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On the zeros of polynomials
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Abstract. In this paper we extend a classical result due to Cauchy and its improvement due to
Datt and Govil to a class of lacunary type polynomials.
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1. Introduction and statement of results
A classical result due to Cauchy [1] concerning the bounds for the moduli of the zeros
of a polynomial P(z) can be stated as
Theorem A. If
Pz)=z"+a, 2" '+ +a,z+a,,
is a polynomial of degree n and
M =max|a;l, j=0,1,2,....,n—1,
then all the zeros of P(z) lie in a circle
z| <1+ M. 1)
In the literature [3-6], there exists some improvements and generalizations of
Cauchy’s theorem. Recently Datt and Govil [2] have obtained the following improve-
ment to Theorem A.
Theorem B. If
Pz)=z"+a, 2" '+ +a,z+a,,
is a polynomial of degree n and
A =max|aj|, j=0,1,2,...,n—1,
then all the zeros of P(z) lie in a ring shaped region

lay|
2(1 + A"~ (1 + An)

<zl <1+ 4,4 )

where 1, is the unique root of the equation

1
T (1+ Ax)y

in the interval (0,1). The upper bound in (2) is best possible and is attained for the
127

x=1
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polynomial
P@)=z"—A(Z"" ' +z2" 2+ -z 4+ 1)
The purpose of this paper is to extend the above results for a class of lacunary type
polynomials. We start by proving the generalization of Theorem A.
Theorem 1. If
P(z)=a,z"+a,z" + - +a;z+a, 0<p<n-—1

is a polynomial of degree n and

M = max ﬂ, j=0,1,...,p,

n

then all the zeros of P(z) lie in|z| < K, where K is a unique positive root of the trinomial
equation

x"TP— x"TPTl _ M=, 3

For p=n— 1, this reduces to Theorem A.
The following corollary is obtained by taking p =»n— 2 in Theorem 1.

COROLLARY 1
If
P(z)=a,z"+a,_,2" >+ - +a,z+a,,

is a polynomial of degree n and

4

n

M =max , j=0,1,...,n—1,

then all the zeros of P(z) lie in the circle

<1+\/(1+4M).

2] :

From Corollary 1, we can easily deduce Corollary 2.

COROLLARY 2
If

P(z)=a,z"+a,_,2" >+ - +a,z+a,,
is a polynomial of degree n, such that

lgji<la,l, j=0,1,2,...,n-2,

then all the zeros of P(z) lie in
1
2| < +T\/5

Next we present the following generalization of Theorem B.
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Theorem 2. If

P(z)=z"+a,z2°+ - +a;z+z,, 0<p<n-—1
is a polynomial of degree n and

A=max|ag;, j=0,1,...,p
then P(z) has all its zeros in the ring shaped region

lao|
20+ A4 H{1+(p+ 14}

where o, is the unique root of the equation

1
T (1+ Axptt

in the interval (0, 1).
The upper bound 1 + «, A4 in (4) is best possible and is attained for the polynomial

P@2)=z2"—A(ZP+z"" '+ +z+ 1)

<zl <1 +agd )

x=1

2. Lemma

For the proof of Theorem 2, we need the following lemma.

Lemma. Let

1 1
fR)=x= [(1 T Ay (14 Ax)"]

where n is a positive integer and A > 0. If (p + 1)A > 1, then f(x) has a unique root in the
interval (0, 1).

Proof of the Lemma. Consider
(1+A4Ax)"f(x)=(1+ Ax)"x — (1 + Ax)P*1 + 1, wherep<n—1

_(n n 2 BN 23 [P gnpn+1
—<0>x+(1>Ax +<2>A x° + +<n)Ax
- {<p+1>Ax+ <p+1>A2x2+~--
1 2
+ (p:1>Apx”+(Ax)"“}

p+1(p+1)!Ak—1xk
—(1—(p+1)4 wroe x
(A=t DA)x+ Y e ko)

nn—1)---(n—k+2)
g {k<(l’+1)p---(p—k+3)

n+1 n o1
+ Z <k—1>A X

+A>—(p+2)A}
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(p+1) Ak 1 k
=(1-(p+1)A)x+ Z m{k(A+lk)—(P+2)A}
2y ( >A’°’1x", )
k=p+2

nn—1)---(n—k+2)
(p+1Dp---(p—k+3)
1 —(p+ 1)4 <0, thecoefficientsof x?*2,..., x"* ! are positiveand k(4 + ) — (p + 2)4
are monotonically increasing for k =2,3,...,p + 1, it follows from Descartes rule of
signs that (1 + Ax)" f (x) = 0 has exactly one positive root. Since

where [, = =1 for all k=2,3,...,p+1, as p<n—1. Since

1 1
fox)=x - [(1 T AP (14 Ax)":l

e (1+p—nA nA
fey=1- [(1 T A +Ax)"“]' (6)

