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Abstract 

Let C(RZ+ ) be a class of continuous functions f on R2+. A bivariate extension L . ( f  ,x ,y)  of Bleimann- 

Butzer-Hahn operator is defined and its standard convergence properties are given. Moreover, a local ana- 

logue of goronovskaja theorem is also given for a subclass of C(R~ ). 

1 Introduction 

For f E  C[0, oo), Bleimann-Butzer-Hahn (BBH) [5] introduced a Bernstein-type op- 

J )M. (1) n--7+l 

erator defined by 

They studied several interesting convergence/uniform convergence properties of this oper- 

ator provided f is bounded. Motivated by their work, several authors have further studied 

this operator on various facets of local and global properties. Jayasri and Sitarman ([6], 

[7]) further study its properties for largest possible class of functions. Adell, de la Cal 

and Miguel ['2] have extended BBH operator to a bivariate operator B . ( f , x , y )  for a con- 

tinuous function f on a subset of R~, defined by { ( x , y ) : x ~ 0 , y ~ 0 , z - y < l } .  In the spirit 

of BBH operator we introduce an analogue of L, ( f ,  x) for continuous functions on R~, = 

{ ( x , y )  :x>/0,y~0},  and its standard properties are discussed. To define the bivariate ex- 

[ n  ] nl a n d f . ( k , j ) =  tension we use the following notations. Let k , j  =kl  j l  ( n - - k - j ) l  
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( �9 ) f n--k--j+l'n--kle J-j+l , where f (x ,y)EC(RZ+).  An extension of BBH operator is 

defined by 

= - ' Z : E  k L . ( f , x , y )  (1 q- x q- y) f . ( , j )  x~3?. (2) 
, - o  i-o k,j  

The purpose of this note is to provide some standard convergence properties of L. ( f ,  

x , y )  under suitable conditions on f .  A subcalss .~ of C(R2+) is defined which is a bivari- 

ate version of the class introduced in [6] and ['7], and it is shown that L . ( f , x , y ) - ~ f ( x ,  

y) whenever f E . ~ .  An estimate of I L . ( f  ,x,  y ) -  f (x ,  y)  ] in terms of the modulus of 

continuity ~o(~') is given, and an analogue of Theorem 2 of ['5] is also given by estimating 

I L . ( f ) - f [  in terms of the second modulus of continuity oJ:(8) for functions defined on 

certain closed bounded subsets of R~.. A local version oI Voronovskaja type theroem is al- 

so obtained for the subclass.-~. To simplify arguments and notations we make extensive 

use of probability theory, and the required notations and certain well-known facts are giv- 

en in Section 2. Section 3 provides the main convergence results and a local version of the 

Voronovskaja type theorem is given in Section 4. 

2 Preliminaries 

Let X, be a Bernoulli random variable such that 

P.,i(x) = P(X.  = j)  = p'q" ' ,  j = 0 , 1 , ' " , n ,  

x 1 
where p = ~ - ~ ( x > O )  and q = l - p  ~- l + x "  

A sharp probability inequality which plays a crucial role throughout the paper is due 

to Alon and Spencer ['3]. In fact if y = X .  and 3 > 0 ,  it follows from their well-known 
' n 

result (cf. [-3], p. 236, corollary A. 7) that 

P ( l Y .  - pJ >~8) = ~ ,  P,,i(x) ~ 2exp(- 2n$Z). (3) 
i ,  I1-.~1~ ~1 

Throughout the paper we write E for the expectation operator associated with a random 

variable or equivalently its distribution. Clearly, L , ( f , x ) = E f ( ~ , )  where L , ( f , x )  is de- 

X, Y. Moreover, it is well-known (cf. [5])  that fined by (1) and ~ , = n _ X . + l = l _ y , + l  . 

