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Characterizing Kronecker Function Rings(*). 

D. F. ANDERSON (1) _ D. E. DOBBS (2) _ M. FONTANA(3) (**) 

I .  - I n t r o d u c t i o n .  

Throughout this article, K denotes a field and X denotes an indetermi- 
nate over K. We shall say that a domain S having quotient field K(X) is a 
Kronecker function ring (with respect to K and X), and write that S is a 
KFR, in case there exist a domain R with quotient field K and an endlich 
arithmetisch brauchbar (e.a.b.) *-operation, *, on the set of nonzero frac- 
tional ideals of R such that S coincides with 

R* = {0) w { f /g : f ,g  �9 R[X]\{0} and c(f)* c c(g)* }. 

(As usual, if h �9 R[X], then c(h) denotes the ideal of R generated by the coef- 
ficients of h). Background on Kronecker function rings appears in [12] and [8, 
sections 32-34]; for ease of reference, we shall assume familiarity with the 
latter. Note, via[8, Corollary 32.8], that any R admitting an e.a.b. * as above 
must be integrally closed. 

There are several reasons for interest in Kronecker function rings. First, 
if .1 and .2 are each e.a.b. *-operations on the nonzero fractional ideals of R, 
then *, and *~ are equivalent (in the sense of agreeing at each nonzero finitely 
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generated ideal of R) if and only i fR  .1 = R *~ (cf. [8, Remark 32.9]). Second- 
ly, if T is any domain, then X(T), the abstract Riemann surface of T, is home- 
omorphic to Spec (R*) with the Zariski topology for a suitable R and e.a.b. *: 
see [6, Theorem 2]. (The underlying set of X(T) is the collection of all valua- 
tion overrings of T. X ( - )  is a functor of considerable importance in classical 
algebraic geometry). Thirdly, each KFR is a B~zout domain[8, Theorem 
32.7. (b)]; in particular, it is treed, in the sense that its prime spectrum, un- 
der partial order by inclusion, forms a tree. Finally (cf. [6, Lemma 6 (c)]), if T 
is any treed domain, then Spec (T) is order-isomorphic to Spec (R*), for a 
suitable R and e.a.b. * 

By the above remarks, Spec fails to distinguish the KFR's in the (larger) 
class of treed domains. In fact, KFR's form a proper subclass of all B~zout 
domains having rational function quotient fields. For instance, no polynomial 
ring can be a KFR (see Proposition 2.3 (a)). Section 2 is devoted to such ,,rar- 
ity,~ results (cf. also Proposition 2.5) and actually addresses scarcity for the 
more instrinsic concept of a kfr, which is defined next. We shall say that S is 
a kfr (with respect to K and X) in case S = R* where R is a subring of K(X) 
having quotient field F,  K(X) = F(Y) for some indeterminate Y over F,  * is 
an e.a.b. *-operation on the nonzero fractional ideals of R, and R* is cons- 
tructed with respect to the variable Y. It is evident (by choosing F = K and 
Y = X) that each KFR is a kfr;, however, as Example 2.2 shows, the converse 
is false. 

In a more positive vein, Section 3 characterizes KFR's (and, by varying K 
and X, thus characterizes kfCs). Specifically, Theorem 3.2 shows, i.a., that a 
subring S of K(X) is a KFR if and only if S is integrally closed, K is the quo- 
tient field of S n K, and (W n K)* = W for each W ~ X(S). (As usual, if V is a 
valuation ring of K, then V* denotes the trivial extension of V to K(X), that 
is, the valuation ring of the inf-extension of any valuation on K having valua- 
tion ring V). In case S is itself a valuation domain, this criterion reduces to 
(S n K)* c S: see Proposition 3.5 for this and other equivalents. 

In Proposition 3.3, the question whether a given KFR S = R* is a suitable 
ring of fractions of R[X] is related to whether * is equivalent to the v-oper- 
ation and whether S n K is a Prfifer v-multiplication domain. 

In the final section, we give some deeper ,,scarcity~ results, and give two 
important classes of fields K for which all kfr subrings of K(X) may be listed. 
In particular, we show that if either char K = p  and t.d.~(K) ~< 1 or K is an 
algebraic extension of Q, then each kfr subring of K(X) is a Nagata 
ring. 

Several of the results in Sections 2 and 3 of this paper were announced 
in [2]. 

Any unreferenced material is standard, typically in [8]. 
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2.  - R a r i t y .  

