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Some Remarks on the de Franchis Theorem. 

A. A L Z A T I -  G. P. PIROLA(*) 

1.  - I n t r o d u c t i o n .  

Let X be a smooth projective curve on C of genus g _> 2 and let Hol (X) be 
the set of all surjective holomorphic maps between X and another curve of 
genus of g - 2 ;  the classical de Franchis theorem (see [dF] and [S]) assures 
that  Hol (X) is finite. 

In 1983 Howard and Sommese gave an explicit, but not sharp, bound for 
Hol (X): 

1)2+2g~ / ~..\g(g-z) 
(2 X/'6 (g - 1) + g 2 ( g  _ 1) IV2) + 84 (g - 1). 

Notice that a polynomial bound is not possible: in fact in 1986, (see [K]), 
Kani proved that  the size of Hol (X) can not be limited by a polynomial in g 
and showed that  it is bounded by: 

( g  - 1) 2~2 -2 (2292 -1  _ 1 ) .  

In this paper (Th. (4.1)) we improve these bounds. More precisely: let 
[x] denote the integer part of a real number x, we show that  Hol (X) can be 
bounded by: 

exp{(4/3) log(3)(g 2 -  1)+ [log2(g)] log(84g)+ log(12V~)}.  

We remark that  
exp [(4/3) log (3) g2]; 
exp [4 log (2) g2]. 

the leading term in the previous expression is: 
while in Kani's bound the leading term was: 
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27100 Pavia; both authors are members of the G.N.S.A.G.A. of the italian 
C.N.R. 
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Our technique is based on the following idea: firstly we consider only the 
primitive maps; roughly speaking they are maps, from X to another curve, 
which are not isomorphisms and do not factorize through other maps, (see 
Definition (3.1)). 

We obtain a bound for the number of these maps: exp [g2 log (3)], (see Th. 
(3.13)), in the following way: we send the primitive maps, injectively, in 
H~,,(X c2) , R), where X ~2) is the symmetric product of X; so we get a finite 
number of homology classes with some numerical properties. We give a met- 
ric to H1,1 (Xr , R) so that these homology classes become points in a ball of 
an euclidean space, (the idea is due to Howard and Sommese, but they use 
the Cartesian product instead of X r so they work in a higher dimensional 
space). So we have to consider a packing problem which we solve by follow- 
ing the method of Kani, (see (3.12)). 

From the number of primitive maps we get a bound for the size of Hol (X) 
by counting all possible factorizations and isomorphisms in a final calcula- 
tion, (see w 

We do not think that our result is the better one: for instance see (4.3) and also 
remark that the endomorphisms of J(X) induced by maps are very special, by ad- 
mitting a big kernel; therefore our homology classes are very special too, but we 
have never considered this fact. Anyway, to obtain a truly better bound, we 
think that the strategy would be to characterize the endomorphisms of J(X) be- 
coming from maps and not to characterize these homology classes. 

2. - N o t a t i o n  a n d  c o n v e n t i o n s .  

curve: 

X/-: 
X• 

A: 

Ti: 

S f :  

XC2): 

re: 

Rs: 
by: 
dr: 

by this term we mean a projective smooth curve on C 

quotient curve of X by the equivalence relation ~ - ,  

Cartesian product of the curve X with itself 

fibre over a generic point of the i-th factor of X x X 

diagonal of X x X 

{(P, Q) e X x X If(P) = f(Q)} where f is a holomorphic map between 
two curves X and Y 

Tf-  A 
symmetric product of the curve X with itself 

double covering map between X • X and X r 

=, (Sf) 
total branching index o f f  

deg(f) .  
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In this paper all maps are supposed to be non constant and all curves are 
supposed to have genus bigger than or equal to 2. 

If D and E are divisors on a surface, DE will be their intersection. 

3 .  - P r i m i t i v e  m a p s .  

