q) is dense with respect to an intermediate topology =
(here LDQ) = {v e L*(Q,R®): ¢(v) e L' (Q, M?)}, see Theorem I1.3.4 of [9]):

( v"—>v in L'(Q,R®) )
divv*—> divye wL?(Q)

V"S> iff<f6(v"):9—>fs(v):;p Vo e QM3
o] ol

[ el [ 1)
o ol

\ J

Moreover (see[9], Theorem I1.3.1) the operator r is continuous (with
values in L!(3Q,R®)) with respect to the topology o (while it is not
weakly continuous). Then, for any wveP(Q) there is {v"}, s.t.
v"e C*(Q,R*)"nP LD and v* ¢ converges to v; plugging ¢;;=¢¢;; in
(3.6) and recalling that y extends to LD(Q) since C~(Q,R®) is dense



80 FRANCO TOMARELLI
in LD(Q) (see[9]; th. 1.1.3)

[ ve= [0 Vo +edivem = [(umg, Vo, VpeC@
] o a0

and passing to the limit we get (3.7). m®
For the sake of completeness we prove (8.2): more in general we give the
following statement.

PropPOSITION 3.3. If 1<p<+ there is a linear continuous map y
s.t.

y: L&, @) — W-U/PP (30, R¥),
8.8) Yv=1v-y, Yve C*(@Q,R?)
HC s.t. "T’vuw—(l{p).v(sgxal) =< C”’U“L&'(Q) B Yv € ng (Q) .

PrROOF. For any v in C*(Q,R?) and w in W/P:?"(3Q) we have

3.9) Sl Vot +

f(v-v)w
a0

j(v-w+wdivv)
o

+Hidiv ol fholloe < flollzg, lhethws (2) < Cllollg, lnllarms aa)

since there is a linear continuous extension map from W{/??'(8Q) into
Wh?'(Q). From (3.9), the density of C™(Q, R®) in L§, and the Hahn-Banach
Theorem, there is a linear map y satisfying (3.8). =

4. - A projection onto the rigid body motion preserving boundary
inequalities.

The usual projections onto the space of rigid body motions
4.1) RBM= {ve P(Q):v(z)= Az +b, Vee, A skew-symmetric}

that leave unchanged RBM (see(5], [9]) have to be modified, in order to pre-
serve the boundary constraint. In fact such projections consist in averaging v
and its moments over open subsets of Q, but in our problem there is no
nonempty 3 dimensional open ball where the constraint v; = 0 holds. More-
over, averaging over I" only (or any subset of I) would destroy and depen-
dence on z5.
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DEFINITION 4.1. Vv e P(Q), we define ITv ¢ RBM by
(ITv)(x) = b(v) + AW)(x — &) = b)) + a@) A (& — &)

where Z is the point satisfying (2.8), while a(v), b(v) in R®, and the skew-
symmetric matrix A(v) are given by the following definitions (from now on
no summation convention is used and r is given by (2.8) too):

bi(w) = L f v@do, dv,  i=1,2,3,
ﬂ A
rnB,@®)

Aii(v)=0 i=17273,

4,00 = 2 [tols, - binde sy i<,
Sy
A() = —A; () 1>7,

where i #k #j, and
Si =B, @) n {x—2) =0} {x—52);>0}n {(x-Z);>0},
v;|s, is the trace of v; on S; from the side {(x—2),>0} =

LEMMA 4.2. The map IT: P(Q) —» RBM of Definition 4.1 is a linear con-
tinuous map with respect to the strong topology, and

4.2) Iv=v VveRBM.

Hence there is a constant C(Q, I such that

(4.3) ”?) - Hv”_LSIZ(D'Ra) = C(.Q, mf |€('v)| .
Q

PrOOF. The linearity is trivial. The continuity properties of the trace in
P(Q) entail
) 5
b@)| < — il 00, r%) < Cllvllznie) 5

7:"‘2
4]

[ 1403 =91 < € (lollir + 3, slalbrcn) < Colows
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Since «(ITv) = 0 Vv, the continuity of IT follows from the above inequalities.
Choose now v € RBM, say

4.4) v@)=b+A(x—2) with A skew-symmetric;

we have to show that ITv = v.

b(v) is defined by averaging (b + A(x — %)) over I' " B, (2); such set is con-
tained in {(x — 2); = 0} and is symmetric with respect to (¢ — 2), for £ = 1,2,
while (x —Z)— A(zx — ) is an odd function. Then A@x-z)=0 and

rnB.@)

(4.5) b(v) = b.

Now fix i#k+#7j,i<j. By using (4.4), (4.5) and the fact that

3
f(x—:@)jdxidxj= % for i#j#*k#1,
Sy

in the Definition 4.1, we get

_ 3 _ 83 A _
4;0 = 2 [ s, - biNde; o= 2 | 3 Aut@—8), de, d, =
r s, r s, h=1

-1
S Si
Hence A;(v) = A; for 1 <j, and summarizing

4.6) A;w)=A4; Vij

(4.5), (4.6) together prove (4.2). Due to (4.2) and the continuity of 17, (4.3) is a
consequence of Theorem 1.5ii of[5]. ®

LEMMA 4.3. The assumptions of Theorem 1 imply (2.18).

Proor. Referring to (2.17) we have
A”W)=+o Vv s.t. div v#0.
So, it is enough proving (2.18) Vv € K s.t. dive = 0. Obviously
4.7 by()=0 VvekK,.
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Now (2.11), (2.13), (4.3) and (4.7) give

4.8) fz-v =jz-(v—nv) +fz-[b(v) +a) A (- 3)]
Q Io] o
< Mo, ol = Mol vty < €@, Do, [ 1)
0

= 0@, Dl re) f @) WoeK, s.t. dive=0.

o

The safe load condition (2.13) and (4.8) together give (2.18). =

REMARK 4.4. The operator IT introduced by Definition 4.1 preserves not
only inequalities on I', but also inclusions:

given any closed convex subset @ c R®, one gets

vX)e@ a.e. xel'=bv)eq. N
Pervenuto in Redazione il 16 dicembre 1989.

ABSTRACT

Sufficient conditions are given, in order to have an equilibrium displacement field
for an elasto-plastic body satisfying a constraint at the boundary.
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