Before constructing a kfr which is not a KFR, we collect some useful 
facts. 

LEMMA 2.1. Let S = R* be a kfr with respect to K and X,  where R has 
quotient field F, K(X) = F(Y), and R* is constructed using the e.a.b. *-oper- 
ation * with respect to the variable Y. Then: 

(a) S is a B~zout domain; S n F  = R; the quotient field of S n F  is F; R 
is integrally closed; and (W n F)*,  the trivial extension of W n F to F(Y), co- 
incides with W for  each W �9 X(S). 

(b) S is afield i f  and only i f  R is afield; that is, S = K(X) i f  and only i f  
S n F = F .  

The assertions in Lemma 2.1 (a) are well known: cf. [8, Theorem 32.7 (1), 
(2); Corollary 32.8; and Theorem 32.10]. They will figure prominently in The- 
orem 3.2's characterization of KFR's.  As for the proof of (b), its ,only if,, half 
is clear: S = K(X) ~ S n F = F(Y) n F = F. However, to prove the ,if~ half 
of (b), we first need to recall ~ome facts about completion and the Nagata 
ring. 

Consider an e.a.b. *-operation * on the nonzero fractional ideals of a(n in- 
tegrally closed) domain R. By[8, Theorem 32.12], * is equivalent to a suit- 
able w-operation; that is, R = niT/for some set {Vi} of valuation overrings of 
R such that J*  -- n JVi for each nonzero finitely generated fractional ideal J 
of R. In case {Vi} = X(R), the associated w-operation is called completion 
and the associated Kronecker function ring is denoted by R b. ThUS R b C R* 
for each e.a.b. *. On the other hand,[8, Theorem 33.3] records that 
R(X) c R b , where the Nagata ring R(X) is defined as the ring of fractions of 
R[X] with respect to the multipUcatively closed set { f � 9  R[X]: c ( f ) =  R}.  
An oftcited result [8, Theorem 33.4], needed in Example 2.2 below, is that 
R(X) -- R b if and only if R is a Prtifer domain. 

We may now prove the ,if,, half of Lemma 2.1 (b). Let S n F -- F; that is, 
R - - F .  Then, necessarily, * is equivalent to the (identity) w-operation in- 
duced by the singleton set, {F}. However, the Kronecker function ring con- 
structed from the identity operation is clearly F(Y), and so S = F(Y), com- 
pleting the proof of Lemma 2.1. 

Lemma 2.1 easily implies that if a ring S is contained properly between K 
and K(X), then S cannot be a KFR. However, such an S can be a kfr, as we 
see in 

EXAMPLE 2.2. I f K  = Q(Y), then S = Q[X](Y) is a kfr but not a KFR. In- 
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deed, if R denotes the (Prfifer) domain Q[X] and the ring R b is constructed 
with respect to the variable Y, then S = R b, a kfr (with respect to K and X). 
However, Lemma 2.1 (b) shows that S is not a KFR (with respect to K and 
X); the ! ~nt is that S m K = K although, since X -1 ~ S, S r K(X). 

Despite the preceding result, not every B~zout domain with quotient 
field K(X) is a kfr. For instance, we have 

PROPOSITION 2.3. (a) No polynomial ring is a kfr. 

(b) I f  T is an indeterminate over Q, and f ~ Q[T] is irreducible, then 
the DVR,  Q[T](f), is not a kfr. 

PROOF. (a) Suppose that S = A[{Yi}] is a kfr, for some domain A and 
nonempty set {Yi} of variables. If P is a nonzero maximal ideal of A, then PS 
and ({Yi}) are incomparable primes each contained in the maximal ideal 
(P, {Yi}), contradicting the fact that S is treed. Thus A is a field, and it fol- 
lows easily that {Yi} is a singleton set, say {Y}. By hypothesis, A[Y] = R* 
where F is the quotient field of R, A ( Y ) =  F(Z) for some indeterminate Z 
over F,  and R* is contructed with respect to the variable Z. Since S is not a 
field, Lemma 2.1 (b) assures that R is not a field; pick a nonzero nonunit 
r �9 R. Set u = (r - 1) + Z and v = 1 + (r - 1)Z. Clearly, both u and v are units 
of R*; that is, u and v are in A. Thus w = u + v = r +  rZ is a nonzero element 
of A and hence a unit of R*. However, w -1 ~ R* since c(1) = R e R r  = c(w). 
This contradiction establishes (a). 

