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Signorini Problem in Hencky Plasticity. 

FRANCO TOMARELLI (*) 

1.  - I n t r o d u c t i o n .  

The goal of this note is to prove the existence of a displacement field for 
an elasto-plastic body subject to Hencky's law and the Von Mises yield func- 
tion, when a rigid obstacle is present. In a previous note by B. D. Reddy and 
F. Tomarelli (see [8]) this problem was solved by taking into account the ob- 
stacle through a constraint acting on the whole body. Here we study the rate 
problem in the strain when the constraint acts only on a part of the 
boundary. 

This last formulation seems interesting both for mechanical reasons (the 
obstacle plays a role only on the potential contact region) and for mathemati- 
cal ones: it is a starting point to study the regularity of the solutions (see for 
instance the paper by G. Fichera [4], about the ease of linear elasticity). 

The problem is faced as a minimization of the energy functional which is 
not coercive. For this reason the theory developed by C. Baioeehi, G. Buttaz- 
zo, F. Gastaldi and F. Tomarelli in [3] and specialized in [8] is exploited to 
find sufficient conditions in term of applied loads. The two main steps 
a l e :  

1) proving the closedness of the boundary constraint in a suitable weak 
topology, 

2) defining a ,projection,, of functions with bounded deformation into 
the space of rigid body motions, such that boundary inequalities (and/or in- 
clusions) are preserved. 

(*) The author has been partially supported by a National Research Project of 
M.P.I. and by I.A.N. of C.N.R. 

Indirizzo dell'Autore: Dipartimento di Matematica - Politecnico - Piaz~ Leonardo 
da Vinci 32, 20133 Milano. 
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2. - N o t a t i o n  and s t a t e m e n t  o f  the  resul t .  

Consider a body, in its undeformed state, which occupies a bounded do- 
main ~, where D is a bounded C 1 open subset of {x eR 3  : x3>~0}; here x = 
= {xl, x2, x3 } denotes the cartesian cohordinates and 

v = {vl (x), v2 (x), v3 (x)} for x �9 

denotes any displacement vector field; r is the linear strain tensor 

~is(v)= 2 \ Oxj + -~ixi ] i , j = 1 , 2 , 3 ;  

B o (x) is the 3-dimensional open disk of radius o and center x. M a is the set of 
real symmetric 3 x 3 matrices; the deviator ~ of any ~ �9 M 3 is given by 

a.D. = 1 ~i,j 

henceforth the summation convention is understood unless differently speci- 
fied; a A b denotes the cross product of a, b e R 3 . 

A vector field of body forces in D and a surface traction vector field in aD 
are given by mean of the potential energy associated to the generic displace- 
ment v (see [8]): 

(2.1) Lv = [ ( l . v  + G: dr)) 
D 

where 1.v = livi, G: ~ = Gi, i~i,j and 

(2.2) 1 E L 3 (D, S 3 ) ,  G D E C O (~, Ms) ,  Gi, i �9 L2 (~) .  

In the Hencky model for perfect plasticity the deformation energy is 
given, for regular v, by 

l/ 

where ~: MS--. R is defined by 

~lsl 2 i f  Isl < k/2~; 
(2.4) ~(s) ~ t  

[klsI - k2/4  if 181 >I k/2  

and ;~, ~ e R, ;~ > 0 are given constants. 
By relaxation of the functional (2.3) one obtains the finite energy space 

(on this subject we refer to the book[9] by R. Temam and the works [1], [2] 
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by G. AnzeUotti and M. Giaquinta): 

(2.5) P(D) = {v �9 L 1 (D, R3): dv) is an M 3 valued Radon 

measure and divv �9 L2(D)} 

endowed with the norm 

(2.6) IlVl[P(a) -- IM[L,(~,R,) + Ildiv vl[L~) + f Id ~ (v)l. 
t) 

The deformation eoergy is still denoted with E(v) given by (2.3) for any 
v �9 P(D), provided J~ (go (v)) is suitable interpreted when ~D (V) is only a mea- 
sure (see [1]). We assume that there is a portion/~ of the boundary such 
that 

F c 0D c~ {xa = 0} is a smooth nonempty 2 dimensional open set. (2.7) 

Then 

(2.8) 3~e/" and r > 0  s.t .  

Br(~c) n r=Br (~ )n{x3=O} ,  Br(~)nD=B~(~z)n{xa>O}. 

