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Abstract. In this paper we extend a classical result due to Cauchy and its improvement due to 
Datt and Govil to a class of lacunary type polynomials. 
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1. Introduction and statement of results 

A classical result due to Cauchy l-l] concerning the bounds for the moduli of the zeros 
of a polynomial P(z) can be stated as 

Theorem A. I f  

P(z) = z" + a._ 1 z"- i + . . .  + al z + a o, 

is a polynomial of  degree n and 

M = maxlajl, j = 0 ,  1,2 . . . . .  n - l ,  

then all the zeros of  P(z) lie in a circle 

Izl ~< 1 + M. (1) 

In the literature [3-6],  there exists some improvements and generalizations of 
Cauchy's theorem. Recently Datt and Govil [2] have obtained the following improve- 
ment to Theorem A. 

Theorem B. I f  

P(z) = z n At- a n _  1 Z n -  1 ..~ . . .  ..~ a l  z _1_ a o  ' 

is a polynomial of  degree n and 

A = maxlag[, j = 0 ,  1,2 . . . . .  n - l ,  

then all the zeros of  P(z) lie in a ring shaped region 

laol 
2(1 + A)"- 1(1 + An) ~< Izl ~< 1 + 2oA (2) 

where 20 is the unique root of the equation 

1 
x = l  

(1 + Ax)" 

in the interval (0, 1). The upper bound in (2) is best possible and is attained for the 
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polynomial 

P(z) = z" - A ( z  n- 1 + z n- 2 ..]_ . . .  Ar Z "~  1). 

The purpose of this paper is to extend the above results for a class of lacunary type 
polynomials. We start by proving the generalization of Theorem A. 

Theorem 1. I f  

P(z) = anzn + apzP + ... + al z + a o, O <. p <. n - 1  

is a polynomial o f  degree n and 

M - - m a x  a ; ,  j = 0 , 1  . . . . .  p, 
an 

then all the zeros o f  P(z)  lie in [z] < K,  where K is a unique positive root o f  the trinomial 
equation 

x " - p -  x n - P - I - M = O .  (3) 

For p = n - 1, this reduces to Theorem A. 
The following corollary is obtained by taking p = n - 2 in Theorem 1. 

COROLLARY 1 

i f  

P ( z )  = anz  n + an_ 2z  n-  2 + . . .  + a l  z + ao, 

is a polynomial o f  degree n and 

M = m a x  ~ ,  j = 0 , 1  . . . . .  n - l ,  
an 

then all the zeros o f  P(z)  lie in the circle 

1 + x/(1 + 4M) 
Izl< 

2 

From Corollary 1, we can easily deduce Corollary 2. 

COROLLARY 2 

i f  

P(z) = anz n + an_2 Zn- 2 q- ""  -]- at z + ao, 

is a polynomial o f  degree n, such that 

[a~[ ~< lanl, j = 0 ,  1,2 . . . . .  n - 2 ,  

then all the zeros o f  P(z)  lie in 

1 + x / 5  
[ z [ ~ < - -  

2 

Next we present the following generalization of Theorem B. 
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Theorem 2. I f  

P(z) = z" + apzV + ... + al z + z o, O <. p <. n - 1  

is a polynomial of degree n and 

A = max[a~[, j = O ,  1 . . . . .  p 

then P(z) has all its zeros in the ring shaped region 

laol 
~< Izl ~< 1 + aoA (4) 

2(1+A) ' -1{1  + ( p +  1)A} 

where ~o is the unique root of the equation 

1 
x = l  

(1 + Ax) p + 1 

in the interval (0, 1). 
The upper bound 1 + %A in (4) is best possible and is attained for the polynomial 

P ( z ) = z " - A ( z  p + z  p-1 + . . .  + z +  1). 

2. Lemma 

For the proof of Theorem 2, we need the following lemma. 

Lemma. Let 

f ( x ) = x - -  ( l + A x )  "-p-1 (I+-Ax) ~ 

where n is a positive integer and A > O. I f  (p + 1)A > 1, then f (x) has a unique root in the 
interval (0, 1). 

Proof of the Lemma. Consider 

(1 + Ax)"f (x)  = (1 + Ax)nx - (1 + AxF  + 1 + 1, where p ~< n - 1 

p + l  I k - 1  k ,--, (p+  1).A x 
= (1 - ( p +  1)A)x + k~2 

x ~ k (  n ( n - 1 ) ' : ' ( n = k  + 2) 2)A} 
[ \ ( p + l ) p . . . ( p - k + 3 ) + A )  - ( p +  

+ ~" k - 1  A k - l x k  
k=p+2 
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p+ 1 (n-k I l I A  k-  lvk 

= (1 - ( p  + 1)A)x + E ~-vT, ~ J ' ~ - - ~  {k(A + lk) --(p + 2)A} 
k=2 K 4 P - - K - P  Z). 

n + l  

n(n - 1).. .(n - k + 2) 
where / k = ~ T i ~ - ~ ' " T n ~ k + 3 )  ~ > 1 , ~ - , , -  ,r  for all k = 2 , 3  . . . . .  p + l ,  as p<~n-1.  Since 

1 - (p + 1)A < 0, the coefficients o fx  p § z . . . . .  x" § 1 are positive and k (A + lk) -- (p + 2)A 
are monotonical ly  increasing for k = 2, 3 . . . . .  p + 1, it follows from Descartes rule of 
signs that  (1 + Ax)"f(x) = 0 has exactly one positive root.  Since 

f (x)= x -  1 + Ax) n-p-1 (1 + Ax)" 
then 

[(l+p_=.)A .A ] 
f'(x) = 1 -- L( 1 + Ax)._ p + (1 + Ax) "+ 1 �9 (6) 

I f (p  + 1)A > 1, then it is clear from (6) tha t  f ' (0 )  < 0. Thus  there exists a 5 > 0 such 
that  f '(x) < 0 in (0, 6). Also f (1)  > 0, hence f(x) = 0 has one and only one positive root  
in (0, 1) and the lemma follows. 