(b) Suppose that S = Q[T](f) is a kfr. Then S = R* where F is the quo- 
tient field of R, K(X) = Q(T) = F(Y) for some indeterminate Y over F, and 
R* is constructed using Y. It follows easily from Luroth's theorem that F = 
= Q(= K). As S n F = F and (sincef -1 ~ S) S r K(X), this contradicts Lemma 
2.1 (b). The proof of Proposition 2.3 is complete. 

REMARK 2.4. (a) Another (quick) proof of Proposition 2.3 (a) is avail- 
able using the ideas in[7]. First, reduce as above to the case S = A[Y], A 
a field. Next, apply[7, Proposition 4.1 and Corollary 5.2] to conclude that 
1 is in the stable range of the supposed kfr S = R*. We then obtain 
the (desidered) contradiction, for A[Y] fails to satisfy criterion (iii) of[7, Pro- 
position 5.1]; the point is that no d eA[Y]  satisfies (Y, 1 - Y 2 )  = 
= ( Y  + d .  (1 - y z ) ) .  

(b) As noted in (a), each kfr has 1 in the stable range. Thus, by [7, The- 
orem 5.3], a kfr S is a PID (if and) only if S is a Euclidean domain. Note, 
however, that Q[T] m is Euclidean (hence, a PID and in fact, a DVR), has 1 in 
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the stable range (by, for instance, criterion (iii) in [7, Proposition 5.1]), but is 
not a kfr (by Proposition 2.3 (b)). 

(c) Besides DVR's of the type considered in Proposition 2.3 (b), no for- 
mal power series ring A~Y1, ..., Yn~ can be a kfr. To see this, use treedness as 
in the proof of Proposition 2.3 (a) to reduce to the case A a field, {Yi} = (Y}; 
then one need only note that A((Y)) cannot take the form F(Z), Z transcen- 
dental over a field F. (We are indebted to S. Mulay for the preceding obser- 
vation). To find which (not necessarily discrete) valuation domains can be 
KFR's, see (d) and Proposition 3.6. 

(d) Despite Proposition 2.3 (b), the DVR, F[T](f), can be a Kronecker 
function ring for suitable F andf.  To see this, let T and U be algebraically in- 
dependent indeterminates over a field k, set F = k(U), and set S = F[T](~. 
One may verify essentially via Gauss' lemma, that S is an overring of 
k[T](U). However, k[T](U) is the Kronecker function ring of the Priifer do- 
main k[T] arising from completion with respect to U (cf. [8, Theorem 33.4]). 
Thus, [8, Theorem 32.15] implies that S is a kfr with respect to K = k(T) and 
X = U .  

(e) In view of the comments in the introduction, it is interesting to note 
that R*, = R ~  does not imply R1 = R2. To see this, let Y1, ]72 be independent 
indeterminates over a field F, let R be a Prtffer domain with quotient field F, 
and use[8, Theorem 33.4] to conclude that R1 = R(Y1) and R2--R(Y2) are 
Prtifer domains. Evidently R1 r R2 since Y1 �9 R1 \ R 2 .  By another appeal 
to[8, Theorem 33.4], completion of R1 (resp., Rz) with respect to ]72 (resp., 
Y1) leads to R~ 1 = RI(Y2) and R2 *~ = R2(Y1). It remains only to verify that 
R*I = R ~ ,  and this follows directly from[l,  Lemma]. 

Our final ~rarity~ result in this section is 

PROPOSITION 2.5. Let L be af ield of positive characteristic which is al- 
gebraic over its prime subfield, and let T be an indeterminate over L. I f  a 
subring S of L(T) is a kfr, then S is a field. 

PROOF. S = R*, where F is the quotient field of R, K(X) = F(Z) c L(T) 
for some indeterminate Z over F, and R* is constructed using Z. If k denotes 
the prime subfield of L (and, hence, of F), then k is ring-generated by {1}, 
whence k c R. It follows from the construction of the Nagata ring that 
k(Z) oR(Z); moreover, as recalled after the statement of Lemma 2.1, 
R(Z) r R* (= S r F(Z) c L(T)). Now, to complete the proof, it suffices to 
show that L(T) is algebraic over k(Z): cf. [8, Lemma 11.1]. This, in turn, fol- 



6 DAVID F.  A N D E R S O N  - DAVID E.  DOBBS - MARCO F O N T A N A  

lows by considering transcendence degrees: 

1 -- 0 + 1 = t.d.k(L) + t.d.L(L(T)) = t.d.k(L(T)) -- 

= t.d.k (k(Z)) + t.d.k(z) (L(T)) = 1 + t.d.k(Z) (L(T)), 

whence t.d.k(z)(L(T))= 0, as desired. 