We define the convex cone of admissible displacements: 

(2.9) Kr = {v �9 P(•): vs(x) ~> 0 a.e. in F} 

in (2.9) a.e. means almost everywhere with respect to the 2-dimensional 
Lebesgue measure. Moreover, abusing notation, in the above definition (and 
whenever this does not create any ambiguity), we denote v and its interior 
trace at the boundary by the same symbol. We recall that 

p(D)~ BD(D) 

where BD(D) is the usual space of functions with bounded deformation 
(see [7], [9]) endowed with the norm 

D 

and that there is a constant C, depending only on D, such that 

(2. 10) [~.'(aO,Rh <~ C ]M~D(o) , Vv �9 BD(D). 

We look for an equilibrium of the body by minimizing the total energy over 
the admissible displacement fields. 
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THEOREM 1. 

(2.11) 

FRANC0 TOMARELLI 

Assume (2.2), (2.8) and 

f lzdx<O-- f l ldx= f lzdx, 
D D D 

(2.12) f l A (x - ~) dx = O, 
D 

(2.13) IIGOI[L- + C(D,/') llll~,(~,R. ) < k,  

where the constant C(D,/') is defined in Lemma 4.2. Then the functional 

~ (~ (gD (v)) + 2 (div v)2) - Lv 
D 

achieves a finite minimum over Kr.  �9 

About the meaning of the compatibility (2.11), (2.12) and the safe load 
condition (2.13) we refer to [8]. We recall the following statement. 

THEOREM 2. Let Y be the dual of a separable Banach space; T c Y a se- 
quentially w* closed convex cone and A: Y - - ) R u  (+oo) a convex seq. w* 
hs.c. map(l). If 0 e T n d o m A  and 

W* 
(2.14) HY, IIY-*0 Y sequence (y .} ,  s.t .  y ,  ) 0 and A(y,)-.A(O), 

(2.15) A| Y y e T ,  

(2.16) T • ker A | is a subspace; 

where A | is the recession functional of A (see [3]) and 

domA = {v �9 P(Q): A(v) < +oo}, 

kerA ~ = {v �9 P(D)s. t. A | (v) = 0}, 

then A achieves a finite minimim over T. �9 

PROOF. See [3], [8]. �9 

OUTLINE OF THE PROOF OF THEOREM 1. W e  check the assumptions of 
Theorem 2, with the choices Y = P(D) (which is the dual of a separable Ba- 
nach space (see the paper [10] by R. Teman and G. Strang), T = Kr that is a 

(i) From now, on seq. and l.s.c, stand respectively for sequentially and lower 
semicontinuous. 
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convex cone, and 

(2.17) t 
A(v) = E(v)  - L v  Vv e Kr ,  

A(v) = + ~ Vv  e P ( D ) \ K r .  

The compactness (2.14) is fulfilled. Assume to know that 

(2.18) 3~>O:A| V v e K r ,  

D 

then checking the necessary condition (2.15) is trivial and the compatibility 
(2.16) can be deduced by (2.11), (2.12) with the same argument used in Theo- 
rem 4 of[8]. 

So the only nontrivial assumptions to prove are: the inequality (2.18) and 
the fact that Kr is seq. w* closed in P(D). This two points are shown in the 
following sections (see Lemma 3.1 and Lemma 4.3). �9 

3. - Closedness  o f  the  set o f  admiss ible  deformat ions .  

In P(D), which is a nonreflexive space the strongly closed convex sets are 
weakly closed but not necessarily closed. Hence a Signorini (or Dirichlet) 
boundary condition cannot be preserved in general by w* convergence of se- 
quences. An idea to overcome this difficulty could be to relax the constraint, 
say, trying to minimize 

E(v)  - L v  + f(v3) - dXl dx2 
F 

where (Vs)- = max (0, -v3). In fact this procedure has been widely used when 
minimizing functionals with linear growth at infinity: for instance, G. Anzel- 
lotti and M. Giaquinta (when dealing with a Dirichlet condition in a similar 
context (see Th. 2.3 of[l])) introduced a relaxation of the tangential compo- 
nent of the datum but proved that the normal component can be prescribed 
without relaxing it. Since in our case v3 on / '  is exactly the normal component 
(up to the sign) of v, we can hope to impose the obstacle without any relax- 
ation: and actually this works, due to the fact that the divergence lies in 
L2(D). 

LEMMA 3.1. Kr  is sequent ia l l y  w * P  closed. 
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PROOF. 
norm)  

then 

(3.1) 

FRANCO TOMARELLI 

Consider the Banach space (endowed with 

L3/2 L312 L3/2 div (~ = {V �9 ( ~ , R 3 ) :  divv �9 (O)}, 

living,,, IHL.,,(o..,) * Hdiv vllL'/'(o) 

the natural 

P c {v �9 L 31z (O, R3): div v �9 L z (O)} c L~/f (O) 

It is well known (about the notation and results for Sobolev functions we re- 
fer to [6]) that there is a (unique) trace operator ~, defining the normal compo- 
nent along the boundary, such that, denoting by ~ the ouward normal to 
an, 

f . .  3/2r ,~ -(213),(31z) it: L,~v (~,--> W (a~,, 

(3.2) /~ W = V'v,  VV �9 C | ( ~ , R  3) 
/ 

r3 /2  

restriction maps W-(2/3)'(312)(~'~) into W-(213)'(312)(I"), we get Since the 
that 

(~fl))IF �9 W-(213)'(312)(1-'~), Vv �9 L3~(D). 