3. P r o o f  o f  the t h e o r e m s  

Proof of Theorem 1. We have 

P(z) = a,z" + apzP + ... + al z + a o, O <~ p <~ n - 1 ,  

so that  for Izl > 1, 

[p(z)l>~la.llz[.{l_([ae[ 1 [axl 1 +~_1_1 ~ 
\ la . l lz l  " - p + ' ' ' +  la.llzl " - t  la.llzl"JJ" 

Since I(aj/a.)l ~ M Vj = 0, 1,2,. .  ,n - 1, it follows that  

IP(z)l>~la, llzl" 1 - ~  1-t--(-~[+~-~+... ~-p 

> la, l l z l , { l_ lz~ ,_p(  1 1 

Izl " - ' - ~  ( I z l -  1) 

>t0, 
if 

Izl"-P-lzl"-p-a-M>~O. 
This implies 

Ie(z)l > 0 iflzl>_.K, 

where K is the (unique) positive root  of the t r inomial  equat ion defined by (3) in (1, oo). 



On the zeros of polynomials 131 

Hence all the zeros of P(z) whose modulus is greater than 1 lie in Iz[ < K. Since all those 
zeros whose modulus is less or equal to 1 already lie in I z l < K, the desired result follows. 

Proof of Theorem 2. We shall first prove that  P(z) has all its zeros in I z[ ~< 1 + ~o A, and 
for this it is sufficient to consider the case when (p + 1)A > 1 (for if(p + 1)A ~< 1, then on 
Izl = R >  1, Ie(z)l >~ R " -  (p + 1)AIzIP>~R"--Rv>O). 

If 

A = maxlaj l ,  j = 0 , 1  . . . . .  p 
and 

then 
p(z) = z" + apzP + ap_ l z p- l + ... + ao, O <~ p <~ n - 1 ,  

\ lzl .-p + Izl.-p+x 

{ >f Iz[" 1 - I z - ~ k ( I z l -  1 ) l z l ' J J  

= Izl ~ -  a ( Izlp+l - 1). \ N:-i 
Hence for every g > O, we have on I z[ = 1 + Ag, 

(1 + A~) p+ 1 _ 1 
IP(z)l/> (1 + A~)" > 0 

if 
~(1 + A~)" > (1 + A~) p+ x _ 1 

which implies 

(1 + A ~ )  p+I 1 

(1 + A~)" (1 + A~)" 

1 1 
- ( 1  + A ~ )  " - p - a  (1 +A~)"" (7) 

Thus if ~o is the unique root  of the equat ion 

1 1 
x = (1 + Ax)"-P-  t (1 + Ax)"' (by above lemma), 

in (0, 1), then every ~ > ~o satisfies (7) and hence [P(z) l > 0 on [z[ = 1 + A~ which implies 
that  P(z) has all its zeros in 

Izt ~< 1 + Z~ o. (8) 

Next  we prove that  P(z) has no zero in 

laol 
Izl< 2 ( 1 + A )  " - x { l + ( p +  1)A}" 

Let  us denote  the polynomial  9(z) by (1 - z)P(z), then 

P 

O(z)=ao + ~. ( a j -a j -1 ) z J  + z"--apz  p + l - z " + l  
j = l  

= a o + h(z) (say) 
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if 

then 
R = I + A  

p 
max [h(z)[ ~ R  "+~ + R"+ lap lR  v+l + 
Izl =R j= 1 

<~ R" [R + 1 + A + 2Ap] 

= 2R" [R + Ap] 

= 2(1 + a)"[1 + (p + 1)a]. 

Hence on [z[ ~< R, 

if 

Ig(z)] = ]ao + h(z)l/> ]ao]-  Ih(z)l 

Iz[ 
/> [ao[ max ]h(z)] (1 +A)Izl=R>l 

(1J~ ' )  2 (1 - t -~  + a)"{1 + (p + 1)A} ~>laol 

> 0, 

Izl< laol 
2(1 + A)"-I [-1 + ( p +  1)A]" 

Hence all the zeros of P(z) lie in 

[a j -a j_ l lR  j 

(9) 

(by Schwarz lemma) 

(by (9)) 

[ao[ 
Izl ~ 2(1 + A) "-1 [1 + (p + 1)A]" (10) 

Combining (8) and (10), we get all the zeros of P(z) to be in the ring shaped region 

laol 
2(1 + A)"-I[1 + ( p +  1)A] 

[z[ ~< 1 + A%. 

This completes the proof  of Theorem 2. 
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