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Some Remarks on the de Franchis Theorem.

A. ALZATI - G. P. PIROLA (¥)

1. - Introduction.

Let X be a smooth projective curve on C of genus g =2 and let Hol(X) be
the set of all surjective holomorphic maps between X and another curve of
genus of g=2; the classical de Franchis theorem (see[dF] and[S]) assures
that Hol (X) is finite.

In 1983 Howard and Sommese gave an explicit, but not sharp, bound for

Hol (X):

(2VB(g-1+ 1)“”2 g% g-1) (\/E)”_D +84(g—1).

Notice that a polynomial bound is not possible: in fact in 1986, (see[K]),
Kani proved that the size of Hol (X) can not be limited by a polynomial in g
and showed that it is bounded by:

(g—1)2%" 2@ -1 1),

In this paper (Th. (4.1)) we improve these bounds. More precisely: let
[x] denote the integer part of a real number x, we show that Hol (X) can be
bounded by:

exp{(4/3) 1og(®) (9"~ 1 + [log (9] log B4g) +log (12V2)}.

We remark that the leading term in the previous expression is:
exp[(4/3) log(8)g?%]; while in Kani’s bound the leading term was:
exp [4 log (2) g°].

(*) Indirizzo degli autori: A. ALZATI: Dip. di Mat., Univ. di Milano, via C. Saldini
50, 20133 Milano; G. P. PiroLA: Dip. di Mat., Univ. di Pavia, via Strada Nuova 65,
27100 Pavia; both authors are members of the G.N.S.A.G.A. of the italian
C.N.R.
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Our technique is based on the following idea: firstly we consider only the
primitive maps; roughly speaking they are maps, from X to another curve,
which are not isomorphisms and do not factorize through other maps, (see
Definition (3.1)).

We obtain a bound for the number of these maps: exp [g? log (3)], (see Th.
(3.13)), in the following way: we send the primitive maps, injectively, in
H,(X®,R), where X® is the symmetric product of X; so we get a finite
number of homology classes with some numerical properties. We give a met-
ric to Hy,; (X®, R) so that these homology classes become points in a ball of
an euclidean space, (the idea is due to Howard and Sommese, but they use
the Cartesian product instead of X® so they work in a higher dimensional
space). So we have to consider a packing problem which we solve by follow-
ing the method of Kani, (see (3.12)).

From the number of primitive maps we get a bound for the size of Hol (X)
by counting all possible factorizations and isomorphisms in a final calcula-
tion, (see §4).

We do not think that our result is the better one: for instance see (4.3) and also
remark that the endomorphisms of J(X) induced by maps are very special, by ad-
mitting a big kernel; therefore our homology classes are very special too, but we
have never considered this fact. Anyway, to obtain a truly better bound, we
think that the strategy would be to characterize the endomorphisms of J(X) be-
coming from maps and not to characterize these homology classes.

2. - Notation and conventions.

curve: by this term we mean a projective smooth curve on C
X/~: quotient curve of X by the equivalence relation «~»
X X X: Cartesian product of the curve X with itself

Fy fibre over a generic point of the i-th factor of X x X
A: diagonal of X x X

Ty {(P,@ e X x X | fAP) = flQ)} where f is a holomorphic map between
two curves X and Y

Sy T,—A
X®:  symmetric product of the curve X with itself
3 double covering map between X X X and X®
R;: 7 (Sp)

by: total branching index of f
dy: deg (f).
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In this paper all maps are supposed to be non constant and all curves are
supposed to have genus bigger than or equal to 2.
If D and F are divisors on a surface, DE will be their intersection.

3. — Primitive maps.

DEFINITION (3.1). Let #(X) be the set of all holomorphic maps f be-
tween a fixed curve X and another curve Y, Y # X, such that there is not a
third curve Z, Z+#X and Z #Y, and two holomorphic maps k,: X — Z and
hy: Z— Y such that f=hyoh,.

We introduce the following equivalence relation in $(X): two maps fand &
of #(X), between X and another distinct curve X', are equivalent if there
exists such a commutative diagram:

f

X—X

i b

X—X

h

in which the vertical arrows are isomorphisms, (eventually the identities on
X or X').

The set P(X) of the primitive maps will be the set $(X) modulo the previously
defined equivalence relation; so that when we say: «fis a primitive map» we mean
that f e P(X) is a representative of its equivalence class in P(X).

REMARK (3.2). The map P(X)—s Div(X X X) which associates the divi-
sor S; to every primitive map f, is well defined.

PROPOSITION (3.3). Let f and h be two maps between X and another
curve; if there exists a divisor D of X x X which is common to Spand S;,, then
J and h are not primitive maps.