Coming back to our problem, abusing notation, we write simply v3 instead of 
-(rv)lr. So 

IIv311w-,,,,,,~,,,r <~ C'llvlk~(,~) < C"llvl~,~) 

where C', C" depend only on O,F. 
Consider now a sequence v" in Kr, w* P(O) converging to some v. The Ba- 

naeh-Steinhaus Theorem together with (3.1) give that both IIv%c~) and 
I~"ll~,~) are bounded uniformly in n. Since L~h/f (O) is reflexive, we get, up to 
subsequences, 

(3.3) 

Set now 

v"--, v weakly in r3/2 ~ , ~ v  (~). 

~r  = {v �9 L3~ (D): v3 ~> 0 in 6~' (/3}. 

:Xr is obviously convex, and (due to (3.2)) strongly closed in L3~ (D). Hence 
:~r is also weakly closed in L 3/2 (D). From (3.1) we get 

(3.4) v" �9 :Xr Yn 
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(3.3) and (3.4) give 

(3.5) v �9 ~ r .  

But we already know that v �9 P(t)). Then v �9 Kr. �9 

REMARK 3.2. Since P(O) too is endowed with a linear and strongly con- 
tinuous trace operator ~: P(D)---)L~(aO, R a) (see Theorem 1.5i of [5]), which 
is uniquely determined by the following 

(3.6) 
I T/) ---- VlD 

j(~(v): ~ + 

Vv �9 C| 

v. div ~) = f (w | v): 
o~ 

Yv �9 BD(O, MS), V~ �9 C 1 (s M s) (~ C O (~, M3), 

in the argument of the proof of Lemma 3.1 we used implicitely (referring to 
(3.2), (3.6)), the following identity 

(3.7) ~v = (rv)-v Vv �9 P(D) 

and denoted by -vs  their restriction to F. 
The validity of (3.7) follows from the following argument. ~, is unique due 

to (3.2) and the density of C| R3). On the other hand C| s) is not 
dense in P(O) with respect to the strong topology. Nevertheless the space 
C | (~, R 3) n P(D) n LD(O) is dense with respect to an intermediate topology 
(here LD(D) = {v �9 L 1 (O, R s): dr)  �9 L l (D, MS)}, see Theorem II.3.4 of [9]): 

v" ~ v iff 

v " - - ) v  in LI(O,R s) 

div v"--) divv wL2(O) 

f --) �9 M 

D ~ 

Moreover (see[9], Theorem II.3.1) the operator r is continuous (with 
values in Lx(aO, RS)) with respect to the topology ~ (while it is not 
weakly continuous). Then, for any v eP(D)  there is {v"}, s.t. 
v " e  C| 3) n P n LD and v" ~ converges to v; plugging ~i,j = r in 
(3.6) and recalling that ~, extends to LD(O) since C| s) is dense 
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in LD(D) (see[9]; th. 1.1.3) 

[(~v").~=/(v"V~+~divv")= [(rv")~, Vn, V~eC| 
0D D 8~ 

and passing to the limit we get (3.7). �9 
For the sake of completeness we prove (3.2): more in general we give the 

following statement. 

PROPOSITION 3.3. If 1 ~< p < +o0 there is a linear continuous map r 
s.t. 

(3.8) I 
V: L~v (D) - *  W-(1/P)'P(aD,R3), 
rv = v'~ , Vv E C| ( 5 , R  ~) 

3C s. t. IITVlIw-,,,~,.,(~.R, ) ~ CI~vI~,(D), Vv e L~-, (D). 

PROOF. For any v in C |  3) and w in W(~/P)'f (OD) we have 

+lldiv vlk, Ilwlk, ~ I/~k~, I~lw,., (~) ~< cllvfk~. I~k,,,,,., (~) 

since there is a linear continuous extension map from W(Zh'),r into 
WI'P'(D). From (3.9), the density of C ~ ( D , R  a) in L~v and the Hahn-Banach 
Theorem, there is a linear map ~" satisfying (3.8). �9 

4 . -  A projection onto the rigid body motion preserving boundary 
inequalities. 