DEFINITION (3.1). Let ~'(X) be the set of all holomorphic maps f be- 
tween a fixed curve X and another curve Y, Y ~ X, such that there is not a 
third curve Z, Z C X and Z 4: Y, and two holomorphic maps hi :X- - - )Z  and 
h~: Z-- .  Y such that f =/vz o hi. 

We introduce the following equivalence relation in 5'(X): two m a p s f a n d  h 
of ~'(X), between X and another distinct curve X', are equivalent if there 
exists such a commutative diagram: 

f 
X ~X'  

X ~'X' 
h 

in which the vertical arrows are isomorphisms, (eventually the identities on 
X or X'). 

The set P(X) of the primitive maps will be the set 8'(X) modulo the previously 
defined equivalence relation; so that when we say: ~fis a primitive map,, we mean 
that f e  ~'(X) is a representative of its equivalence class in P(X). 

REMARK (3.2). The map P ( X ) - . D i v ( X  •  which associates the divi- 
sor S I to every primitive map f, is well defined. 

PROPOSITION (3.3). Let f and h be two maps between X and another 
curve; i f  there exists a divisor D of X • X which is common to S fand  Sh , then 
f and h are not primitive maps. 

PROOF. We consider the following relation ~--,, on X: P - Q if and only if 
P = Q or (P, Q) e D VP, Q e X. As D is a non empty, effective, symmetric divisor 
o fX • X, - - , ,  is a non trivial equivalence relation on X. If we define Y = X / -  we 
get a map q: X - ,  Y; it is easy to see that f and h factorize through q. [] 

COROLLARY (3.4). Let f and h be two primitive maps between X and an- 
other curve; then S fS  h ~ O. I f  we consider the two classes [Sf] and [Sh] in 
H1,1 (X • X, Z) we also have [Sf] [Sh] = SfSh >- O. 



48 A. ALZATI - G. P. PIROLA 

COROLLARY (3.5). The map { f e P ( X ) ) - - .  ([Sf]eHI, I ( X x X ,  Z)) is in- 
jective (see also [H-S], Lemma 2). 

PROOF. If [Sf] = [Sh] for two distinct primitive maps f and h then: 
[Sf][Sh] = [Sf][Sf] = (Sf) 2 = (df-  1)(2 - 2g) § (df-  2)bf < 2 - 2g < 0 (see [H-S], 
p. 431), which is a contradiction to Corollary (3.4). [] 

COROLLARY (3.6). The map ( f  e P(X)) ~ ([Rf] �9 HI, I (X(2),Z)) is injec- 
rive. (We recall that Rf = 7~. (Sf)). 

PROOF. Let A, B be two symmetric divisors of X • X, we have that 
2{~. (A) =. (B)} = AB; therefore RfRh t> 0 if and only if SfSh ~ O. Then we 
can proceed as in the proof of (3.5). [] 

PROPOSITION (3.7). Let F be 7~. (F~) = =.(F2), the s~andard hyperplane 
of X(2); we have RfF = d f - 1  (see [H-S], p. 430). The map 

{ f e  P(X)) ~ ([Rf- (df-  1)F] �9 H1,1 (X r ,Z)) 

is injective and, obviously, (R f -  (dr- 1)F)F  = 0. 

PROOF. We have only to show that, i f f  and h are two distinct primitive 
maps, then [Rf -  ( d f -  1)F] r [Rh - (dh - 1)F]. If not, we would have 

[Rf] = [R, + (df-dh) F] and Rf(Rh + (df-dh) r )  = (Rf)2 • O, 

hence Rf and Rh + (df-  dh)F would have common components, hence Sf and 
Sh + (df-dh)(F1 + F2) would have common components; but it is impossible 
because Sf and Sh have no common components as f and h are primitive, and 
S I, Sh do not contain neither F1 nor F2, otherwise f or h would be constant 
maps. [::] 

REMARK (3.8). (3.5), (3.6), (3.7) are true even if we substitute the usual 
homology classes with real homology classes. 