L,(t ,x) = E~. = x -- xp" = x + O(n-2),  (4) 
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and 

L.( (t - x) ' ,x)  -= e.(x) = E(~. - x) '  = x(1 + x)' jr O(n-'). (5) 
n-}-I 

Since the operator L. ( f , x , y )  defined by (2) is analogous to L . ( f , x ) ,  in order to utilize 

probabilistic arguments we introduce a trinomial distribution as follows. Set p , = x / ( l + x  

+ y ) , p : = y / ( l + x + y ) ,  and p 3 = l / ( l + x + y )  ( x , y > O ) ,  and let Xl and Xz be random 

variables such that 

P , ( x , , x z )  = P(Xx = x , ,  X~ = xz) = P,'P,'P3" . . . . . .  ' ' ,  (6) 
ix, ,x,j 

I'} where xl,xz=O,1, '" ,n(xl+xz~n),  and ---nl /xll xzl ( n - x , - x z ) l .  Define 
Xl, '~I 

X1 and ~ ,=~ff i (n) - -  X, 
#, = ~ l ( n )  - -  n - XI  - X ,  + 1 n - X ,  - X ,  + 1 '  ( 7 )  

and note that the operator defined by (2) can be written as L,(f ,x ,y)=Ef(~x,~O. The 

properties of this operator are based on the following quantities needed in the sequel: 

~ ( x , y )  = E($~ -- x ) ' ,  ~(x ,y )  = E($z - y ) ' ,  c.(x,y) = E($, -- x)(~, - y). (8) 

These quantities are crucial and their properties will be discussed in the next section. 

3 Convergence proertles of L, ( f , x ,y )  

We frequently use the defintions ~, and ~2 by (7) throughout the paper. The non- 

asymptotic properties of the preceding quantities related to ~, and ~, are given by the fol- 

lowing lemma. 

Lemma 1. 

(i) E~l=x--x(pl+p2) ", E~t-=y--y(pl+pz) ", 

(ii) e(z,y)<~ (l+x+y)(gx'+Sx)n+l ' e(x'Y)<~(l+x+Yn)(91Yz+8Y)' 

(iii) ]c.(x,y) ]<.o.(x,y)r.(x,y)<~ ,(l +x+y)  J (9:za+8x)(9y'+Sy) 
n + l  

Proof. In what follows B(m,p)  denotes a binomial distribution with m trials and 

success probability p. For the joint distribution in (6) it is well-known that X, is B(n,p,) 

and Xz is B(n,p,) so that EX~=npl,EX,=np,. Moreover, the conditional distribution of 

XI given X,=x,  is B(n-x ,  , p l / ( 1 - - p z ) )  and the conditional distribution of X, given X, = 

xl is B(n--xl,p,/(1--pl)).  Since P' x l _ p , = P - - - - l ~ ,  it follows from (4) that 
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E($~ iX5 = x , )  = x - z p ' - %  

Since X2 is B(n,p2), we have 

in] Ep.-X, = ~']p.-i p~(1 -- 
J 

P2) "-j = (Pz + p(1 - Pz))" = (Pl + Ps)'. 

Hence 

E~I = E(E(8IIXz)) = x -- x(pl + Pz)', 

and a similar argument for E~5 proves (i). As expected, E~ and E~z obviously converge to 

x and y as n--~oo. To prove (ii) we proceed as 

aZ.(x,y) = E($1 -- x) ~ ~ E($1 -- x)5I(X, = n} + E($1 -- x)5I{X, ~ n -- 1} 

m--I 

= xZp; "q- Z E ( ( ~ I  - x)sJX5 = j ) P ( X :  = j ) .  
j -O  

X 
Since the conditional distribution of X1 given X s = j  is B ( n - j , p =  ~ ) ,  letting qz= 1-- 

Ps, it follows from Khan [9"1 that 

�9 - x  [ ]p~( l_p , ) ._  i ~ ( x , y ) ~ x Z p l  + ~ 4x(1 + x) ~ n , 
(n - -  j )  j 

"-' 1 [ n - 1  ] 
xZp; + 4nx(1 + x)~qsZ  (k + 1) 5 k qlP;-t-"" 

h--0 

Clearly, [ ] 1[.-1} 
~-o'-t (h +1 1) 5 n --h 1 ~p;_~_~ ~ 2~-~,i_o (J + 1)(j + 2) j q~P;-~-J 

n(n + 1)ql ~-5 k q~P~+~-J ~ n(n + 1)q~" 