ProOF. We consider the following relation «~» on X: P~ Q if and only if
P=Qor(P,Q)eD VP,Q e X. As D is anon empty, effective, symmetric divisor
of X x X, «~» is a non trivial equivalence relation on X. If we define Y = X/~ we
get a map ¢: X—Y; it is easy to see that f and h factorize through q. O

COROLLARY (3.4). Let f and h be two primitive maps between X and an-
other curve; then S;S, = 0. If we consider the two classes [S;] and [S:] in
H, (X xX,Z) we also have [S;1[Sy]1= 5,5, = 0.
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COROLLARY (3.5). The map {fe P(X)}— {[Sfl€ H,;(X X X, Z)} is in-
jective (see also[H-S], Lemma 2).

Proor. If [S;]=[S,] for two distinct primitive maps f and h then:
[S/1[S] = [SALS/] = (S = (dy— 1)(2 — 29) + (ds — 2)b; < 2 — 29 < O (see [H-S],
p. 431), which is a contradiction to Corollary (3.4). 0O

COROLLARY (3.6). The map {fe P(X)}— {[R/l € H, ,(X®,Z)} is injec-
tive. (We recall that R, = , (Sp).

PrROOF. Let A, B be two symmetric divisors of X X X, we have that
2{r4(A) ny (B)} = AB; therefore RsR;, =0 if and only if S;S, = 0. Then we
can proceed as in the proof of (3.5). 0O

PROPOSITION (3.7). Let F be =, (Fy) = 7y (F3), the standard hyperplane
of X®; we have R;F = d;— 1 (see[H-S], p. 480). The map

{fe PXD} > (R;~ d;— ) F e Hy ,(X?, 2)}
18 injective and, obviously, (R;— (d;~1)F)F = 0.

ProOF. We have only to show that, if f and % are two distinct primitive
maps, then [R;—(d;— 1) F] # [R), - (d,— 1) F]. If not, we would have

[R]=[Ry+(ds—dp)F]1 and R;(Ry+(d—dy)F) = (R)*<0,

hence R; and R}, + (d;— d;,) F would have common components, hence Sy and
Sy + (ds— dp)(F, + F3) would have common components; but it is impossible
because Sy and S, have no common components as f and & are primitive, and
S¢, Sy do not contain neither F, nor F;, otherwise f or & would be constant
maps. O

REMARK (3.8). (3.5), (8.6), (8.7) are true even if we substitute the usual
homology classes with real homology classes.

From now on we confuse the divisors D, Sy, Ry ete. with their homology
classes.

We recall that Howard and Sommese consider H, ; (X X X, R) and they
give a metric to it (see[H-S], p. 433). We can give a similar metric to
H, (X® R); we remark that FZ=1>0; by the Hodge index theorem
(see[G-H], p. 472) we must have D?< 0 for every real non zero homology
class of type (1.1) which satisfies FD =0.



SOME REMARKS ON THE DE FRANCHIS THEOREM 49

For every D € H, , (X®, R) we set: D = D, + D,, where D, = (DF)F and
D;=D—-D,, (so that D, F = 0); the norm ||D|| is defined by:

IDIF = (D1)* - (D)? .

It is a norm since (D;)?=0 and —(D,)*=0, with both zero implying
D, = 0 (since F%2 > 0) and D, = 0 by the Hodge theorem. Let m be the dimen-
sion of H, | (X®, R) as a real, normed, vector space, we call O its origin. For
every class Ry, the class R, — (d;— 1) F is the orthogonal projection of R, onto
the hyperplane which is orthogonal to the class F and passes through
0.

From now on we put: V=H, ;(X®,R) and we call vectors the classes
of V. We have the following:

LEMMA (3.9). For every vector R; (f being a primitive map as usual),
the angle between R, and F (in V) is always less than a right angle.

PrROOF. We only need to calculate the cosine of this angle by the previ-
ously defined metric. It is: (d;— 1)/||RA||F]|>0. O

LEMMA 3.10. On every line passing through O in V, there exists at most
one vector R.

PrOOF. Suppose that for two distinct primitive maps f and # we have:
Ry =aR; for some aeR, a#0. Then: 0<R/R,=a(R)?, but (R)*<0,
(see [H-S] p. 431 and recall the proof of Corollary (3.6)) hence a <0: it is im-
possible by Lemma (3.9). O

PROPOSITION (3.11). Let f, h be two distinct primitive maps, then the co-
sine of the angle between the two vectors Ry~ (d;— 1)F and R, — (dy— 1) F in
V is less than 1/2.