From now on we confuse the divisors D, Sf, R/etc. with their homology 
classes. 

We recall that Howard and Sommese consider Ht, 1 (X x X,R)  and they 
give a metric to it (see[H-S], p. 433). We can give a similar metric to 
HI, I(Xr we remark that F 2= 1 > 0; by the Hodge index theorem 
(see [G-H], p. 472) we must have D2<  0 for every real non zero homology 
class of type (1.1) which satisfies FD = O. 
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For  every  D �9 HI, I(X(Z),R) we set: D = D1 + D2, where  D1 = (DF)F and 
/ ) 2 - - D -  D1, (so that  DzF = 0); the norm Ig)[I is defined by: 

I~DI~ = (O1) 2 - (D2) 2 . 

I t  is a norm since (D1)Z~ > 0 and - (D2)  2 I> 0, with both zero implying 
D1 = 0 (since F 2 > 0) and/92 = 0 by the Hodge theorem. Le t  m be the dimen- 
sion of H1,1 (X(2) , R)  as a real, normed, vector  space, we call 0 its origin. For  
every  class Rf, the class R f -  (d~- 1 )F  is the orthogonal projection of Rf  onto 
the hyperplane which is orthogonal to the class F and passes through 
O. 

From now on we put: V--H1,  ~(X (2) ,R)  and we call vectors  the classes 
of V. We have the following: 

LEMMA (3.9). For every vector R f  ( f  being a primitive map as usual), 
the angle between Rf  and F (in V) is always less than a right angle. 

PROOF. We only need to calculate the cosine of this angle by  the previ- 
ously defined metric. It  is: (df-1)/I~R~II~I > 0. [] 

LEMMA 3.10. On every line passing through 0 in V, there exists at most 
one vector Rf. 

PROOF. Suppose that  for two distinct primitive maps f and h we have: 
Ra = aRf  for some a �9 R,  a r 0. Then: 0 < RfRh = a(Rf) 2 , but  (Rf) 2 < 0, 
(see [H-S] p. 431 and recall the proof of Corollary (3.6)) hence a < 0: it is im- 
possible by Lemma (3.9). [] 

PROPOSITION (3.11). Let f i  h be two distinct primitive maps, then the co- 
sine of the angle between the two vectors R f -  ( d f -  1) F and  Ra - (da - 1) F in 
V is less than 1/2. 

PROOF. We calculate: 

- [ R e -  ( d r -  1 )F] [R,  - ( d , -  1 ) F ] / H R f -  ( d f -  1)F][ IIR~ - (d, - 1)FH ~< - R f R ,  + 

+ ( d r -  1)(d, - 1)/([(g - 1)(dr-  1) + ( d f -  1)2][(g - 1)(dh - 1) + (d, - 1)2]) m < 

<: ( d f -  1 ) ( d , -  1 ) / ( [2(dr -  1)2][2(dh - 1)2]) lf2 = 1/2.  [] 

Now we need the following: 

PACKING LEMMA (3.12) (see[K] p. 194), Suppose a and b are real numbers 
with b< 1 and 2(1 - a  2) >1 1 - b, and let vo,vl ,  ...,vN be a f inite sequence of  
non zero vectors of  a real euclidean vector space V, whose dimension is m. 
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Suppose that: 

i) cos (Vo, vi) = a, for 1 <<. i <<. N, 

ii) cos(vi, vy) ~< b, fo r  1 ~< i<j<<.N. 

Then, putting c = [2 (1-  aZ) / (1-  b)] 1/2 , we have: 

N ~< (e + 1) ~ -  1 _ (c - 1) ~ -  1. 

Now we are ready to prove our: 

THEOREM (3.13). The number of elements of P(X) is less than 
exp [g2 log(3)]. 