Thus 

O~(x,y)~xSp;q  - 
8x(1 + x) z 

(n + 1)q5 " 

l + x + y  y l + x  , a n d p ~ - -  we have Since p s = l + x + y ,  q s = l + x + y  n + l  ' 

~ ( x , y ) ~ ( l + x + Y ) X  J + 8 x ( l + x ) ( l + x + y )  = ( l + x + y ) ( 9 x  5 + 8 x )  
n + l  n + l  n + l  

The inequality for ~ ( x , y )  follows by symmetry and (iii) is obvious by Schwarz inequali- 

ty. 

Lemma I entails a Shisha-Mond type of estimate for I L . ( f ) - f l  in terms of the mod- 

ulus of continuity of f .  Let u~-(ul,us),v----(v, ,v:) ,  and JJ u I[ = uiZ~uZ,. Then the mod- 
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ulus of continuity of f is defined by 

oJ(f,d) =to(d) = sup(If(u)  - - f ( v ) l :  II u - - v i i  < d } ,  d > 0 .  

An estimate of IL . ( f , x , y ) - - f ( x , y ) l  in terms of o~(f,d) is given by the following. 

Theorem 1. Let fEC(RZ+), where RZ+=((x,y):x~O,y~O). Then 

]L,( f ,x ,y)  - f ( x , y )  l ~<~(1 + ./(1 + x + y)(9(x '  + yz) + 8(x + y ) ) ) "  

o~(f, 1 

Proof. Let a=  (x t ,y t ) , f l=  (xz,yz) and set 2= I'll a-f111 ], where I'z] denotes the 
' d 

greatest integer ~z .  Clearly, 

I f (a )  - f ( f l )  l ~< (,~ + 1)co(d). 

Let X=($~,~z) ,  t = ( x , y )  and a--[ .11 X - t  II ] (d>o) where $1 and Sz are defined by 
' d ' 

(7). By the preceding inequality we have 

If(~a,~,) - f ( x , y )  l <~ (1 + a) to ( f ,d ) ,  

so that 

IL.( f  ,x,y) - f ( x , y )  I ~ El f ( f : ,~ : )  - f ( x , y )  J ~ (1 + E~)~(f ,d). (9) 

Since ~<~d-t~/(~l--x)Z+ (~z--y) z, Jensen's inequality [10,p. 50] combined with Lemma 

1 gives 

E ~  d -~ ~ / E ( ~  - z ) '  + E(~ ,  - -  y ) '  

d_l /(1 + x -I- y)(9(x z -$" yZ) + 8(x -t- y))  
n + l  

1 

Hence the theorem follows from (9) by choosing d=  (n+ 1)- i .  

Remark. Under suitable conditions to(f ,d)--*-0 as d---'0, and L.( f ,x ,y ) - -~ f (x ,y ) ,  

and the convergence is uniform for every compact subset of R~-. Of course, if f ( x , y )  is 

bounded, the defintion L.( f ,x ,y)=Ef( f l ,~z)  and the bounded convergence theorem im- 

plies that L.(f ,x ,y)--~f(x,y) .  

It is interesting to note that an estimate in terms of the second modulus of continuity 

o.~(f,d) can also be obtained in the present case. To this end, let Cs be a subclass of 

C (R~-) where B is a closed bounded subset of R~ with a certain cone property (el. ['8"], 

pp. 122--123), and let II f I[ be the usual sup-norm in Cs. Let u =  (ul ,uz), v=  (vl,vz),h 

=u--v,  and set ~=f (v+2h) - -2 f ( v+h)+f ( v ) .  Here u and v are in R~- such that v+2h 

~ ( 0 , 0 ) ,  and let A be this set. Then to:(f,d) is defined by 
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%(f,8) = sup{IA~.l.h = u  - - v ,  u , v  E A ,  Uhll ~ } .  