3 .  - C h a r a c t e r i z a t i o n s .  

Before presenting a characterization of KFR's,  we shall introduce some 
notation and remark upon it. If K(X) obtains a(n integrally closed) domain S 
expressed as S = n Wi for some set ~ = {Wi} of valuation overrings Wi of S, 
set ~ g  = {Win K}. Evidently each W i n  K is a valuation ring of K. More- 
over, if S were a KFR, then (cf. Lemma 2.1 (a)) K would be the quotient 
field of S n K, that is, each Win K would then be an overring of S n K. 
However,  

REMARK 3.1. In the above setting, the elements of ~K need not be 
overrings of S n K. To see this in case K = Q(Y), consider the integrally 
closed domain S = Q[X, X Y  -1] and a particular (discrete) valuation overring, 
W = Q[X, Y]r One verifies readily that W n K = K is not an overring of 
S n K - - Q  (cf. [11, Exercise 5, page 73]). 

Let  S and ~ be as above and now suppose that R = S n K has quotient 
field K. Then each Wi n K is a valuation overring of R, and so it makes sense 
to let WK denote the w-operation on the nonzero fractional ideals of R induced 
by ~K.  If ~ = X(S), then WK will be denoted by bK. 

THEOREM 3.2. Let S be an integrally closed subring of K(X); set R = 
= S n K. Then the following conditions are equivalent: 

(1) S is a KFR (with respect to K and X); 

(2) K is the quotient field of R, and S =Rb~; 

(3) Each averring of S is a KFR (with respect to K and X); 

(4) K is the quotient field of R, and R b~ r S; 

(5) K is the quotient field of R, and there exists ~ =  {Wi} cX(S)  such 
that S = n Wi and R ~ c S; 

(6) K is the quotient field of R, and there exists ~ =  {Wi) cX(S)  such 
that S = n Wi and (Win K)* = Wi for  each i; 

(7) K is the quotient field of R, and ( W n K ) * = W  for  each 
W �9 X(S). 
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PROOF. 
orem 32.15] 
yields (7). 

(4) ~ (7): Since S is integrally closed, so is R. Given (4), [8, The- 
then assures that S is a KFR, whence [8, Theorem 32.10] 

(7) ~ (6): Take ~ = X(S).  

(6) ~ (5): Given (6), [8, Theorem 32.11] assures that R wx = n(Wi  n K)* 

(= n Wi = S). 

(5) ~ (4): It suffices to note, via [8, Theorem 32.11], that R bx c R w~. 

(2) ~ (4): Trivial. 

(4) ~ (3): Apply [8, Theorem 32.15]. 

(3) =~ (1): Trivial. 

(1)~(2) :  Assume (1). Then, using {W~} = X ( S )  and appealing to 
[8, Theorems 32.11 and 32.10], we have R bx = n ( W i n  K)* = n Wi -- S. The 
proof is complete. 

As usual, we shall let v denote the *-operation, A --. (A-1)-1. The next re- 
stilt is an analogue of [8, Theorem 33.4] for Prfifer v-multiplication domains, 
PVMD's .  (By [10], a domain R is a P V M D  if and only if Rp is a valuation do- 
main for each maximal t-ideal P, and, for such R and P's, R = n Rp. In par- 
ticular, each P V M D  is an essential domain in the sense of[14]. For additional 
characterizations of PVMD's ,  see, e.g., [13]). 

PROPOSITION 3.3. (cf. [3, Lemma 1]). Let S be a K F R  and  set R -- S n K. 
Let  ~ denote the (multiplicatively closed) set { r e  R[X]: c(f)~ = R }. Then the 
fol lowing conditions are equivalent: 

(1) S - - - R  ~ and R is a PVMD;  

(2) S = R[X]~.  

PROOF. If R is a P V M D ,  the above remarks on essentiality allow us to 
infer from [14, Proposition 12] that R" - R[X]E. It therefore remains only to 
show that (2) implies that R is a PVMD;  and this follows from [14, Corollary 
13] since each KFR is a B~zout domain. 