PROOF. By Proposition (3.7) and Lemma (3.10) we can say that the num- 
ber  of primitive maps, from X to another curve, is less than the cardinality N 
of a certain set of non zero vectors in V, no two of them lying on the same 
line, each of them belonging to the hyperplane orthogonal to F which passes 
through O. 

By Proposition (3.11) we can apply the packing Lemma (3.12) to this set 
of vectors of V with the adjunction of Vo --- F.  We have: a = 0 and b = 1/2 and 
m = g2 + 1, because V =//1,1 (X (2) , R) is the Poincar~ dual of H 1' 1 (X(2), R), 
whose dimension is g2+ 1. So our theorem follows from (3.11). [] 

4. - The main theorem. 

THEOREM 4.1. The number of holomorphic maps from a curve X to an- 
other curve, (both of genus bigger than or equal to 2) is less than: 

exp [(4/3) log(3)(g 2-1) + [log2(g)] log(84g)+ log (12 ~f2)}. 

PROOF. By (3.13) we know that the number of surjective maps between X 
and another curve Y, Y ~ X, eventually composed by an isomorphism of X, 
but  not by an isomorphism of Y, is less than: 

exp [log (3) g2] 84 (g - 1). 

The target curve has genus g/2 at most, we can repeat the previous calcu- 
lation for this curve and so on. 

We put s = [ log2(g) -  1] if g is not a power of 2, s = log2 ( g ) -  2 if g is a 
power of 2. A map from X can be broken out into s + 1 different primitive 
maps at most; at each level we must compute all possible isomorphisms. So 
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that  the number we are looking for is less than: 

{exp [log (3) g2]} 84(g - 1). (exp [log (3) (g/2)2]) 84[(g/2) - 1] . . . .  

. . .-  (exp [log (3) (g/28) 2 ]} 84[(g/2`) - 1)]. 48. 

The last factor 48 is necessary to count the isomorphisms of genus 2 
curve, they are 48 at  most, (see [ACGH] p. 46). 

Now by looking at: 

g2 + (g/2)2 + (g/4)2 + . . .  + (g/2,)2 < (4/3)(g2 _ 1), 

(g - 1)(g/2 - 1)(g/4 - 1)... (g/2" - 1) = 

= ( g  - 1 ) ( g  - 2 ) ( g  - 4 ) . . .  (g  - 2") 2"(8 + 1)/2 < g ,  + x / V 8  

we get our assertion. [] 

REMARK (4.2). For  g small (e.g. for g = 3) the previous calculation can be 
sharpened, but we recall that  we are looking for a bound true for all g. 

REMARK (4.3). We believe that  our bound for primitive maps is good; in 
spite of this, our final bound is still not sharp: in fact look at  the following 
commutative diagram: 

f 
X ~X" 

X' ~X"  
h 

in which X, X' ,  X" and X"' are four distinct curves, and f i  g, h, k are four 
holomorphic maps; in our calculation the map hog  = k o f  counts twice, and 
we are not able to control this case. 

Pervenuto in Redazione il 5 ot~obre 1989. 

SUMMARY 

Let X be a smooth projective curve defined on C. The number of holomorphic maps 
from a fixed X to another curve, (both of genus bigger than or equal to two), is finite by 
the classical de Franchis theorem. In this paper we get an explicit bound for this num- 
ber, depending on the genus of X only. Our bound is better than all the previously 
given ones (by Howard-Sommese and Kani). 
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SOMMARIO 

Sia X una curva liscia proiettiva definita su C. II numero deUe applicazioni olomorfe 
esistenti tra una X fissata ed un'altra curva, (entrambe di genere maggiore od uguale a 
due), ~ fmito in base al classico teorema di de Franchis. In questo lavoro noi otteniamo, 
per tale nnmero, un limite superiore esplicito, dipendente solo dal genere di X. La no- 
stra stima ~ migliore di tutte quelle date precedentemente (da Howard-Sommese e da 
Kani). 
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