Moreover, let C~ he a subclass of functions g in Cn having partial derivatives up to the see- 

ond order. Let I] g,  II be the maximum of the sup-norms of g, ,g , ,g=,g , , ,g , ,  in C~. Set h 

= ~ - - x , k = ~ 2 - - y ,  where ~1 and ~z are defined by (7). Then for any gECZn, it is easily 

seen from the second order Taylor representation of g (~  ,~2) that 

1 I L . ( g ) -  gl ~< II g, II (Ighl + IEkl + ~(Eh'+ 21Ehkl + Ek2)). 

Observe from Lemma 1 that IEhl IEkl . . . . .  ( l + x + y )  = =~pa-t-pz) ~ ~ . Moreover, setting 
x y 

b ( x , y ) = ( l + x + y ) ( 9 x 2 + 8 x )  it follows from above and Lemma 1 that 

IL.(g) - gl ~< II g, II ( r (x , y ) / (n  + 1)), 

where 

7 ( x , y ) = ( x + y ) ( 1 - } - x - F y ) - F b ( x ' Y ) 5 - b ( y ' x ) - F  . /b(x ,y)b(y ,x) .  
2 

Consequently, 

and 

7(x,y) 
IL.(f) - f l  ~< 2 II f -  g II + II g, II , Z g T '  

(10) 

[L.(f)  - f l  ~ 2M 

where M is a constant. 

/ r ( z , y )  , r (z ,y )  ] 
,ozkJ,~/2( n ' ~ "  + 1), + II ell 2(n + 1) J ' 

Now we will show the convergence of L , ( f , x , y )  for a large class of functions which 

is analogous to the class , ~  introduced in ['6] and [7"1. Let 

.~ = {f E C(R~.) : for each A > 0 and each B > 0, f ( x , y )  = O(1)exp(Ax 5- By)}. 

The ensuing convergence of L, ( f )  requires the following localization lemma. In the lemma 

below and elsewhere 1 denotes the usual indicator (characteristic) function. 

Lemma 2. Let ~(x,y) be a positive function in g$. Set h ~ l - - x , k ~ . 8 z - - y ,  where ~l 

and ~2 are defined by (7), and let 8i ,d~z)>0. Then for some positive a independent of n, 

r (x ,y)  } 
JL.(f) -- f l  ~ inf {2 il f - -  g II + 11 g, II ~ .  (11) 

Then using (11) and the K-functional inequality in [4] (p. 360) one obtains the following 

analogue of Theorem 2 in [5]. 

1 
Theorem 2. Let fEC~,  and let N ( x , y )  be the least integer ~ - ~ 7 ( x , y ) - - l ,  where 

7(x,y)  is defined by (10). Then for n>/N(x,y)  we have 
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E~b($1,~z)I{ Ihl ~ $~ or Ikl ~ &z} = O(exp( -  an)). 

Proof. Let 

i 
E =  {Ihl > ~ a o r  I~1 >~#,} = {(i,J):] n _ i -  j +  1 - x J  

n - - i - - j + 1  

Since 5b~..~, for large n,n>~no, say, we have 

Et~(~,~z)I{lhl ~ , o r  ]k] >~z}~O(1)exp(An+Bn)P(E) .  (12) 

Set Yi=Xi/n(i=l ,2)  (el. (7)) and let 0<~h<l .  Clearly, 

P(lhl > ~ )  <~ P(lhl >~da, IY~-  Pzl <~ Vz) + e(lY~ - p~l > ~z). (13) 

Since X~".'B(n,p,), it can be seen kom the definition of ~ that there exists r such 

that for suitably large n~n, we obtain from (3) that 

P( ]ht >~ d~, ]Yz -- Pz I <~ qz) <~ P(  IYa - P~ [ >I ~) <~ 2exp(-  2n~), 

and 

P(IY: - Pzl > rh) ~ 2exp(- 2n~). 

Consequently, for n~no, (13) gives 

P( Ih l  >i &z) ~ 2(exp(-  2n~) + exp(-- 2n~)). 

Similarly, for O~rh~l  and large n~n, ,  there exists ~x>O such that 

P(Ikl >t ~=) ~< 2(exp(-  2n~) + exp(-- 2n~)). 