REMARK 3.4. It is straightforward to convert the criteria in Theorem 
3.2 into characterizations of kfr's. The first assertion in the abstract makes 
this explicit for criterion (7), and we leave the others to the reader. 

Next, we specialize Theorem 3.2 to the case of valuation domains. For 
motivation, see Proposition 2.3 (b) and Remark 2.4 (c), (d). 
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PROPOSITION 3.5. Let (W,M) be a valuation ring of  K(X); set R = 
= W r~ K. Then the following conditions are equivalent: 

(1) W is a KFR; 

(2) W ~- Rb; 

(3) W -- R*,  that is, W is the trivial extension of R to K(X); 

(4) Wp = (Wp n K)*, for  each P �9 Spec (W); 

(5) R* c W; 

(6) R(X )  r W; 

(7) R(X) = W; 

(8) The canonical map X ( W ) - .  X(R)  is bijective, with inverse map 
X(R)-- .  X(W) given by V---~ V*. 

PROOF. Note first that  (R, M n K) is a valuation ring of K; in particular, 
K is the quotient field of R. Then, as a direct application of Theorem 3.2, we 
have (1)r (3)r (5). (For ( 5 ) ~  (1), one also needs to note via [8, Theorem 
32.11] that  if ~ = {W}, when R ~ = R*). As {Wp: P �9 Spec (W)} is the set of 
overrings of W, Theorem 3.2 now shows that  (4) is equivalent to each over- 
ring of W being a KFR; hence, (1) r (4). Next, as in the proof of Proposition 
3.5, [8, Proposition 32.18 and Theorem 33.4] combines with the fact that  R is 
a Prfifer domain to yield (1) r (2) r (7). 

(7) ~ (6): Trivial. 

(6) ~ (3): Given (6), W is a valuation overring of the KFR, R(X), and so 
Theorem 3.2 [ (1 )~  (7)] yields (3). 

(2) ~ (8): Well known [8, Theorems 32.10 and 32.15]. 

(8) ~ (1): Given (8), [8, Theorem 32.11] leads to 

R bx-- n { ( V n g ) * :  V e X ( W ) }  -- r i g - -  W ,  

and so (1) holds, completing the proof. 

4. - C a t a l o g u e s :  m o r e  rari ty.  

In this final section, we investigate several classes of fields K for which 
all kfr subrings of K(X) may be listed. When one tries to determine the kfr 
subrings of a field K(X), the following problems naturally arise: 

(1) Let F and K be fields, with Y and X indeterminates over F and K, 
respectively. When does F(Y)  c K(X) imply F c K? 

(2) In  particular, when does F(Y) = K(X) imply F = K? 
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Of course, the answer to the above questions is not ~Always~,. To see this, 
let X and Y be independent indeterminates over Q, and set F = Q(X) and 
K = Q(Y); then F (Y)=  K(X), although F and K are not comparable. 

We next give several cases in which F(Y)  c K(X) does imply F r K. 

PROPOSITION 4.1. Let L and K be fields, with Y and X indeterminates 
over F and K, respectively. 

(a) I f  F(Y)  c K(X),  then F r K i f  either 

(i) Each ~ c F is algebraic over K, or 

(ii) For each a �9 F, {n �9 N I a = fl~ for  some fl �9 F} is an infinite 
set. 

(b) I f  F(Y)  = K(X), then F c K implies F = K. 

PROOF. (a) For part (i), just notice that if an element a �9 F also satisfies 
a �9 K ( X ) -  K, then a is not algebraic over K. 

For part (ii), deny. Hence, we may choose a �9 F such that a �9 K(X) - K. 
Then a =fg-1 withfi  g �9 K[X], f a n d  g relatively prime, g monic, and e i t h e r f  
or g nonconstant. Consider a = ~ for some/~ �9 F. Then also [3 = pq-1 with 
p, q �9 K[X], p and q relatively prime, q monic, and either p or q nonconstant. 
By unique factorization in K[X], fg  -1 = p ' q - "  implies that g = q~ and f =  p ' .  
However, this is clearly impossible for infinitely many n, by degree consid- 
erations, since either f or g (and hence p or q, respectively) is nonconstant. 
This (desired) contradiction establishes (ii). 

(b) Deny, and pick t �9 K - F. Then t �9 F(Y) - F, and so t is transcen- 
dental over F.  It follows that t.d.F (F(t, X)) = 2, since F(t) r K and X is tran- 
scendental over K. This contradicts 

t .d .F(F(t ,X))  <<- t .d . f (K(X) )  = t .d.F(F(Y)) = 1. 