The usual projections onto the space of rigid body motions 

(4.1) R B M  =- {v e P(D): v(x) = A x  + b, Vx e D, A skew-symmetric} 

that leave unchanged R B M  (see [5], [9]) have to be modified, in order to pre- 
serve the boundary constraint. In fact such projections consist in averaging v 
and its moments over open subsets of D, but in our problem there is no 
nonempty 3 dimensional open ball where the constraint v3 ~> 0 holds. More- 
over, averaging over r only (or any subset o f /3  would destroy and depen- 
dence on x3. 



SIGNORINI PROBLEM IN HENCKY PLASTICITY 81 

DEFINITION 4.1. VV ~ P(ig), we define I-Iv ~ RBM by 

(IIv)(x) = b(v) + A(v)(x  - ~r = b(v) + a(v) A (x - ~) 

where ~ is the point satisfying (2.8), while a(v), b(v) in R 3 , and the skew- 
symmetric matrix A(v)  are given by the following dei'mitions (from now on 
no s u m m a t i o n  convent ion is used and r is given by (2.8) too): 

i f  bi (v) = ~ 2  vi (x) dx  1 dx9 i = 1, 2, 3, 

r n B,.(~) 

Aii(v)  = 0 i = 1,2,3,  

Ao(v )  = "-~ [ v i l s , - b i ( v ) ] dx i  dx~ i < j ,  

Sk 

Ai~ (v) = - A i i  (v) i > j ,  

where i r k r j ,  and 

Sk = B y ( } )  n { ( x  - })k = 0} n {(X -- ~)~ > 0} n {(X -- ~)~ > 0 ) ,  

vi Is, is the trace of vi on Sk from the side {(x - x)a > 0} �9 

LEM.MA 4.2. The map H: P(D)--~ R B M  of Definition 4.1 is a linear con- 
tinuous map with respect to the strong topology, and 

(4.2) I l v  = v Y v  e R B M .  

Hence there is a constant C(~, r)  such that  

(4.3) I}v -llvl~/~(~.R,)<~ C(D, F ) f  le(v)i �9 

PROOF. The linearity is trivial. The continuity properties of the trace in 
P(D) entail 
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Since ~(Hv) -- 0 Vv, the continuity of/7 follows from the above inequalities. 
Choose now v �9 R B M ,  say 

(4.4) v(x) = b + A ( x  - ~) with A skew-symmetric; 

we have to show that/Tv = v. 
b(v) is defined by averaging (b + A ( x -  ~)) over F n Br (~); such set is con- 

tained in {(x - x)3 --- 0} and is symmetric with respect to (x - x)h for h -- 1, 2, 

w h ~ e  (x - ~)--* A ( x  - 4) is an odd function. Then ] A ( x  - ~) = 0 and 

r ~ B,(~) 

(4.5) b(v) = b. 

Now fix i C k  C j ,  i < j .  By using (4.4), (4.5) and the fact that 

f (x - ~)j dxi dxj = r3 -~- for i C j C k r  
S~ 

in the Definition 4.1, we get 

%s f ~ (x - x)h dxi dxJ = A~j(v)  = -~_~ [v i I s , -  b i (v)]dx~ dxj  = 3 3 
h = l  

(x - ~)j dx~ Aij (x - ~)j dxi dxj  = A 0 . 
S ] S~ 

Hence A i j ( v ) =  Aiy for i < j ,  and summarizing 

(4.6) A~j (v) = Aij Vi, j 

(4.5), (4.6) together prove (4.2). Due to (4.2) and the continuity of/ / ,  (4.3) is a 
consequence of Theorem 1.5ii of[5]. �9 

LEMMA 4.3. The assumptions of Theorem 1 imply (2.18). 

PROOF. Referring to (2.17) we have 

A |  Vv s.t .  div v ~ 0 .  

So, it is enough proving (2.18) Vv �9 K r s . t .  divv -- 0. Obviously 

(4.7) b3 (v) I> 0 Vv �9 Kr .  
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Now (2.11), (2.13), (4.3) and (4.7) give 

(4.8) [ l . v  = [ l . ( v -  llv) + [1.[b(v) + a(v) A (x - 
D t) 

O 

= C(l?.l")[[l[[c.(~.,.) f [cD(v)l Yv  e Kr s . t .  divv--- 0. 
D 

The safe load condition (2.13) and (4.8) together  give (2.18). �9 

REMARK 4.4. The operator/7 introduced by Definition 4.1 preserves not 
only inequalities on F, but also inclusions: 

given any closed convex subset Q c R 3, one gets 

v(x) �9 Q a. e. x �9 F =*. b(v) �9 Q. " 

Pervenuto in Redazione il 16 dicembre 1989. 

ABSTRACT 

Sufficient conditions are given, in order to have an equilibrium displacement field 
for an elasto-plastic body satisfying a constraint at the boundary. 
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