Hence letting efmin(r ,r ,yz ,~h) we have 

P(E) = P( Ihl >i ~1 or Ik [ >~ d~z) < P(  Ihl >I d~) + P( Ikl >I d,) ~< 8exp(-- 2nU), 

and the lemma follows from (12) by choosing (Aq-B)<2t 2. 

The preceding lemma implies the following convergence property of L,( f ,x ,y ) .  

Theorem 3. l.~(f ,x,y)--~f(x,y) as n "-~oo V fE6~ and for each (x,y) ERz+. 

Proof. Let Q=f(~l ,~z)-- f (x ,y) .  Given r choose positive dtl and dz such that 

IQI<~  whenever Ihl<~a and Ikl<dz,  where h and k have been defined in Lemma 2. 

Clearly, 

E Q f E Q I { I h l  <#a ,  lkl <dz} + EO./{[hJ >~daor Ikl >~$z}, 

and 

IEQ[ ~ E I Q l I { l h l  < ~1, Jkl < ~z) + EIQJI{Ihl ~ o r  Ikl ~ 2 } .  

Hence if f E  ~ ,  

IL , ( f ,x ,y)  - f ( x , y )  I ~< r + O(1)exp(An + Bn)P(thl >t ~ or Ikl >t ~z), 

and since t is arbitrary, the conclusion follows from Lemma 2. 
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4 Voronovskaja theorem for L,(f,x,y) 

Before stating and proving the intended theorem we need the following lemma. 

Lemma 3. Let~(x,y),  ~(x,y)  andc,(x,y) be defined by (8).'Then 

x ( l + x )  ( l + x + y )  +O(n-~), 
(i) a:.(x,y)= n+l 

(ii) ~(x,y) =y(I+y)(I+x+y) n + l  +O(n-2) '  

(iii) c.(x,y) =xy(l +x+y) kO(n-~). 
n+l 

Proof. We first observe two simple facts. Let X have a binomial distribution B(n, 

p) so that Y = n - X  is B(n,q=l-p).  Then 

1 = E p _ l  + 1 f"]  i . . - i =  1 - - P  "+I 
Z ( n - - X + l )  + 1  = ~.. ~+-l[jJqP ( n + l ) q "  (14) 

Next we have 

1 E 1 1 
E(n_X+I) z- (Y+I) 5 ~2E(Y+I)(Y+2) 

n | .ajhm--j 
= 2  (j W 2)l(n_ j)l~r j-O 

q2(n + 1)(n + 2) t-z k q,p,+2-, 

2 = O(n-~). (15) 
<<" q*(n + 1)(n + 2) 

To prove (i) we recall (7) and that the conditional distribution of XI given Xz=j is 

x Y ) with qz B(n--J,'l_ z= l~_x ) while the marginal distribution of X~ is B(n,pz = l + x + y  

l + x  =l-Pz=lWx+y.  Hence it follows from (5) that 

~ ( x , y ) =  "~E(($t  -- x) z [Xz = j)P(Xz = j) 
i-0 

= ~ x(1 + x):)p(x2 ~_j 
~-o (n -- j + = j )  + i-oO((n -- j + 1)-:)P(X: = j). 

Thus (14) and (151 give 

x(1 + x) ~ (I -- p;+') + O(n -z) 
~ ( x , y ) =  (n + 1)qz 

= z(1 + x)(1 -I- x + y) + O(n-Z). 
n+l 
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XI+X,  
Of course, (ii) is obvious by symmetry. To see (iii), note that ~ + $: = n - X , - X , +  1 

z + y  
and XI+X2 is B(n ,p=pl+p:  = l+a:+------~). Hence using (5) again we obtain that 

E(gl + ~, -- x -- y ) '  = (x + y)(1 + x + y): + O(n-:). 
n + l  

Since 

E(gl + g~ - x -- y)Z = ~ ( x , y )  + ~ ( x , y )  + 2c.(x,y), 

hence it follows from (i), (ii) and above that 

2c.(x,y) = 
(x + y)(1 + x + y)Z _ x(1 + x)(1 + a: + y)  -- y(1 + y)(1  + x + y) 

n + l  

where 

Q~(s,t) = f .~(x + Ou,y + ~o) -- f = . ( x , y ) ,  

Q.,(s,t) ---- f . , ( z  + Ou,y + Or) -- f . , ( x , y ) ,  

Q,s(s,t) = fss(x + Ou,y + Or) -- f ~ ( z , y ) .  