REMARK 4.2. (a) Three important cases in which Proposition 4.1 is appli- 
cable are 

(i) F is algebraic over its prime subfield, 

(ii) F is algebraically closed, or 

(lii) F = R. 

(b) Note that a field F which satisfies either hypothesis in part (a) of 
Proposition 4.1 cannot be a purely transcendental extension of one of its sub- 
fields (cf. the reasoning preceding Proposition 4.1). 

We next give an explicit and satisfying characterization of the kfr sub- 
rings of K(X), when K is any algebraic extension field of Q. 
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THEOREM 4.3. Let K be an algebraic extension field of Q and X an inde- 
terminate over K. Then: 

(a) Each kfr subring A of K(X) has the form Rs (Y), where R is the inte- 
gral closure of Z in a subfield F of K, S is a multiplicatively closed subset of 
R, and Y ~ K(X) - K. Moreover, A has quotient field K(X) i f  and only i f  R is 
the integral closure of Z in K and Y = (aX + b). (cX + d) -1 for  some 
a, b, c, d �9 K with ad - bc ~ O. 

(b) Each Rs(Y) for R, S, and Y as in (a) is a kfr subring of 
K(X). 

PROOF. (b) This follows easily form the fact that R, and hence Rs,  is a 
Prttfer domain [8, Theorem 22.3 and Proposition 22.5], whence Rs (Y) = R~ 
[8, Theorem 33.4]. 

(a) Let A be a kfr subring of K(X). Then A = B*, where * is an e.a.b. 
�9 -operation on the nonzero fractional ideals of an integrally closed domain B 
with quotient field F and B* is constructed with respect to the field F and an 
indeterminate Y e K(X), and F(Y) is the quotient field of A. Then, necessari- 
ly, t.d.a(F) ffi 0, i.e., F is algebraic over Q. Hence F c K, by Proposition 4.1 
(a), (i). Certainly the integrally closed domain B contains R, the integral clo- 
sure of Z in F. By [5, Corollary 1, page 202], B = Rs for some multiplicatively 
closed subset S of R. As in part (b), B* = B b = B ( Y ) = R s ( Y )  since B is a 
Prtffer domain. Finally, Y �9 K ( X ) -  K since Y is not algebraic over Q. 

The ~only ff~ part of the ~moreover~ statement follows because F(Y) = 
= K(X) implies F = K by Proposition 4.1, and Lilroth's theorem yields that Y 
has the desired from. The ~ff~ part follows similarly via Ltiroth. 

REMARKS 4.4. (a) As a special case of Theorem 4.3, the kfr subrings 
A of  Q(X) are the rings of the form Zs (Y) for some multiplicatively closed 
subset S of Z and Y �9 Q(X) -  Q. Moreover, such an A has quotient field 
Q(X) i f  and only i f  Y = (aX + b). (cX + d) -1 for some a, b, c, d �9 Z with 
ad - bc ~: O. 

(b) In Proposition 2.3 (b), we have seen that for each irreducible 
f �9 Q[X], Q[X](f) is a Bdzout subring of Q(X) which is not a kfr. Another large 
class of Bdzout subrings of Q(X) with quotient field Q(X) which are not kfr~s 
are the domains of the form Zs + XQ[X] for S a multiplicatively closed subset 
of Z. Indeed, by [4, Theorem 7], such domains are Bdzout domains; but they 
are evidently not Nagata rings, and hence by Theorem 4.3, not kfFs. 

We next prove the analogue of Theorem 4.3 for fields of positive charac- 
teristic. Since the algebraic case has been handled in Proposition 2.5, we re- 
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strict ourselves here to the case in which K and F each have transcendence 
degree one over Fp. 

THEOREM 4.5. Let K be a field of positive characteristic p, such that 
t.d.p~ (K) = 1 and let X be an indeterminate over K. 

(a) Each kfr subring A of K(X) has the form Rs(Y), where R is either a 
subfield of  K(X) algebraic over Fp or the integral closure of  Fp [t] in a sub- 
field F of K(X) with t.d.F~ (F) = 1 and t �9 F transcendental over Fp, S is a 
multiplicatively closed subset of R,  and Y �9 K(X) is transcendental over F. 

(b) Each Rs(Y),  for  R, S, and Y as in (a), is a kfr subring of  
K(X). 