If (p + 1)A > 1, then it is clear from (6) that f’(0) < 0. Thus there exists a 4 > 0 such
that f'(x) <0in (0, 8). Also f(1) > 0, hence f(x) = 0 has one and only one positive root
in (0, 1) and the lemma follows.

then

3. Proof of the theorems

Proof of Theorem 1. We have
P(2)=a,z2"+a,2"+ - +a,z+a,, 0sp<n-—1,

so that for |z} > 1,

|P(Z)|>|a||z|"{1 ('L‘L' LN L e S 1B >}

la,l|zI""? la,l 121"~ |a,|izI"

Since |(a;/a,)| <M Vj=0,1,2,..,n—1, it follows that

n ! ! :
1
> |a, Iz} {1 Iz p< +|Z|+>}
1
~la,lI2 {1 T

lz" P —|z|*"P" 1 —M=0.

if

This implies
|P@)!>0 if|z| 2K,

where K is the (unique) positive root of the trinomial equation defined by (3) in (1, o0).
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Hence all the zeros of P(z) whose modulus is greater than 1 lie in |z| < K. Since all those
zeros whose modulus is less or equal to 1 already lie in |z| < K, the desired result follows.

Proof of Theorem?2. We shall first prove that P(z) has allits zerosin{z| < 1 + a9 4, and
for this it is sufficient to consider the case when (p + 1) A > 1 (forif (p + 1)4 < 1,thenon
|z|=R>1,|P(z)| 2 R"—(p + 1)A|z|" > R"— R > 0).

If
A=max|g, j=0,1,...,p
and
P(z)=z"+apz"+ap_lz”‘1+---+a0, 0<p<n—1,
then
la,l | la,—4 |ay|
P(2)|>|z]"d1 — | —2~ + —2=1 4 ... 49
P> ot {1 (o s sl 1

4 |z|”+1——1>}
>l {1 |z|"-v<(1z|—1)|z|"

_ ., |z|p+1__1
=|z| A( =1 /)

Hence for every a > 0, we have on |z| =1 + Aa,

1+ Aoyt —1
(L+Aap*i—1

|P@)| 2 (1 + Ae)" — .

0
if .
a(l + Ax)" > (1 + Aapp*1 —1

which implies

(14 A)?r*? 1
(1+A40)" (1+A40)"
1 1

™

TUH AT (14 Aoy
Thus if a, is the unique root of the equation
v 1 1
(1+Ax)y Pt 1+ 4x)"

in (0, 1), then every a > a,, satisfies (7) and hence | P(z)| > 0 on|z| = 1 + Ao which implies
that P(z) has all its zeros in

|z} < 1+ Ag. ®)

Next we prove that P(z) has no zero in

(by above lemma),

gl
20+ A4y {1 +(p+ )4}

Let us denote the polynomial g(z) by (1 — z) P(2), then

|lz] <

p
g2)=ao+ Y (@;—a;_,)7 +2"—a,z?* -1
i=1

=a,+ h(z) (say)
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if
R=1+4
then

P
max [h(z)| SR"*' + R"+|a,|RP* ' + ¥ |a;—a;_,|R
l2l=R i=1

<R'[R+1+A4A+24p]

=2R"[R + Ap]

=21+ A [t +(p+1A4]. )
Hence on |z] <R,

|9(2)| = lag + h(2)| = |a,| — [h(2)|

|z]

> —_—

N T+ |z|rf;1)>(1|h(2)| (by Schwarz lemma)

z

> lag] — 20+ AP+ (4 D] (by O)

>0,

if

lao|

|z <

20+ Ay H[1+(p+ DAY
Hence all the zeros of P(z) lie in

lao| .
204+ Ay 1+ (p+ DA]

Combining (8) and (10), we get all the zeros of P(z) to be in the ring shaped region

|z =

(10)

Iaol
2L+ A" 14+ (p+ 1DA]

This completes the proof of Theorem 2.

<|z| <1+ Aa,.
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