+ O(n-*) 

= 2xy(1 + x + y) + O(n-Z), 
n + l  

and the lemma is proved. 

of 
We can now prove a local version of Voronovskaja theorem. In what follows f z = ~ .  

at ( z , y ) ,  etc. , and N =  { (a,fl) : [ a - z l < 8 ~ ,  [ P - y  I<&} denotes a neighborhood of (x,  

y).  

Theorem 4. Let f E 5~ and suppose that the first two partial derivatives of f exist 

and are continuous in N. Let L . ( f  , z ,y )  be defined by (2). Then 

lim n(L , ( f , x , y )  -- f ( x , y ) )  ~- (1 + a: + Y)[a:(1 + x ) f=  

+ 2xyf, ,  + y(1 + y)f, ,].  

Proof. Let u = s - x , v = t - - y ,  and set 

1 : 
P(s, t)  = f ( z , y )  + uf~ + vf~ + -~(u f=  + 2uvf., + v'f , ,) .  

Now consider the Taylor expansion of f (s , t )  in N as given by 

f ( s , t )  ~- P(s,t) + R(s, t) ,  

where R(s,t) denotes the remainder. Letting 0 < 0 < 1 ,  R(s,t) can be written as 

1 2 R(s,t) = ~ ( u  Q,..(s,t) + 2uvQ~(s,t). + T.aQ, y(s,t) ), 
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Recalling that h = $ , - - x  and k=~z--y ,  define ~o= { Ih l<#~,  Ikl<#z}. Clearly, by Lemma 

2 we have 

L . ( f , x , y )  = Ef(~a ,~:)I(to) + Ef(~l,~z)I(7o) 

= Ef(~, ,~z)I(t~ + o(n-Z). (16) 

It is obvious that 

Ef(~l ,~2)I(o~) = EP(~I ,~:)I(to) + ER(~, ,~z)I(aO 

= EP(~a,~:) - -  EP(~I,~z)I(~) + ER(~I,~z)I(oD. (17) 

Since P(s , t )65~,  using Lemma 2 again we have 

EP(~1,~z)I(~) = o(n-2). (18) 

Moreover, since 

EP(~,8:)  = f ( x , y )  + f ,  Eh + f~Ek + l (f=Eh' + 2f,,Ehk + f , ,Ek ' ) ,  

it follows from Lemma 1 (i) and Lemma 3 that 

EP(~I,8:) = f ( x , y )  + (12(n + x++Y)l) ~ x ' Y )  + O(n-Z), 

where ~ x , y ) = x ( l + x ) f = + 2 : r y f z , + y ( l + y ) f , ~ .  

This combined with (17) and (18) gives 

Ef($,,$z)I(m) = f ( x , y )  + (1 + X++l?)~x,y ) + O(n- : )  + ER(~,,$:)I(~). (19) 
2(n 

Now we will show that 

lira nER($1,~2)I(m) = 0. (20) 

But this is tantamount to showing that nEh: I Q..~ (~1, $5) ]--~0, nEk: I Q,, (81,8z) J --~0, and 

n IEhkQ,(~l,~:)[--0 as n-~Oo. Since h=~l(n)--x -~0 a. s. , and k=~,(n)-y-'~O a.s.  (as 

n--~oo), choose n sufficiently large (n~no, say) such that for r  I Q= (~, ,~:)  I<r  

Thus  for n~n,,  by Lemma 3 we have 

r.x(1 + x) (1 + x + y) + O(n-,). EhZlQ=(~a'~z) l <~ cEhZ ~ n + 1 

Since r is arbitrary, the desired conclusion follows. Similar arguments apply to the other 

two limits, and (20) holds. Hence the theorem follows from (16),  (191 and (20). 

Acknowledgement. The author is grateful to the referee and Prof. P.L.  Butzer for 

their valuable comments. 
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