PROOF. (b) As in the proof of Theorem 4.3 (b), it may be shown that 
each such Rs (Y) is a kfr subring of K(X). 

(a) Conversely, let A be a kfr subring of K(X). Then A -- B* for an in- 
tegrally closed domain B with quotient field F, * an e.a.b. *-operation on the 
nonzero fractional ideals of B, and B* is constructed with respect to the field 
F and some Y �9 K(X) transcendental over F. By Proposition 2.5, we may as- 
sume that t.d.~p(F) = 1. Let t be any element of B that is not algebraic over 
Fp. Then the integrally closed domain B contains R, the integral closure of 
Fp [t] in F, and by [5, Corollary 2, page 202], B = Rs for some multiplicatively 
closed subset S of R. Since B is a Priifer domain, B* = B b = Rs (Y). This com- 
pletes the proof. 

It is interesting to note that when either K is algebraic over Q or 
t.d.F, (K) ~< 1, all the kfr subrings of K(X) are actually Nagata rings. (Apply 
Theorems 4.3 and 4.5). This observation also follows from our next proposi- 
tion (which is a slight refinement of[9, Theorem 3.1]) since its hypothesis 
descends from K to F, when F(Y) is any subfield of K(X). 

PROPOSITION 4.6. For any field K, the following conditions are equiva- 
lent: 

(1) Each integrally closed subring of  K is a Prefer  domain. 

(2) Each integrally closed ring with quotient f ield K is a Pri~fer 
domain. 

(3) Either K is a algebraic over Q or t.d.Fp (K) <~ 1. 

PROOF. (3) =~ (1) follows from [9, Theorem 3.1]. (1)=~ (2) is clear. 

(2) ~ (3): Assume (2), let char K = 0, and suppose that K is not alge- 
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braic over Q. Let {X~} be a transcendence basis for K / Q  and put R = 
= ZI{X,}]. Next, let A be the integral closure of R in K. Then A is not a Priffer 
domain since R is not a Priifer domain. (Apply [8, Theorem 22.4]). Since K is 
the quotient field of A, we have the desired contradiction. The proof for the 
characteristic p case is similar and hence will be omitted. The proof of Propo- 
sition 4.6 is complete. 

We close with some observations on the kfr subrings A of R(X). (These 
observations apply, mutatis mutandis, to the kfr subrings of any field F(X) 
where F and X satisfy the hypotheses of Proposition 4.1 (a)). 

If  the kfr A has quotient field R(X) and A is constructed with respect to F 
and Y, then R(X) = F(Y). By Proposition 4.1 (a) (ii), F --R, and, by Ltiroth's 
theorem, Y = (aX + b). (cX + d)-' for some a, b, c, d e R with ad - b c r  O. (If 
we merely assume that F(Y) c R(X) then F c R and Y e R(X) is transcenden- 
tal over F). Then A = R* where R is an integrally closed subring of R with 
quotient field R,* is an e.a.b. *-operation on the nonzero fractional ideals of 
R, and A is constructed with respect to R and Y. The integrally closed rings 
R with quotient field R are classified in the following manner. Let (X, } be a 
transcendence basis for R/Q;  then R is an integrally closed overring of the 
integral closure of Z[{X,)] in R. Unlike the domains in Theorems 4.3 and 4.5 
and Proposition 4.6, such domains R need not be lh-/ifer domains. 

Pervenuto in Redazione il 2~ dicembre 1986. 

RIASSUNTO 

Si dimostra che un dominio S ~ un anello di funzioni di Kronecker (in una variabile) se 
e soltanto se S ~ integralmente chiuso, il suo campo dei quozienti ~ della forma F(Y), dove 
Y ~ trascendente su F, il campo dei quozienti di S n F ~ F, e ogni sopraanello di valu- 
tazione W di S coincide con l'estensione banale di W n F. Inoltre, vengono classificati tut- 
ti i sottoanelli di funzioni di Kronecker di K(X), per vari importanti casi del campo K. 

SUMMARY 

We show that an integral domain S is a Kronecker function ring if and only if S is in- 
tegraUy closed, its field of quotients is F(Y), where F is a field such that the quotient 
field of S n F is exactly F, Y is transcendental over F and every valuation overring W 
of S coincides with the trivial extension ofW n F. Furthermore, we classify all the Kro- 
necker function rings, subrings of K(X), for several important types of fields K. 
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