PrOOF. We calculate:
—[R;— (d;—1) FIRy — (dy— 1) F1/||R;— (ds = D) FI[| R, — (d — ) FI| < —R;R, +
+(dy— (dy ~ D/{[(g — 1)y~ 1) + (dp = 1?I(g — 1)(dy — 1) + (dy ~ P} <
< (dy— 1)(dy — D/{[2(d;— 1PNy - DB =1/2. O
Now we need the following:

PACKING LEMMA (3.12) (see[K] p. 194), Suppose a and b are real numbers
with b<1 and 21 —a®) =1-5, and let vy, vy, ..., vy be a finite sequence of
non zero vectors of a real euclidean vector space V, whose dimension is m.
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Suppose that:
i) cos(vy,v;) =a, for 1<i<N,
ii) cos(v;,v;) <b, for 1<i<j=<N.

Then, putting ¢ = [2(1 —a?) /1 — b)]V2, we have:
N<(+1)" l—(c-1m !,

Now we are ready to prove our:

THEOREM (3.13). The number of elements of P(X) is less than
exp [g2 log (3)].

ProoF. By Proposition (3.7) and Lemma (3.10) we can say that the num-
ber of primitive maps, from X to another curve, is less than the cardinality N
of a certain set of non zero vectors in V, no two of them lying on the same
line, each of them belonging to the hyperplane orthogonal to F which passes
through O.

By Proposition (3.11) we can apply the packing Lemma (3.12) to this set
of vectors of V with the adjunction of v = F. We have: a =0 and b= 1/2 and
m = g?+1, because V = H, {(X®,R) is the Poincare dual of H*'(X?, R),
whose dimension is g%+ 1. So our theorem follows from (3.11). 0O

4. ~ The main theorem.

THEOREM 4.1. The number of holomorphic maps from a curve X to an-
other curve, (both of genus bigger than or equal to 2) s less than:

exp{(4/3) 1og @)(9" ~ 1+ [loga ()] log B4g) + log (12 V3)}.

ProoF. By (3.13) we know that the number of surjective maps between X
and another curve Y, Y # X, eventually composed by an isomorphism of X,
but not by an isomorphism of Y, is less than:

exp [log (3)9%184 (g — 1).

The target curve has genus g/2 at most, we can repeat the previous calcu-
lation for this curve and so on.

We put s = [logz(g) — 1] if g is not a power of 2, s =log,(g)—2if g is a
power of 2. A map from X can be broken out into s+ 1 different primitive
maps at most; at each level we must compute all possible isomorphisms. So
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that the number we are looking for is less than:
{exp[log (3)g°1} 84(¢g — 1)- {exp [log (3) (g/2)?1} 84l(g/2) — 1]- ...
...~ {exp[log (3)(g/2°)*]} 84[(g/2*) — 1)]-48.

The last factor 48 is necessary to count the isomorphisms of genus 2
curve, they are 48 at most, (see[ACGH] p. 46).
Now by looking at:

g2+ (g/2%+(g/a% + ...+ (g/ 2P <(4/3)g*- 1),

(g-1(g/2-1Ng/4-1)...(g/2°-1) =
=(g—1Xg—2Xg—4)...(g— 225+ V2 < gs+1/4/8
we get our assertion. O

REMARK (4.2). For g small (e.g. for g = 3) the previous calculation can be
sharpened, but we recall that we are looking for a bound true for all g.

REMARK (4.3). We believe that our bound for primitive maps is good; in
spite of this, our final bound is still not sharp: in fact look at the following
commutative diagram:

f

X——>x"

of

(. <
X h

in which X, X', X" and X" are four distinct curves, and f, g, k, k are four
holomorphic maps; in our calculation the map kog = kof counts twice, and
we are not able to control this case.

Pervenuto in Redazione il 5 ottobre 1989.

SUMMARY

Let X be a smooth prajective curve defined on C. The number of holomorphic maps
from a fixed X to another curve, (both of genus bigger than or equal to two), is finite by
the classical de Franchis theorem. In this paper we get an explicit bound for this num-
ber, depending on the genus of X only. Our bound is better than all the previously
given ones (by Howard-Sommese and Kani).
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SOMMARIO

Sia X una curva liscia proiettiva definita su C. Il numero delle applicazioni olomorfe
esistenti tra una X fissata ed un’altra curva, (entrambe di genere maggiore od uguale a
due), & finito in base al classico teorema di de Franchis. In questo lavoro noi otteniamo,
per tale numero, un limite superiore esplicito, dipendente solo dal genere di X. La no-
stra stima & migliore di tutte quelle date precedentemente (da Howard-Sommese e da
Kani).
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